0基础学习PyFlink——用户自定义函数之UDAF

大纲

  • UDAF
    • 入参并非表中一行(Row)的集合
      • 计算每个人考了几门课
      • 计算每门课有几个人考试
      • 计算每个人的平均分
      • 计算每课的平均分
      • 计算每个人的最高分和最低分
    • 入参是表中一行(Row)的集合
      • 计算每个人的最高分、最低分以及所属的课程
      • 计算每课的最高分数、最低分数以及所属人
  • 完整代码
    • 入参并非表中一行(Row)的集合
    • 入参是表中一行(Row)的集合

在前面几篇文章中,我们学习了非聚合类的用户自定义函数。这节我们将介绍最简单的聚合函数UDAF。
0基础学习PyFlink——用户自定义函数之UDAF_第1张图片

UDAF

我们对比下UDAF和UDF的定义

def udaf(f: Union[Callable, AggregateFunction, Type] = None,
         input_types: Union[List[DataType], DataType, str, List[str]] = None,
         result_type: Union[DataType, str] = None, 
         accumulator_type: Union[DataType, str] = None,
         deterministic: bool = None, 
         name: str = None,
         func_type: str = "general") -> Union[UserDefinedAggregateFunctionWrapper, Callable]:
def udf(f: Union[Callable, ScalarFunction, Type] = None,
        input_types: Union[List[DataType], DataType, str, List[str]] = None,
        result_type: Union[DataType, str] = None,
        deterministic: bool = None, 
        name: str = None, 
        func_type: str = "general",
        udf_type: str = None) -> Union[UserDefinedScalarFunctionWrapper, Callable]:

可以发现:

  • udaf比udf多了一个参数accumulator_type
  • udaf比udf少了一个参数udf_type

accumulator中文是“累加器”。我们可以将其看成聚合过后(比如GroupBy)的成批数据,每批都要走一次函数。
举一个例子:我们对图中左侧的成绩单,使用人名(name)进行聚类,然后计算出最高分数。即算出每个人考出的最高分数是多少。
0基础学习PyFlink——用户自定义函数之UDAF_第2张图片
如图所示,聚合后的数据每个都会经过accumulator计算。计算出来的值的类型就是accumulator_type。这个类型的数据是中间态,它并不是最终UDAF返回的数据类型——result_type。具体这块的知识我们会在后面讲解。
为了方便讲解,我们就以上面例子来讲解其使用。先贴出准备的代码:

from pyflink.common import Configuration
from pyflink.table import (EnvironmentSettings, TableEnvironment, Schema)
from pyflink.table.types import DataTypes
from pyflink.table.table_descriptor import TableDescriptor
from pyflink.table.expressions import lit, col
from pyflink.common import Row
from pyflink.table.udf import udf,udtf,udaf,udtaf
import pandas as pd
from pyflink.table.udf import UserDefinedFunction

    
def word_count():
    config = Configuration()
    # write all the data to one file
    config.set_string('parallelism.default', '1')
    env_settings = EnvironmentSettings \
        .new_instance() \
        .in_batch_mode() \
        .with_configuration(config) \
        .build()
    
    t_env = TableEnvironment.create(env_settings)
    
    row_type_tab_source = DataTypes.ROW([DataTypes.FIELD('name', DataTypes.STRING()), DataTypes.FIELD('score', DataTypes.FLOAT()), DataTypes.FIELD('class', DataTypes.STRING())])
    students_score = [
        ("张三", 80.0, "English"),
        ("李四", 75.0, "English"),
        ("王五", 90.0, "English"),
        ("赵六", 85.0, "English"),
        ("张三", 60.0, "Math"),
        ("李四", 95.0, "Math"),
        ("王五", 90.0, "Math"),
        ("赵六", 70.0, "Math"),
        ("孙七", 60.0, "Math"),
    ]
    tab_source = t_env.from_elements(students_score, row_type_tab_source )

我们在tab_source表中录入了学生的成绩信息,其中包括姓名(name)、成绩(score)和科目(class)。

入参并非表中一行(Row)的集合

计算每个人考了几门课

  1. 按姓名(name)聚类
  2. UDTF统计聚类后集合的个数并返回
  3. 别名UDTF返回的列名
  4. select出数据
@udaf(result_type=DataTypes.ROW([DataTypes.FIELD("count", DataTypes.BIGINT())]), func_type="pandas")
    def exam_count(pandas_df: pd.DataFrame):
        return Row(pandas_df.count())

    tab_student_exam_count = tab_source.group_by(col('name')) \
        .aggregate(exam_count(col('name')).alias("count")) \
        .select(col('name'), col('count')) 
    tab_student_exam_count.execute().print()
+--------------------------------+----------------------+
|                           name |                count |
+--------------------------------+----------------------+
|                           孙七 |                    1 |
|                           张三 |                    2 |
|                           李四 |                    2 |
|                           王五 |                    2 |
|                           赵六 |                    2 |
+--------------------------------+----------------------+
5 rows in set

计算每门课有几个人考试

  1. 按姓名(class)聚类
  2. UDTF统计聚类后集合的个数并返回
  3. 别名UDTF返回的列名
  4. select出数据
    @udaf(result_type=DataTypes.ROW([DataTypes.FIELD("count", DataTypes.BIGINT())]), func_type="pandas")
    def exam_count(pandas_df: pd.DataFrame):
        return Row(pandas_df.count())
    
    tab_class_exam_count = tab_source.group_by(col('class')) \
        .aggregate(exam_count(col('class')).alias("count")) \
        .select(col('class'), col('count')) 
    tab_class_exam_count.execute().print()
+--------------------------------+----------------------+
|                          class |                count |
+--------------------------------+----------------------+
|                        English |                    4 |
|                           Math |                    5 |
+--------------------------------+----------------------+
2 rows in set

计算每个人的平均分

  1. 按姓名(name)聚类
  2. UDTF统计聚类后集合的均值并返回
  3. 别名UDTF返回的列名
  4. select出数据
    @udaf(result_type=DataTypes.ROW([DataTypes.FIELD("avg", DataTypes.FLOAT())]), func_type="pandas")
    def avg_score(pandas_df: pd.DataFrame):
        return Row(pandas_df.mean())

    tab_student_avg_score = tab_source.group_by(col('name')) \
        .aggregate(avg_score(col('score')).alias("avg")) \
        .select(col('name'), col('avg')) 
    tab_student_avg_score.execute().print()
+--------------------------------+--------------------------------+
|                           name |                            avg |
+--------------------------------+--------------------------------+
|                           孙七 |                           60.0 |
|                           张三 |                           70.0 |
|                           李四 |                           85.0 |
|                           王五 |                           90.0 |
|                           赵六 |                           77.5 |
+--------------------------------+--------------------------------+
5 rows in set

计算每课的平均分

  1. 按姓名(class)聚类
  2. UDTF统计聚类后集合的均值并返回
  3. 别名UDTF返回的列名
  4. select出数据
    @udaf(result_type=DataTypes.ROW([DataTypes.FIELD("avg", DataTypes.FLOAT())]), func_type="pandas")
    def avg_score(pandas_df: pd.DataFrame):
        return Row(pandas_df.mean())

    tab_class_avg_score = tab_source.group_by(col('class')) \
        .aggregate(avg_score(col('score')).alias("avg")) \
        .select(col('class'), col('avg')) 
    tab_class_avg_score.execute().print()
+--------------------------------+--------------------------------+
|                          class |                            avg |
+--------------------------------+--------------------------------+
|                        English |                           82.5 |
|                           Math |                           75.0 |
+--------------------------------+--------------------------------+
2 rows in set

计算每个人的最高分和最低分

  1. 按姓名(name)聚类
  2. UDTF统计聚类后集合的最大值和最小值,并返回
  3. 别名UDTF返回的列名
  4. select出数据
    @udaf(result_type=DataTypes.ROW([DataTypes.FIELD("max", DataTypes.FLOAT()), DataTypes.FIELD("min", DataTypes.FLOAT())]), func_type="pandas")
    def max_min_score(pandas_df: pd.DataFrame):
        return Row(pandas_df.max(), pandas_df.min())

    tab_student_max_min_score = tab_source.group_by(col('name')) \
        .aggregate(max_min_score(col('score')).alias("max", "min")) \
        .select(col('name'), col('max'), col('min')) 
    tab_student_max_min_score.execute().print()
+--------------------------------+--------------------------------+--------------------------------+
|                           name |                            max |                            min |
+--------------------------------+--------------------------------+--------------------------------+
|                           孙七 |                           60.0 |                           60.0 |
|                           张三 |                           80.0 |                           60.0 |
|                           李四 |                           95.0 |                           75.0 |
|                           王五 |                           90.0 |                           90.0 |
|                           赵六 |                           85.0 |                           70.0 |
+--------------------------------+--------------------------------+--------------------------------+
5 rows in set

入参是表中一行(Row)的集合

计算每个人的最高分、最低分以及所属的课程

  1. 按姓名(name)聚类
  2. UDTF统计聚类后集合中分数最大值、最小值;分数最大值所在行的课程名,和分数最小值所在行的课程名,并返回
  3. 别名UDTF返回的列名
  4. select出数据
    @udaf(result_type=DataTypes.ROW([DataTypes.FIELD("max", DataTypes.FLOAT()), DataTypes.FIELD("max tag", DataTypes.STRING()), DataTypes.FIELD("min", DataTypes.FLOAT()), DataTypes.FIELD("min tag", DataTypes.STRING())]), func_type="pandas")
    def max_min_score_with_class(pandas_df: pd.DataFrame):
        return Row(pandas_df["score"].max(), pandas_df.loc[pandas_df["score"].idxmax(), "class"], pandas_df["score"].min(), pandas_df.loc[pandas_df["score"].idxmin(), "class"])

    tab_student_max_min_score = tab_source.group_by(col('name')) \
        .aggregate(max_min_score_with_class.alias("max", "class(max)", "min", "class(min)")) \
        .select(col('name'), col('max'), col('class(max)'), col('min'), col('class(min)')) 
    tab_student_max_min_score.execute().print()
+--------------------------------+--------------------------------+--------------------------------+--------------------------------+--------------------------------+
|                           name |                            max |                     class(max) |                            min |                     class(min) |
+--------------------------------+--------------------------------+--------------------------------+--------------------------------+--------------------------------+
|                           孙七 |                           60.0 |                           Math |                           60.0 |                           Math |
|                           张三 |                           80.0 |                        English |                           60.0 |                           Math |
|                           李四 |                           95.0 |                           Math |                           75.0 |                        English |
|                           王五 |                           90.0 |                        English |                           90.0 |                        English |
|                           赵六 |                           85.0 |                        English |                           70.0 |                           Math |
+--------------------------------+--------------------------------+--------------------------------+--------------------------------+--------------------------------+
5 rows in set

计算每课的最高分数、最低分数以及所属人

  1. 按姓名(class)聚类
  2. UDTF统计聚类后集合中分数最大值、最小值;分数最大值所在行的人名,和分数最小值所在行的人名,并返回
  3. 别名UDTF返回的列名
  4. select出数据
    @udaf(result_type=DataTypes.ROW([DataTypes.FIELD("max", DataTypes.FLOAT()), DataTypes.FIELD("max tag", DataTypes.STRING()), DataTypes.FIELD("min", DataTypes.FLOAT()), DataTypes.FIELD("min tag", DataTypes.STRING())]), func_type="pandas")
    def max_min_score_with_name(pandas_df: pd.DataFrame):
        return Row(pandas_df["score"].max(), pandas_df.loc[pandas_df["score"].idxmax(), "name"], pandas_df["score"].min(), pandas_df.loc[pandas_df["score"].idxmin(), "name"])
    
    tab_class_max_min_score = tab_source.group_by(col('class')) \
        .aggregate(max_min_score_with_name.alias("max", "name(max)", "min", "name(min)")) \
        .select(col('class'), col('max'), col('name(max)'), col('min'), col('name(min)')) 
    tab_class_max_min_score.execute().print()
+--------------------------------+--------------------------------+--------------------------------+--------------------------------+--------------------------------+
|                          class |                            max |                      name(max) |                            min |                      name(min) |
+--------------------------------+--------------------------------+--------------------------------+--------------------------------+--------------------------------+
|                        English |                           90.0 |                           王五 |                           75.0 |                           李四 |
|                           Math |                           95.0 |                           李四 |                           60.0 |                           张三 |
+--------------------------------+--------------------------------+--------------------------------+--------------------------------+--------------------------------+
2 rows in set

完整代码

入参并非表中一行(Row)的集合

from pyflink.common import Configuration
from pyflink.table import (EnvironmentSettings, TableEnvironment, Schema)
from pyflink.table.types import DataTypes
from pyflink.table.table_descriptor import TableDescriptor
from pyflink.table.expressions import lit, col
from pyflink.common import Row
from pyflink.table.udf import udf,udtf,udaf,udtaf
import pandas as pd
from pyflink.table.udf import UserDefinedFunction

    
def word_count():
    config = Configuration()
    # write all the data to one file
    config.set_string('parallelism.default', '1')
    env_settings = EnvironmentSettings \
        .new_instance() \
        .in_batch_mode() \
        .with_configuration(config) \
        .build()
    
    t_env = TableEnvironment.create(env_settings)
    
    row_type_tab_source = DataTypes.ROW([DataTypes.FIELD('name', DataTypes.STRING()), DataTypes.FIELD('score', DataTypes.FLOAT()), DataTypes.FIELD('class', DataTypes.STRING())])
    students_score = [
        ("张三", 80.0, "English"),
        ("李四", 75.0, "English"),
        ("王五", 90.0, "English"),
        ("赵六", 85.0, "English"),
        ("张三", 60.0, "Math"),
        ("李四", 95.0, "Math"),
        ("王五", 90.0, "Math"),
        ("赵六", 70.0, "Math"),
        ("孙七", 60.0, "Math"),
    ]
    tab_source = t_env.from_elements(students_score, row_type_tab_source )
        
    @udaf(result_type=DataTypes.ROW([DataTypes.FIELD("count", DataTypes.BIGINT())]), func_type="pandas")
    def exam_count(pandas_df: pd.DataFrame):
        return Row(pandas_df.count())

    tab_student_exam_count = tab_source.group_by(col('name')) \
        .aggregate(exam_count(col('name')).alias("count")) \
        .select(col('name'), col('count')) 
    tab_student_exam_count.execute().print()
    
    
    tab_class_exam_count = tab_source.group_by(col('class')) \
        .aggregate(exam_count(col('class')).alias("count")) \
        .select(col('class'), col('count')) 
    tab_class_exam_count.execute().print()
    
    @udaf(result_type=DataTypes.ROW([DataTypes.FIELD("avg", DataTypes.FLOAT())]), func_type="pandas")
    def avg_score(pandas_df: pd.DataFrame):
        return Row(pandas_df.mean())

    tab_student_avg_score = tab_source.group_by(col('name')) \
        .aggregate(avg_score(col('score')).alias("avg")) \
        .select(col('name'), col('avg')) 
    tab_student_avg_score.execute().print()
    
    tab_class_avg_score = tab_source.group_by(col('class')) \
        .aggregate(avg_score(col('score')).alias("avg")) \
        .select(col('class'), col('avg')) 
    tab_class_avg_score.execute().print()
    
    @udaf(result_type=DataTypes.ROW([DataTypes.FIELD("max", DataTypes.FLOAT()), DataTypes.FIELD("min", DataTypes.FLOAT())]), func_type="pandas")
    def max_min_score(pandas_df: pd.DataFrame):
        return Row(pandas_df.max(), pandas_df.min())

    tab_student_max_min_score = tab_source.group_by(col('name')) \
        .aggregate(max_min_score(col('score')).alias("max", "min")) \
        .select(col('name'), col('max'), col('min')) 
    tab_student_max_min_score.execute().print()
    
    
if __name__ == '__main__':
    word_count()

入参是表中一行(Row)的集合

from pyflink.common import Configuration
from pyflink.table import (EnvironmentSettings, TableEnvironment, Schema)
from pyflink.table.types import DataTypes
from pyflink.table.table_descriptor import TableDescriptor
from pyflink.table.expressions import lit, col
from pyflink.common import Row
from pyflink.table.udf import udf,udtf,udaf,udtaf
import pandas as pd
from pyflink.table.udf import UserDefinedFunction

    
def word_count():
    config = Configuration()
    # write all the data to one file
    config.set_string('parallelism.default', '1')
    env_settings = EnvironmentSettings \
        .new_instance() \
        .in_batch_mode() \
        .with_configuration(config) \
        .build()
    
    t_env = TableEnvironment.create(env_settings)
    
    row_type_tab_source = DataTypes.ROW([DataTypes.FIELD('name', DataTypes.STRING()), DataTypes.FIELD('score', DataTypes.FLOAT()), DataTypes.FIELD('class', DataTypes.STRING())])
    students_score = [
        ("张三", 80.0, "English"),
        ("李四", 75.0, "English"),
        ("王五", 90.0, "English"),
        ("赵六", 85.0, "English"),
        ("张三", 60.0, "Math"),
        ("李四", 95.0, "Math"),
        ("王五", 90.0, "Math"),
        ("赵六", 70.0, "Math"),
        ("孙七", 60.0, "Math"),
    ]
    tab_source = t_env.from_elements(students_score, row_type_tab_source )
    
    @udaf(result_type=DataTypes.ROW([DataTypes.FIELD("max", DataTypes.FLOAT()), DataTypes.FIELD("max tag", DataTypes.STRING()), DataTypes.FIELD("min", DataTypes.FLOAT()), DataTypes.FIELD("min tag", DataTypes.STRING())]), func_type="pandas")
    def max_min_score_with_class(pandas_df: pd.DataFrame):
        return Row(pandas_df["score"].max(), pandas_df.loc[pandas_df["score"].idxmax(), "class"], pandas_df["score"].min(), pandas_df.loc[pandas_df["score"].idxmin(), "class"])

    tab_student_max_min_score = tab_source.group_by(col('name')) \
        .aggregate(max_min_score_with_class.alias("max", "class(max)", "min", "class(min)")) \
        .select(col('name'), col('max'), col('class(max)'), col('min'), col('class(min)')) 
    tab_student_max_min_score.execute().print()
    
    @udaf(result_type=DataTypes.ROW([DataTypes.FIELD("max", DataTypes.FLOAT()), DataTypes.FIELD("max tag", DataTypes.STRING()), DataTypes.FIELD("min", DataTypes.FLOAT()), DataTypes.FIELD("min tag", DataTypes.STRING())]), func_type="pandas")
    def max_min_score_with_name(pandas_df: pd.DataFrame):
        return Row(pandas_df["score"].max(), pandas_df.loc[pandas_df["score"].idxmax(), "name"], pandas_df["score"].min(), pandas_df.loc[pandas_df["score"].idxmin(), "name"])
    
    tab_class_max_min_score = tab_source.group_by(col('class')) \
        .aggregate(max_min_score_with_name.alias("max", "name(max)", "min", "name(min)")) \
        .select(col('class'), col('max'), col('name(max)'), col('min'), col('name(min)')) 
    tab_class_max_min_score.execute().print()
    
if __name__ == '__main__':
    word_count()

你可能感兴趣的:(大数据,flink,python,大数据)