- 【论文阅读】Revisiting the Assumption of Latent Separability for Backdoor Defenses
开心星人
论文阅读论文阅读
https://github.com/Unispac/Circumventing-Backdoor-Defenses摘要和介绍在各种后门毒化攻击中,来自目标类别的毒化样本和干净样本通常在潜在空间中形成两个分离的簇。这种潜在的分离性非常普遍,甚至在防御研究中成为了一种默认假设,我们称之为潜在分离性假设。基于这一假设设计的防御方法通过在潜在空间中进行聚类分析来识别毒化样本。具体来说,这些防御方法首先在
- [论文阅读] CLIP-based fusion-modal reconstructing hashing for large-scaleunsupervised cross-modal retri
2301_80732299
论文阅读
摘要随着多模态数据的激增,人们不再满足于单一的数据检索模式来获取信息。深度哈希检索算法以其存储效率高、查询速度快等优点受到广泛关注。目前,现有的无监督哈希方法普遍存在两方面的局限性:(1)现有方法不能充分捕获不同模态数据中潜在的语义相关性和共存信息,导致缺乏有效的特征和哈希编码表示来弥合多模态数据中的异构和语义差距。(2)现有的无监督方法通常构造相似矩阵来指导哈希码学习,存在不准确的相似度问题,导
- F-PointNet 论文阅读理解
咸鱼和白菜
目标检测f-pointnet点云目标检测
总述本文提出一种方法:使用成熟的2D的目标检测方法中cnn提供的regionproposal和3D的目标检测定位(也就是pointnet处理点云),将二者结合利用RGB-D映射和一个叫做锥体(Frustum)?形成一个3D的box参数进行输出。本文主要贡献就是在“一个叫做锥(Frustum)”的使用上结合2D的regionpropos和点云进行3D的分割和box的输出。为方便理解与书写,按照文中顺
- 【论文阅读笔记|EMNLP2023】DemoSG: Demonstration-enhanced Schema-guided Generation for Low-resource Event Ext
Rose sait
论文阅读笔记
论文题目:DemoSG:Demonstration-enhancedSchema-guidedGenerationforLow-resourceEventExtraction论文来源:EMNLP2023论文链接:2023.findings-emnlp.121.pdf(aclanthology.org)代码链接:https://github.com/GangZhao98/DemoSG0摘要当前大多数
- 深度学习论文阅读路线图
喜欢打酱油的老鸟
深度学习论文阅读路线图深度学习论文阅读路线图论文阅读路线图
https://www.toutiao.com/a6703859415763649031/作者:floodsun编译:ronghuaiyang这是作者一年前整理的东西,有些最新的论文没有包含进去,但是对于新手来说,入门足够了!如果你是深度学习领域的新人,你的第一个问题可能是“我该从哪些论文开始读起呢?”这就是深度学习论文的阅读路线图!这个路线图是根据下面几个规则构建的:从概要到细节从老的到最新的业
- 神经网络压缩实验-Deep-compression
无用技术研究所
首发于个人博客,结合论文阅读笔记更佳实验准备基础网络搭建为了实现神经网络的deepcompression,首先要训练一个深度神经网络,为了方便实现,这里实现一个两层卷积+两层MLP的神经网络classnet(pt.nn.Module):def__init__(self):super(net,self).__init__()self.conv1=pt.nn.Conv2d(in_channels=1,
- 【论文阅读】DeepSeek-R1:通过强化学习激励LLMs的推理能力 | DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via RL
AI天才研究院
DeepSeekR1&大数据AI人工智能大模型DeepSeek计算论文阅读deepseekagiaillmagentcot
DeepSeek-R1:IncentivizingReasoningCapabilityinLLMsviaReinforcementLearningDeepSeek-R1:通过强化学习激励LLMs的推理能力DeepSeek-AIresearch@deepseek.com目录DeepSeek-R1:IncentivizingReasoningCapabilityinLLMsviaReinforcem
- 【声音场景分类--论文阅读】
繁华落尽,寻一世真情
分类论文阅读数据挖掘
1.基于小波时频图特征在声音场景分类基于小波时频图特征在声音场景分类任务中的表现2.增强增强高效音频分类网络https://arxiv.org/pdf/2204.11479v5https://github.com/Alibaba-MIIL/AudioClassfication音频分类网络如图4所示。在此阶段,主要重点是建立一个神经网络具有较大的感受野,同时保持较低的复杂性。可以将网络分解为两个主块
- 利用去雾算法实现低光增强
mytzs123
图像增强算法opencv人工智能
[论文阅读](11)ACE算法和暗通道先验图像去雾算法(Rizzi|何恺明老师)_暗通道去雾算法-CSDN博客//https://zhuanlan.zhihu.com/p/500023711?utm_id=0#include#include#include#include#include#includeusingnamespacecv;usingnamespacestd;namespace{voi
- 论文阅读【CVPR-2022】3D Shape Variational Autoencoder Latent Disentanglement via Mini-Batch Feature Swappi
智尊宝人工智能社区
人工智能计算机视觉
3DShapeVariationalAutoencoderLatentDisentanglementviaMini-BatchFeatureSwappingforBodiesandFaces通过小批量特征互换实现身体和脸部的三维形状变异自动编码器潜移默化studyai.com搜索论文:3DShapeVariationalAutoencoderLatentDisentanglementviaMini
- 论文阅读笔记(9)——《A Practical Survey on Faster and Lighter Transformers》
StriveQueen
自然语言处理机器学习论文阅读笔记算法神经网络机器学习Transformer
1Abstract2Introductionrecurrentneuralnetworks(RNNs)longshort-termmemory(LSTM)networksequencetosequenceframeworkinter-attentionrelativeeffectivecontextlength(RECL)Transformer3TransformerA.EncoderB.Deco
- 【OTFS与信号处理:论文阅读1】:考虑分数多普勒的OTFS系统有效信道估计(24.01.16更新)
Cuby!
OTFS论文学习信号处理论文阅读人工智能
2023.06.05最近在研究OTFS考虑分数多普勒时信道估计与信号检测相关问题,最近精读了一篇论文,并针对论文中部分公式进行推导,故记录一下学习过程。【OTFS与信号处理:论文阅读1】EfficientChannelEstimationforOTFSSystemsinthePresenceofFractionalDoppler前言一、摘要及背景摘要分数多普勒的引入估计分数多普勒的意义研究现状二、
- 论文阅读:DeepFake-Adapter: Dual-Level Adapter for DeepFake Detection(Deepfake模型快速调参)
海拉鲁的小厨娘
读论文论文阅读
一、论文信息论文名称:DeepFake-Adapter:Dual-LevelAdapterforDeepFakeDetection作者团队:项目主页:https://github.com/rshaojimmy/DeepFake-Adapter(代码暂未开源)二、动机与创新动机:目前的deepfake检测模型泛化能力差,将其归因于过拟合于低级的伪造模式,现有的deepfake检测方法仅关注低级别的伪
- 大模型GUI系列论文阅读 DAY4:《PREDICT: Multi-Agent-based Debate Simulation for Generalized Hate Speech Detecti》
feifeikon
论文阅读
摘要虽然已经提出了一些公共基准用于训练仇恨言论检测模型,但这些基准之间的标注标准差异为模型的泛化学习带来了挑战,限制了其适用性。先前的研究提出了通过数据整合或扩充来泛化模型的方法,但在克服数据集之间的标注标准差异方面仍然存在局限性。为了解决这些挑战,我们提出了PREDICT,一种基于多代理(multi-agent)概念的仇恨言论检测新框架。PREDICT包括两个阶段:(1)PRE(基于视角的推理)
- 图神经网络系列论文阅读DAY1:《Predicting Tweet Engagement with Graph Neural Networks》
feifeikon
神经网络论文阅读人工智能
摘要翻译:社交网络是全球范围内分享内容的重要在线渠道之一。在这种背景下,预测一篇帖子在互动方面是否会产生影响,对于推动这些媒体的盈利利用至关重要。在现有研究中,许多方法通过利用帖子的直接特征来解决这一问题,这些特征通常与文本内容以及发布该帖子的用户相关。在本文中,我们认为互动的增加还与另一个关键因素相关,即社交媒体用户发布的帖子之间的语义关联。因此,我们提出了一种基于图神经网络(GraphNeur
- 大模型GUI系列论文阅读 DAY2续2:《使用指令微调基础模型的多模态网页导航》
feifeikon
论文阅读
摘要自主网页导航的进展一直受到以下因素的阻碍:依赖于数十亿次的探索性交互(通常采用在线强化学习),依赖于特定领域的模型设计,难以利用丰富的跨领域数据进行泛化。在本研究中,我们探讨了基于视觉-语言基础模型的数据驱动离线训练方法,以改进网页代理的性能。我们提出了一种名为WebGUM的指令跟随多模态代理,该代理能够同时观察网页截图和HTML页面,并输出网页导航操作,例如点击和输入文本等。WebGUM通过
- 大模型GUI系列论文阅读 DAY3:《GPT-4V(ision) is a Generalist Web Agent, if Grounded》
feifeikon
论文阅读
摘要近年来,大型多模态模型(LMMs)的发展,特别是GPT-4V(ision)和Gemini,迅速扩展了多模态模型的能力边界,不再局限于传统任务如图像描述和视觉问答。在本研究中,我们探讨了LMMs(如GPT-4V)作为通用网页代理的潜力,这类代理能够根据自然语言指令完成任意网站上的任务。我们提出了SEEACT,这是一种通用网页代理,利用LMMs的视觉理解能力,实现网页上的操作。我们在最新的MIND
- 《论文阅读》 用于产生移情反应的迭代联想记忆模型 ACL2024
365JHWZGo
情感对话论文阅读回复生成ACL2024共情回复empathetic
《论文阅读》用于产生移情反应的迭代联想记忆模型ACL2024前言简介任务定义模型架构EncodingDialogueInformationCapturingAssociatedInformationPredictingEmotionandGeneratingResponse损失函数问题前言亲身阅读感受分享,细节画图解释,再也不用担心看不懂论文啦~无抄袭,无复制,纯手工敲击键盘~今天为大家带来的是《
- 论文阅读--Qwen2&2.5技术报告
__如果
论文阅读qwen
Qwen21引言所有模型都是在超过7trilliontoken(7万亿)的高质量、大规模数据集上预训练的2Tokenizer&Model2.1Tokenizer沿用Qwen(Bai等人,2023a)的做法,我们采用了基于字节级字节对编码的相同Tokenizer所有大小的模型都采用一个共有词汇表,包含151,643个常规词元和3个控制词元2.2模型架构基于Transformer架构的大型语言模型,具
- 大模型GUI系列论文阅读 DAY3续4:《TREE SEARCH FOR LANGUAGE MODEL AGENTS》
feifeikon
语言模型人工智能自然语言处理
摘要自主代理由语言模型(LMs)驱动,已在执行诸如网页自动化等决策任务方面展示出良好前景。然而,语言模型的一个主要局限在于:它们主要针对自然语言理解和生成进行了优化,在解决现实世界的计算机任务时,难以应对多步推理、规划以及环境反馈的利用。为了解决这一问题,我们提出了一种推理时搜索算法,使语言模型代理能够在交互式网页环境中执行显式的探索和多步规划。我们的方法是一种基于最佳优先(best-first)
- DETRs with Collaborative Hybrid Assignments Training论文阅读与代码
分享总结快乐
论文阅读
关键词:协作混合分配训练【目标检测】Co-DETR:ATSS+FasterRCNN+DETR协作的先进检测器(ICCV2023)-CSDN博客摘要:在这篇论文中,作者观察到在DETR中将过少的Query分配为正样本,采用一对一的集合匹配,会导致对编码器输出的监督稀疏,严重损害编码器的区分特征学习,反之亦然,也会影响解码器中的注意力学习。为了缓解这个问题,作者提出了一种新颖的协同混合分配训练方案,名
- 大模型GUI系列论文阅读 DAY2续:《一个具备规划、长上下文理解和程序合成能力的真实世界Web代理》
feifeikon
论文阅读
摘要预训练的大语言模型(LLMs)近年来在自主网页自动化方面实现了更好的泛化能力和样本效率。然而,在真实世界的网站上,其性能仍然受到以下问题的影响:(1)开放领域的复杂性,(2)有限的上下文长度,(3)在HTML结构上的归纳偏差不足。我们提出WebAgent,一个由LLM驱动的智能代理,能够通过自我学习的方式,在真实网站上按照自然语言指令完成任务。WebAgent通过将指令提前规划,将其分解为子指
- 论文阅读笔记:AI+RPA
几道之旅
人工智能
文章目录论文题目下载地址论文摘要论文题目Challengesandopportunities:ImplementingRPAandAIinfrauddetectioninthebankingsector下载地址点击这里下载论文摘要在银行业中,将机器人流程自动化(RPA)和人工智能(AI)集成用于欺诈检测是一项重大变革,既带来了挑战,也带来了机遇。随着金融机构面临日益复杂的欺诈企图,RPA和AI成为
- 论文阅读:Deep Bilateral Learning for Real-Time Image Enhancement-google-hdrnet-slicing
SetMaker
论文阅读
项目地址:https://gitcode.com/google/hdrnethdrnet作为超分领域的经典文章,由google提出主要用来用轻量化的方法来实现高分辨率的图像生成,hdrnet结合cnn可以让更高分辨率的图像部署在板端。如图所示,原始图像比如4k图像,首先分为两个主要模块:grid和guide。grid就是对应图上面的那一条特征提取网络,具体来说,原始图像经过下采样之后,默认256分
- PenGymy论文阅读
亚里士多没有德775
论文阅读
这里发现idea被人家先发了,没办法,资料收集的不够全面,现在来学习一下这个项目这篇论文的贡献如下:总的来说,他的主要工作是构建逼真的仿真环境,然后根据这个仿真环境生成真实的靶场,使得这个智能体能够在这个真实的环境去互动。下面来逐渐解析他的工作,我尽量详细一点1、背景和动机这种项目是在网络攻防中,攻防双方攻击者处于暗面,防御者处于明面,这时候受到攻击后应急处理多少会造成损失,那么要是可以提前预测攻
- 《互联网时代教师自主成长的模式研究》论文阅读与思考2
宁超群
2.第二部分教师自主成长的模式建构,实质上是对新网师底层逻辑的描述。你认为,新网师的培训模式与传统常见的培训模式有哪些区别?这些区别有什么意义或价值?读完第二部分后,你对新网师有哪些新的认识或理解?你认为新网师目前哪些方面做得好,哪些方面做得还不够?答:我认为新网师的培训模式与传统常见的培训模式有以下区别:(1)培训对象的参与动机不同。新网师学员的参与是自觉自愿、积极主动,而传统培训更多是被迫参与
- 【定位系列论文阅读】-Patch-NetVLAD: Multi-Scale Fusion of Locally-Global Descriptors for Place Recognition(一)
醉酒柴柴
论文阅读学习笔记
这里写目录标题概述研究内容Abstract第一段(介绍本文算法大致结构与优点)1.Introduction介绍第一段(介绍视觉位置识别的重要性)第二段(VPR的两种常见方法,本文方法结合了两种方法)第三段(本文贡献)第四段(为证明本文方法优越性,进行的测试以及比较)2.RelatedWork相关工作第一段(介绍早期与深度学习的全局图像描述符)第二段(介绍局部关键点描述符)第三段(局部描述符可以进一
- 论文阅读笔记(十九):YOLO9000: Better, Faster, Stronger
__Sunshine__
笔记YOLO9000detectionclassification
WeintroduceYOLO9000,astate-of-the-art,real-timeobjectdetectionsystemthatcandetectover9000objectcategories.FirstweproposevariousimprovementstotheYOLOdetectionmethod,bothnovelanddrawnfrompriorwork.Theim
- 论文阅读笔记: DINOv2: Learning Robust Visual Features without Supervision
小夏refresh
论文计算机视觉深度学习论文阅读笔记深度学习计算机视觉人工智能
DINOv2:LearningRobustVisualFeatureswithoutSupervision论文地址:https://arxiv.org/abs/2304.07193代码地址:https://github.com/facebookresearch/dinov2摘要大量数据上的预训练模型在NLP方面取得突破,为计算机视觉中的类似基础模型开辟了道路。这些模型可以通过生成通用视觉特征(即无
- 周四 2020-01-09 08:00 - 24:30 多云 02h10m
么得感情的日更机器
南昌。二〇二〇年一月九日基本科研[1]:1.论文阅读论文--二小时十分2.论文实现实验--小时3.数学SINS推导回顾--O分4.科研参考书【】1)的《》看0/0页-5.科研文档1)组织工作[1]:例会--英语能力[2]:1.听力--十分2.单词--五分3.口语--五分4.英语文档1)编程能力[2]:1.编程语言C语言--O分2.数据结构与算法C语言数据结构--O分3.编程参考书1)陈正冲的《C语
- Spring4.1新特性——Spring MVC增强
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- mysql 性能查询优化
annan211
javasql优化mysql应用服务器
1 时间到底花在哪了?
mysql在执行查询的时候需要执行一系列的子任务,这些子任务包含了整个查询周期最重要的阶段,这其中包含了大量为了
检索数据列到存储引擎的调用以及调用后的数据处理,包括排序、分组等。在完成这些任务的时候,查询需要在不同的地方
花费时间,包括网络、cpu计算、生成统计信息和执行计划、锁等待等。尤其是向底层存储引擎检索数据的调用操作。这些调用需要在内存操
- windows系统配置
cherishLC
windows
删除Hiberfil.sys :使用命令powercfg -h off 关闭休眠功能即可:
http://jingyan.baidu.com/article/f3ad7d0fc0992e09c2345b51.html
类似的还有pagefile.sys
msconfig 配置启动项
shutdown 定时关机
ipconfig 查看网络配置
ipconfig /flushdns
- 人体的排毒时间
Array_06
工作
========================
|| 人体的排毒时间是什么时候?||
========================
转载于:
http://zhidao.baidu.com/link?url=ibaGlicVslAQhVdWWVevU4TMjhiKaNBWCpZ1NS6igCQ78EkNJZFsEjCjl3T5EdXU9SaPg04bh8MbY1bR
- ZooKeeper
cugfy
zookeeper
Zookeeper是一个高性能,分布式的,开源分布式应用协调服务。它提供了简单原始的功能,分布式应用可以基于它实现更高级的服务,比如同步, 配置管理,集群管理,名空间。它被设计为易于编程,使用文件系统目录树作为数据模型。服务端跑在java上,提供java和C的客户端API。 Zookeeper是Google的Chubby一个开源的实现,是高有效和可靠的协同工作系统,Zookeeper能够用来lea
- 网络爬虫的乱码处理
随意而生
爬虫网络
下边简单总结下关于网络爬虫的乱码处理。注意,这里不仅是中文乱码,还包括一些如日文、韩文 、俄文、藏文之类的乱码处理,因为他们的解决方式 是一致的,故在此统一说明。 网络爬虫,有两种选择,一是选择nutch、hetriex,二是自写爬虫,两者在处理乱码时,原理是一致的,但前者处理乱码时,要看懂源码后进行修改才可以,所以要废劲一些;而后者更自由方便,可以在编码处理
- Xcode常用快捷键
张亚雄
xcode
一、总结的常用命令:
隐藏xcode command+h
退出xcode command+q
关闭窗口 command+w
关闭所有窗口 command+option+w
关闭当前
- mongoDB索引操作
adminjun
mongodb索引
一、索引基础: MongoDB的索引几乎与传统的关系型数据库一模一样,这其中也包括一些基本的优化技巧。下面是创建索引的命令: > db.test.ensureIndex({"username":1}) 可以通过下面的名称查看索引是否已经成功建立: &nbs
- 成都软件园实习那些话
aijuans
成都 软件园 实习
无聊之中,翻了一下日志,发现上一篇经历是很久以前的事了,悔过~~
断断续续离开了学校快一年了,习惯了那里一天天的幼稚、成长的环境,到这里有点与世隔绝的感觉。不过还好,那是刚到这里时的想法,现在感觉在这挺好,不管怎么样,最要感谢的还是老师能给这么好的一次催化成长的机会,在这里确实看到了好多好多能想到或想不到的东西。
都说在外面和学校相比最明显的差距就是与人相处比较困难,因为在外面每个人都
- Linux下FTP服务器安装及配置
ayaoxinchao
linuxFTP服务器vsftp
检测是否安装了FTP
[root@localhost ~]# rpm -q vsftpd
如果未安装:package vsftpd is not installed 安装了则显示:vsftpd-2.0.5-28.el5累死的版本信息
安装FTP
运行yum install vsftpd命令,如[root@localhost ~]# yum install vsf
- 使用mongo-java-driver获取文档id和查找文档
BigBird2012
driver
注:本文所有代码都使用的mongo-java-driver实现。
在MongoDB中,一个集合(collection)在概念上就类似我们SQL数据库中的表(Table),这个集合包含了一系列文档(document)。一个DBObject对象表示我们想添加到集合(collection)中的一个文档(document),MongoDB会自动为我们创建的每个文档添加一个id,这个id在
- JSONObject以及json串
bijian1013
jsonJSONObject
一.JAR包简介
要使程序可以运行必须引入JSON-lib包,JSON-lib包同时依赖于以下的JAR包:
1.commons-lang-2.0.jar
2.commons-beanutils-1.7.0.jar
3.commons-collections-3.1.jar
&n
- [Zookeeper学习笔记之三]Zookeeper实例创建和会话建立的异步特性
bit1129
zookeeper
为了说明问题,看个简单的代码,
import org.apache.zookeeper.*;
import java.io.IOException;
import java.util.concurrent.CountDownLatch;
import java.util.concurrent.ThreadLocal
- 【Scala十二】Scala核心六:Trait
bit1129
scala
Traits are a fundamental unit of code reuse in Scala. A trait encapsulates method and field definitions, which can then be reused by mixing them into classes. Unlike class inheritance, in which each c
- weblogic version 10.3破解
ronin47
weblogic
版本:WebLogic Server 10.3
说明:%DOMAIN_HOME%:指WebLogic Server 域(Domain)目录
例如我的做测试的域的根目录 DOMAIN_HOME=D:/Weblogic/Middleware/user_projects/domains/base_domain
1.为了保证操作安全,备份%DOMAIN_HOME%/security/Defa
- 求第n个斐波那契数
BrokenDreams
今天看到群友发的一个问题:写一个小程序打印第n个斐波那契数。
自己试了下,搞了好久。。。基础要加强了。
&nbs
- 读《研磨设计模式》-代码笔记-访问者模式-Visitor
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.List;
interface IVisitor {
//第二次分派,Visitor调用Element
void visitConcret
- MatConvNet的excise 3改为网络配置文件形式
cherishLC
matlab
MatConvNet为vlFeat作者写的matlab下的卷积神经网络工具包,可以使用GPU。
主页:
http://www.vlfeat.org/matconvnet/
教程:
http://www.robots.ox.ac.uk/~vgg/practicals/cnn/index.html
注意:需要下载新版的MatConvNet替换掉教程中工具包中的matconvnet:
http
- ZK Timeout再讨论
chenchao051
zookeepertimeouthbase
http://crazyjvm.iteye.com/blog/1693757 文中提到相关超时问题,但是又出现了一个问题,我把min和max都设置成了180000,但是仍然出现了以下的异常信息:
Client session timed out, have not heard from server in 154339ms for sessionid 0x13a3f7732340003
- CASE WHEN 用法介绍
daizj
sqlgroup bycase when
CASE WHEN 用法介绍
1. CASE WHEN 表达式有两种形式
--简单Case函数
CASE sex
WHEN '1' THEN '男'
WHEN '2' THEN '女'
ELSE '其他' END
--Case搜索函数
CASE
WHEN sex = '1' THEN
- PHP技巧汇总:提高PHP性能的53个技巧
dcj3sjt126com
PHP
PHP技巧汇总:提高PHP性能的53个技巧 用单引号代替双引号来包含字符串,这样做会更快一些。因为PHP会在双引号包围的字符串中搜寻变量, 单引号则不会,注意:只有echo能这么做,它是一种可以把多个字符串当作参数的函数译注: PHP手册中说echo是语言结构,不是真正的函数,故把函数加上了双引号)。 1、如果能将类的方法定义成static,就尽量定义成static,它的速度会提升将近4倍
- Yii框架中CGridView的使用方法以及详细示例
dcj3sjt126com
yii
CGridView显示一个数据项的列表中的一个表。
表中的每一行代表一个数据项的数据,和一个列通常代表一个属性的物品(一些列可能对应于复杂的表达式的属性或静态文本)。 CGridView既支持排序和分页的数据项。排序和分页可以在AJAX模式或正常的页面请求。使用CGridView的一个好处是,当用户浏览器禁用JavaScript,排序和分页自动退化普通页面请求和仍然正常运行。
实例代码如下:
- Maven项目打包成可执行Jar文件
dyy_gusi
assembly
Maven项目打包成可执行Jar文件
在使用Maven完成项目以后,如果是需要打包成可执行的Jar文件,我们通过eclipse的导出很麻烦,还得指定入口文件的位置,还得说明依赖的jar包,既然都使用Maven了,很重要的一个目的就是让这些繁琐的操作简单。我们可以通过插件完成这项工作,使用assembly插件。具体使用方式如下:
1、在项目中加入插件的依赖:
<plugin>
- php常见错误
geeksun
PHP
1. kevent() reported that connect() failed (61: Connection refused) while connecting to upstream, client: 127.0.0.1, server: localhost, request: "GET / HTTP/1.1", upstream: "fastc
- 修改linux的用户名
hongtoushizi
linuxchange password
Change Linux Username
更改Linux用户名,需要修改4个系统的文件:
/etc/passwd
/etc/shadow
/etc/group
/etc/gshadow
古老/传统的方法是使用vi去直接修改,但是这有安全隐患(具体可自己搜一下),所以后来改成使用这些命令去代替:
vipw
vipw -s
vigr
vigr -s
具体的操作顺
- 第五章 常用Lua开发库1-redis、mysql、http客户端
jinnianshilongnian
nginxlua
对于开发来说需要有好的生态开发库来辅助我们快速开发,而Lua中也有大多数我们需要的第三方开发库如Redis、Memcached、Mysql、Http客户端、JSON、模板引擎等。
一些常见的Lua库可以在github上搜索,https://github.com/search?utf8=%E2%9C%93&q=lua+resty。
Redis客户端
lua-resty-r
- zkClient 监控机制实现
liyonghui160com
zkClient 监控机制实现
直接使用zk的api实现业务功能比较繁琐。因为要处理session loss,session expire等异常,在发生这些异常后进行重连。又因为ZK的watcher是一次性的,如果要基于wather实现发布/订阅模式,还要自己包装一下,将一次性订阅包装成持久订阅。另外如果要使用抽象级别更高的功能,比如分布式锁,leader选举
- 在Mysql 众多表中查找一个表名或者字段名的 SQL 语句
pda158
mysql
在Mysql 众多表中查找一个表名或者字段名的 SQL 语句:
方法一:SELECT table_name, column_name from information_schema.columns WHERE column_name LIKE 'Name';
方法二:SELECT column_name from information_schema.colum
- 程序员对英语的依赖
Smile.zeng
英语程序猿
1、程序员最基本的技能,至少要能写得出代码,当我们还在为建立类的时候思考用什么单词发牢骚的时候,英语与别人的差距就直接表现出来咯。
2、程序员最起码能认识开发工具里的英语单词,不然怎么知道使用这些开发工具。
3、进阶一点,就是能读懂别人的代码,有利于我们学习人家的思路和技术。
4、写的程序至少能有一定的可读性,至少要人别人能懂吧...
以上一些问题,充分说明了英语对程序猿的重要性。骚年
- Oracle学习笔记(8) 使用PLSQL编写触发器
vipbooks
oraclesql编程活动Access
时间过得真快啊,转眼就到了Oracle学习笔记的最后个章节了,通过前面七章的学习大家应该对Oracle编程有了一定了了解了吧,这东东如果一段时间不用很快就会忘记了,所以我会把自己学习过的东西做好详细的笔记,用到的时候可以随时查找,马上上手!希望这些笔记能对大家有些帮助!
这是第八章的学习笔记,学习完第七章的子程序和包之后