- 深度学习中Embedding原理讲解
zhishidi
ai笔记深度学习embedding人工智能
我们用最直白的方式来理解深度学习中Embedding(嵌入)的概念。核心思想一句话:Embedding就是把一些复杂、离散的东西(比如文字、类别、ID)转换成计算机更容易理解和计算的“数字密码”,这些“数字密码”能代表这个东西的本质特征或含义。为什么需要Embedding?想象一下,你要教计算机认识“苹果”和“橙子”:原始表示(不好用):你告诉计算机:“苹果”的编号是1,“橙子”的编号是2。问题来
- embedding模型有哪些?如何选择合适的embedding模型?
行云流水AI笔记
embedding
embedding模型是一种将数据映射到低维空间的模型,常用于自然语言处理、推荐系统、图像识别等领域。以下是一些常见的embedding模型:Word2Vec:CBOW(ContinuousBag-of-Words):通过上下文预测中心词。Skip-Gram:通过中心词预测上下文。GloVe(GlobalVectorsforWordRepresentation):结合了词频统计和Word2Vec的
- 深度学习实战:基于嵌入模型的AI应用开发
AIGC应用创新大全
AI人工智能与大数据应用开发MCP&Agent云算力网络人工智能深度学习ai
深度学习实战:基于嵌入模型的AI应用开发关键词:嵌入模型(EmbeddingModel)、深度学习、向量空间、语义表示、AI应用开发、相似性搜索、迁移学习摘要:本文将带你从0到1掌握基于嵌入模型的AI应用开发全流程。我们会用“翻译机”“数字身份证”等生活比喻拆解嵌入模型的核心原理,结合Python代码实战(BERT/CLIP模型)演示如何将文本、图像转化为可计算的语义向量,并通过“智能客服问答”“
- 【LlamaIndex核心组件指南 | 模型篇】一文通晓 LlamaIndex 模型层:LLM、Embedding 及多模态应用全景解析
Langchain系列文章目录01-玩转LangChain:从模型调用到Prompt模板与输出解析的完整指南02-玩转LangChainMemory模块:四种记忆类型详解及应用场景全覆盖03-全面掌握LangChain:从核心链条构建到动态任务分配的实战指南04-玩转LangChain:从文档加载到高效问答系统构建的全程实战05-玩转LangChain:深度评估问答系统的三种高效方法(示例生成、手
- 【RAG面试题】如何获取准确的语义表示
目录回答模板语义表示是干什么的?如何获取准确语义表示的关键步骤?1.选择合适的Embedding模型2.正确的文本预处理与切分3.文本清洗与标准化4.构建合理的向量库5.检索质量验证与优化详细知识点覆盖面试回答技巧回答模板在RAG中,准确的语义表示直接影响检索相关性。通常会从以下几方面确保语义表示准确:选择高质量的嵌入模型,如bge-m3或text-embedding-v1;正确的预处理和切分:采
- LangChain基础抽象类与接口的设计思想及实现源码级分析(66)
Android 小码蜂
LangChain框架入门langchain人工智能深度学习
LangChain基础抽象类与接口的设计思想及实现源码级分析I.抽象类与接口设计的核心意义1.1构建统一规范与标准在LangChain框架中,抽象类与接口的设计旨在为各类组件建立统一的行为规范。通过定义抽象方法和接口契约,确保不同功能模块(如语言模型、记忆模块、嵌入模型等)具备一致的调用方式和数据交互格式。例如,所有嵌入模型都需继承自BaseEmbeddings抽象类,并实现embed_docum
- LLMs之Embedding:Qwen3 Embedding的简介、安装和使用方法、案例应用之详细攻略
一个处女座的程序猿
NLP/LLMsembeddingLLM
LLMs之Embedding:Qwen3Embedding的简介、安装和使用方法、案例应用之详细攻略目录Qwen3Embedding的简介1、特点2、模型列表3、评测结果MTEB(Multilingual)MTEB(Engv2)C-MTEB(MTEBChinese)RerankerQwen3Embedding的使用方法1、安装2、使用方法2.1、TextEmbedding嵌入模型的使用方法Tran
- 使用Hugging Face的Sentence Transformers进行文本嵌入
2501_92325368
语言模型langchain
概述HuggingFace的SentenceTransformers是一种用于生成文本和图像嵌入的Python框架,提供了最新的技术。这个框架可以通过HuggingFaceEmbeddings类来使用嵌入模型。尽管它功能强大,但在本地运行可能会受到操作系统和其他因素的影响,因此推荐给有经验的用户使用。核心原理解析SentenceTransformers基于BERT等深度学习模型,通过转化输入文本为
- 当Spring AI遇上国产大模型DeepSeek:快速构建企业级AI应用
Yeharn
人工智能springaijava
一、技术背景1.1SpringAI是什么?SpringAI是Spring官方推出的AI应用开发框架,具备以下特性:统一API:抽象Chat、Embedding、Image等AI能力接口多模型支持:OpenAI、Azure、HuggingFace等一站式集成便捷开发:基于SpringBoot的自动配置与扩展机制1.2为什么选择DeepSeek?国产自研:深度求索(DeepSeek)推出的高性能大模型
- 使用Hugging Face的BGE模型进行文本嵌入
lirxx
人工智能langchain
在文本嵌入领域,BGE(BeijingAcademyofArtificialIntelligenceEmbeddings)模型是开源界的佼佼者。由北京智源人工智能研究院(BAAI)开发,BGE模型以其高效的嵌入性能和开放性获得了广泛的认可。本文将通过HuggingFace平台展示如何使用BGE模型进行文本嵌入。技术背景介绍文本嵌入是将文本数据转换为可计算向量的过程,这在自然语言处理(NLP)中具有
- Word2Vec 原理是什么
ZhangJiQun&MXP
教学2024大模型以及算力2021AIpythonword2vec人工智能自然语言处理
Word2Vec原理是什么一、核心概念:从词语到向量的语义映射Word2Vec是2013年由Google提出的词嵌入(WordEmbedding)模型,其核心目标是将自然语言中的词语转换为稠密的连续向量(词向量),使向量空间中的距离能反映词语的语义相关性。本质:通过神经网络学习词语的分布式表示(DistributedRepresentation),打破传统one-hot编码“维度高、无语义关联”的
- 【AI大模型】数据处理
用心分享技术
AI大模型人工智能oracle数据库
一、源文档读取为构建我们的本地知识库,我们需要对以多种类型存储的本地文档进行处理,读取本地文档并通过前文描述的Embedding方法将本地文档的内容转化为词向量来构建向量数据库。在本节中,我们以一些实际示例入手,来讲解如何对本地文档进行处理。二、数据读取1.PDF文档我们可以使用LangChain的PyMuPDFLoader来读取知识库的PDF文件。PyMuPDFLoader是PDF解析器中速度最
- Milvus 向量数据库详解与实践指南
JJJ@666
基础知识(人工智能AI)milvus向量数据库图像检索推荐系统
一、Milvus核心介绍1.什么是Milvus?Milvus是一款开源、高性能、可扩展的向量数据库,专门为海量向量数据的存储、索引和检索而设计。它支持近似最近邻搜索(ANN),适用于图像检索、自然语言处理(NLP)、推荐系统、语义搜索、智能问答、多模态数据处理等AI应用场景。它能够高效处理:嵌入向量(Embeddings)特征向量(FeatureVectors)任何高维数值向量2.核心特性特性说明
- 基础RAG实现,最佳入门选择(二)
人工智能
初次创建embeddings向量安装相关依赖pipinstallsentence-transformerstorchprotobufsentencepiecepipinstallsentence-transformerstorchprotobufsentencepiecepipinstallsentence-transformerstorchprotobufsentencepiece代码froms
- 【读代码】深入解析Ragas:RAG应用效果评估最好的工具
kakaZhui
大模型实践之知识库RAGLLMAgent人工智能AIGCRAGRagas
一、基本介绍Ragas是由ExplodingGradients团队开发的专业LLM应用评估框架,通过自动化测试和量化指标帮助开发者构建可靠的AI系统。项目采用模块化架构设计,核心功能包括:#典型架构模块├──metrics#50+评估指标实现├──testset#测试集生成系统├──embeddings#多模态嵌入支持├──integrations#主流框架集成├──optimizers#遗传算法
- 怎么对词编码进行可视化:Embedding Projector
ZhangJiQun&MXP
教学2024大模型以及算力2021AIpythonembedding
怎么对词编码进行可视化:EmbeddingProjectorhttps://projector.tensorflow.org/EmbeddingProjector是用于可视化高维向量嵌入(如词向量、图像特征向量等)的工具,能帮你理解向量间的关系,下面以词向量分析和**简单自定义数据(比如特征向量)**为例,教你怎么用:一、词向量分析场景(以图中Word2Vec数据为例)1.加载数据与基础查看图里已
- 使用 RedisVL 进行复杂查询
Hello.Reader
缓存技术数据库运维java算法人工智能redis
一、前置条件在开始之前,请确保:已安装redisvl并激活相应的Python环境。运行Redis实例,且RediSearch版本>2.4。二、初始化与数据加载我们将使用一个包含用户信息的数据集,字段包括user、age、job、credit_score、office_location、user_embedding和last_updated。以下是初始化索引和加载数据的代码:importpickle
- Patch Position Embedding (PPE) 在医疗 AI 中的应用编程分析
Allen_Lyb
数智化教程(第二期)embedding人工智能机器学习健康医疗
一、PPE的核心原理与医疗场景适配性位置编码的本质需求在医疗影像(如CT、MRI、病理切片)中,Transformer需要将图像划分为若干Patch并作为序列输入。但如果不注入空间信息,模型难以区分同一病灶在不同坐标的语义差异。传统的绝对位置编码(如SinusoidalPE)对等距网格有效,却无法灵活适配病灶大小多变、图像分辨率不一的医学场景。PatchPositionEmbedding(PPE)
- RAG 处理流程
成都犀牛
网络自然语言处理神经网络深度学习RAG
下面是处理流程图UserSystemEmbeddingModelRetrieverRerankerLLMKnowledgeBase输入问题(Query)用嵌入模型编码QueryQuery向量用Query向量检索查找相似向量(原始使用嵌入模型编码)返回TopK文档块原始检索结果对结果重排序(可选)精排后文档组合:Query+相关文档生成最终回答返回答案UserSystemEmbeddingModel
- 一文读懂AntSK PyAPI:为AI服务,嵌入不止一步!
许泽宇的技术分享
人工智能Embeddingrerank
大家好,今天我们来聊聊一个让开发者心跳加速的项目——AntSKPyAPI!这是一款基于FastAPI和FlagEmbedding的高性能文本嵌入向量生成与文档重排序API。简而言之,它能让你的文本变得聪明,有条理,甚至还能深入了解你心中真正想要的信息。话不多说,让我们一起进入这个AI的奇幻世界吧!项目地址:https://github.com/xuzeyu91/AntSK-PyApiAntSKPy
- ✨Qwen3-Embedding 向量维度选择与自定义输出终极指南(含实战 + 原理详解)
杨靳言先
embeddingpython深度学习
Qwen3-Embedding向量维度选择与自定义输出终极指南(含实战+原理详解)通义千问Qwen3-Embedding模型系列在多语言嵌入任务中表现亮眼,很多开发者都在问两个关键问题:向量维度该怎么选?有没有标准答案?模型默认输出都是4096维,怎么自定义成128/256/768呢?本文将从底层原理→实用建议→案例实操一站式回答这两个问题,帮助你真正理解并掌握维度控制,做到“选得准、用得巧”。一
- Transformer结构介绍
大写-凌祁
transformer深度学习人工智能
[编码器Encoder]←→[解码器Decoder]编码器:输入:源语言序列输出:每个词的上下文表示(embedding)解码器:输入:目标语言序列+编码器输出输出:下一个词的概率分布(目标句子生成)inputs->inputsEmbedding+PositionalEncoding->N*encoderoutput->outputsEmbedding+PositionalEncoding->N*
- Milvus/ES 插入方案对比
风筝超冷
milvuspython开发语言
在Python中加载它并打印一个示例嵌入的维度。python-c"fromsentence_transformersimportSentenceTransformer;model=SentenceTransformer('/root/.cache/modelscope/hub/models/Qwen/Qwen3-Embedding-0.6B');example_embedding=model.en
- ChromaDB深度技术研究报告
大表哥汽车人
人工智能大语言模型学习笔记人工智能语言模型自然语言处理
第一章:ChromaDB核心概念与架构1.1向量数据库:新一代AI应用基石向量数据库是为存储、管理和搜索向量嵌入(VectorEmbeddings)而专门设计的数据库系统。在高维空间中,向量嵌入是数据(如文本、图片、音频等)的数值表示。向量数据库的核心能力在于,它能够高效地执行相似度搜索,即找到与给定查询向量最相似的向量。工作原理:-嵌入(Embedding):首先,通过预训练的AI模型(如BER
- Learning to Incorporate Structure Knowledge for Image Inpainting
yijun009
图像修复论文
LearningtoIncorporateStructureKnowledgeforImageInpaintingMotivationMethods框架:AttentionLayerStructureEmbeddingLayerPyramidStructureLossExperimentreference原文链接:link.Motivation图像修复旨在用合理且充满细节的内容填充损坏的图像区域或
- Qwen3-Embedding-Reranker本地部署教程:8B 参数登顶 MTEB 多语言榜首,100 + 语言跨模态检索无压力!
算家计算
模型构建embeddingQwen3Qwen3-Reranker模型部署教程智能检索算家云镜像社区
一、简介Qwen3-Embedding与Qwen3-Reranker是阿里巴巴通义实验室于今年6月开源的双模型系列,专为文本表征、检索与排序任务设计。基于Qwen3基础模型构建,二者通过协同工作显著提升语义理解与信息检索效率,在多语言场景和工业部署中表现卓越。基于Qwen3系列的密集基础模型,提供了各种大小(0.6B、4B和8B)的全面文本嵌入和重新排序模型。该系列继承了其基础模型出色的多语言能力
- Dify文档喂不饱模型?别慌!Embedding 微调就是你的救星!
大模型玩家
embeddingai自然语言处理人工智能语言模型学习程序员
在AI时代,Embedding是NLP任务的基石,直接决定了你的模型是「聪明绝顶」还是「笨拙不堪」。你是否遇到过这些让人头疼的问题:做智能问答时,模型总是答非所问,用户一脸懵圈?做推荐系统时,用户翻遍推荐内容,还是觉得「没一个对味」?做语义搜索时,搜索结果五花八门,相关性差到让人抓狂?这些问题的罪魁祸首,往往就是你的Embedding不够精准!通用Embedding在特定领域常常「水土不服」:在电
- 使用ModelScopeEmbeddings进行文本嵌入
yunwu12777
langchain服务器数据库oracle
在AI开发中,文本嵌入是一种将文本转换为具有特定语义的数值向量的技术,这在自然语言处理(NLP)应用中非常重要。ModelScope是一个大型的模型和数据集库,提供了多种嵌入模型供开发者使用。本文将详细介绍如何使用ModelScope中的ModelScopeEmbeddings类来进行文本嵌入。技术背景介绍ModelScope提供了各种预训练模型和嵌入技术来帮助开发者轻松实现复杂的NLP任务。嵌入
- 使用LocalAI Embedding实现文本嵌入
在处理自然语言处理任务时,嵌入是一种流行且强大的技术。本文将介绍如何使用LocalAI提供的Embedding类实现文本嵌入,以及如何在本地托管的LocalAI服务中配置和使用这些模型。1.技术背景介绍LocalAI是一种基于本地部署的AI服务,旨在为AI任务提供快速和经济的解决方案。它允许开发者将大型语言模型(LLM)部署在本地服务器上,以实现更快的响应时间和数据隐私保护。嵌入模型是其中的一部分
- 从代码学习深度学习 - 词的相似性和类比任务 PyTorch版
飞雪白鹿€
#自然语言处理深度学习pytorch
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录前言加载预训练词向量TokenEmbedding类详解预训练词向量简介(GloVe)具体含义总结建议应用预训练词向量词相似度knn函数get_similar_tokens函数相似词查找示例词类比get_analogy函数词类比任务示例总结前言词向量(WordEmbeddings)是自然语言处理(NLP)中的基石之一。它们是将词
- HQL之投影查询
归来朝歌
HQLHibernate查询语句投影查询
在HQL查询中,常常面临这样一个场景,对于多表查询,是要将一个表的对象查出来还是要只需要每个表中的几个字段,最后放在一起显示?
针对上面的场景,如果需要将一个对象查出来:
HQL语句写“from 对象”即可
Session session = HibernateUtil.openSession();
- Spring整合redis
bylijinnan
redis
pom.xml
<dependencies>
<!-- Spring Data - Redis Library -->
<dependency>
<groupId>org.springframework.data</groupId>
<artifactId>spring-data-redi
- org.hibernate.NonUniqueResultException: query did not return a unique result: 2
0624chenhong
Hibernate
参考:http://blog.csdn.net/qingfeilee/article/details/7052736
org.hibernate.NonUniqueResultException: query did not return a unique result: 2
在项目中出现了org.hiber
- android动画效果
不懂事的小屁孩
android动画
前几天弄alertdialog和popupwindow的时候,用到了android的动画效果,今天专门研究了一下关于android的动画效果,列出来,方便以后使用。
Android 平台提供了两类动画。 一类是Tween动画,就是对场景里的对象不断的进行图像变化来产生动画效果(旋转、平移、放缩和渐变)。
第二类就是 Frame动画,即顺序的播放事先做好的图像,与gif图片原理类似。
- js delete 删除机理以及它的内存泄露问题的解决方案
换个号韩国红果果
JavaScript
delete删除属性时只是解除了属性与对象的绑定,故当属性值为一个对象时,删除时会造成内存泄露 (其实还未删除)
举例:
var person={name:{firstname:'bob'}}
var p=person.name
delete person.name
p.firstname -->'bob'
// 依然可以访问p.firstname,存在内存泄露
- Oracle将零干预分析加入网络即服务计划
蓝儿唯美
oracle
由Oracle通信技术部门主导的演示项目并没有在本月较早前法国南斯举行的行业集团TM论坛大会中获得嘉奖。但是,Oracle通信官员解雇致力于打造一个支持零干预分配和编制功能的网络即服务(NaaS)平台,帮助企业以更灵活和更适合云的方式实现通信服务提供商(CSP)的连接产品。这个Oracle主导的项目属于TM Forum Live!活动上展示的Catalyst计划的19个项目之一。Catalyst计
- spring学习——springmvc(二)
a-john
springMVC
Spring MVC提供了非常方便的文件上传功能。
1,配置Spring支持文件上传:
DispatcherServlet本身并不知道如何处理multipart的表单数据,需要一个multipart解析器把POST请求的multipart数据中抽取出来,这样DispatcherServlet就能将其传递给我们的控制器了。为了在Spring中注册multipart解析器,需要声明一个实现了Mul
- POJ-2828-Buy Tickets
aijuans
ACM_POJ
POJ-2828-Buy Tickets
http://poj.org/problem?id=2828
线段树,逆序插入
#include<iostream>#include<cstdio>#include<cstring>#include<cstdlib>using namespace std;#define N 200010struct
- Java Ant build.xml详解
asia007
build.xml
1,什么是antant是构建工具2,什么是构建概念到处可查到,形象来说,你要把代码从某个地方拿来,编译,再拷贝到某个地方去等等操作,当然不仅与此,但是主要用来干这个3,ant的好处跨平台 --因为ant是使用java实现的,所以它跨平台使用简单--与ant的兄弟make比起来语法清晰--同样是和make相比功能强大--ant能做的事情很多,可能你用了很久,你仍然不知道它能有
- android按钮监听器的四种技术
百合不是茶
androidxml配置监听器实现接口
android开发中经常会用到各种各样的监听器,android监听器的写法与java又有不同的地方;
1,activity中使用内部类实现接口 ,创建内部类实例 使用add方法 与java类似
创建监听器的实例
myLis lis = new myLis();
使用add方法给按钮添加监听器
- 软件架构师不等同于资深程序员
bijian1013
程序员架构师架构设计
本文的作者Armel Nene是ETAPIX Global公司的首席架构师,他居住在伦敦,他参与过的开源项目包括 Apache Lucene,,Apache Nutch, Liferay 和 Pentaho等。
如今很多的公司
- TeamForge Wiki Syntax & CollabNet User Information Center
sunjing
TeamForgeHow doAttachementAnchorWiki Syntax
the CollabNet user information center http://help.collab.net/
How do I create a new Wiki page?
A CollabNet TeamForge project can have any number of Wiki pages. All Wiki pages are linked, and
- 【Redis四】Redis数据类型
bit1129
redis
概述
Redis是一个高性能的数据结构服务器,称之为数据结构服务器的原因是,它提供了丰富的数据类型以满足不同的应用场景,本文对Redis的数据类型以及对这些类型可能的操作进行总结。
Redis常用的数据类型包括string、set、list、hash以及sorted set.Redis本身是K/V系统,这里的数据类型指的是value的类型,而不是key的类型,key的类型只有一种即string
- SSH2整合-附源码
白糖_
eclipsespringtomcatHibernateGoogle
今天用eclipse终于整合出了struts2+hibernate+spring框架。
我创建的是tomcat项目,需要有tomcat插件。导入项目以后,鼠标右键选择属性,然后再找到“tomcat”项,勾选一下“Is a tomcat project”即可。具体方法见源码里的jsp图片,sql也在源码里。
补充1:项目中部分jar包不是最新版的,可能导
- [转]开源项目代码的学习方法
braveCS
学习方法
转自:
http://blog.sina.com.cn/s/blog_693458530100lk5m.html
http://www.cnblogs.com/west-link/archive/2011/06/07/2074466.html
1)阅读features。以此来搞清楚该项目有哪些特性2)思考。想想如果自己来做有这些features的项目该如何构架3)下载并安装d
- 编程之美-子数组的最大和(二维)
bylijinnan
编程之美
package beautyOfCoding;
import java.util.Arrays;
import java.util.Random;
public class MaxSubArraySum2 {
/**
* 编程之美 子数组之和的最大值(二维)
*/
private static final int ROW = 5;
private stat
- 读书笔记-3
chengxuyuancsdn
jquery笔记resultMap配置ibatis一对多配置
1、resultMap配置
2、ibatis一对多配置
3、jquery笔记
1、resultMap配置
当<select resultMap="topic_data">
<resultMap id="topic_data">必须一一对应。
(1)<resultMap class="tblTopic&q
- [物理与天文]物理学新进展
comsci
如果我们必须获得某种地球上没有的矿石,才能够进行某些能量输出装置的设计和建造,而要获得这种矿石,又必须首先进行深空探测,而要进行深空探测,又必须获得这种能量输出装置,这个矛盾的循环,会导致地球联盟在与宇宙文明建立关系的时候,陷入困境
怎么办呢?
 
- Oracle 11g新特性:Automatic Diagnostic Repository
daizj
oracleADR
Oracle Database 11g的FDI(Fault Diagnosability Infrastructure)是自动化诊断方面的又一增强。
FDI的一个关键组件是自动诊断库(Automatic Diagnostic Repository-ADR)。
在oracle 11g中,alert文件的信息是以xml的文件格式存在的,另外提供了普通文本格式的alert文件。
这两份log文
- 简单排序:选择排序
dieslrae
选择排序
public void selectSort(int[] array){
int select;
for(int i=0;i<array.length;i++){
select = i;
for(int k=i+1;k<array.leng
- C语言学习六指针的经典程序,互换两个数字
dcj3sjt126com
c
示例程序,swap_1和swap_2都是错误的,推理从1开始推到2,2没完成,推到3就完成了
# include <stdio.h>
void swap_1(int, int);
void swap_2(int *, int *);
void swap_3(int *, int *);
int main(void)
{
int a = 3;
int b =
- php 5.4中php-fpm 的重启、终止操作命令
dcj3sjt126com
PHP
php 5.4中php-fpm 的重启、终止操作命令:
查看php运行目录命令:which php/usr/bin/php
查看php-fpm进程数:ps aux | grep -c php-fpm
查看运行内存/usr/bin/php -i|grep mem
重启php-fpm/etc/init.d/php-fpm restart
在phpinfo()输出内容可以看到php
- 线程同步工具类
shuizhaosi888
同步工具类
同步工具类包括信号量(Semaphore)、栅栏(barrier)、闭锁(CountDownLatch)
闭锁(CountDownLatch)
public class RunMain {
public long timeTasks(int nThreads, final Runnable task) throws InterruptedException {
fin
- bleeding edge是什么意思
haojinghua
DI
不止一次,看到很多讲技术的文章里面出现过这个词语。今天终于弄懂了——通过朋友给的浏览软件,上了wiki。
我再一次感到,没有辞典能像WiKi一样,给出这样体贴人心、一清二楚的解释了。为了表达我对WiKi的喜爱,只好在此一一中英对照,给大家上次课。
In computer science, bleeding edge is a term that
- c中实现utf8和gbk的互转
jimmee
ciconvutf8&gbk编码
#include <iconv.h>
#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include <fcntl.h>
#include <string.h>
#include <sys/stat.h>
int code_c
- 大型分布式网站架构设计与实践
lilin530
应用服务器搜索引擎
1.大型网站软件系统的特点?
a.高并发,大流量。
b.高可用。
c.海量数据。
d.用户分布广泛,网络情况复杂。
e.安全环境恶劣。
f.需求快速变更,发布频繁。
g.渐进式发展。
2.大型网站架构演化发展历程?
a.初始阶段的网站架构。
应用程序,数据库,文件等所有的资源都在一台服务器上。
b.应用服务器和数据服务器分离。
c.使用缓存改善网站性能。
d.使用应用
- 在代码中获取Android theme中的attr属性值
OliveExcel
androidtheme
Android的Theme是由各种attr组合而成, 每个attr对应了这个属性的一个引用, 这个引用又可以是各种东西.
在某些情况下, 我们需要获取非自定义的主题下某个属性的内容 (比如拿到系统默认的配色colorAccent), 操作方式举例一则:
int defaultColor = 0xFF000000;
int[] attrsArray = { andorid.r.
- 基于Zookeeper的分布式共享锁
roadrunners
zookeeper分布式共享锁
首先,说说我们的场景,订单服务是做成集群的,当两个以上结点同时收到一个相同订单的创建指令,这时并发就产生了,系统就会重复创建订单。等等......场景。这时,分布式共享锁就闪亮登场了。
共享锁在同一个进程中是很容易实现的,但在跨进程或者在不同Server之间就不好实现了。Zookeeper就很容易实现。具体的实现原理官网和其它网站也有翻译,这里就不在赘述了。
官
- 两个容易被忽略的MySQL知识
tomcat_oracle
mysql
1、varchar(5)可以存储多少个汉字,多少个字母数字? 相信有好多人应该跟我一样,对这个已经很熟悉了,根据经验我们能很快的做出决定,比如说用varchar(200)去存储url等等,但是,即使你用了很多次也很熟悉了,也有可能对上面的问题做出错误的回答。 这个问题我查了好多资料,有的人说是可以存储5个字符,2.5个汉字(每个汉字占用两个字节的话),有的人说这个要区分版本,5.0
- zoj 3827 Information Entropy(水题)
阿尔萨斯
format
题目链接:zoj 3827 Information Entropy
题目大意:三种底,计算和。
解题思路:调用库函数就可以直接算了,不过要注意Pi = 0的时候,不过它题目里居然也讲了。。。limp→0+plogb(p)=0,因为p是logp的高阶。
#include <cstdio>
#include <cstring>
#include <cmath&