Pyecharts绘图教程(2)—— 绘制多种折线图(Line)参数说明+代码实战

文章目录

  • 1 简介
  • 2 图表配置项
    • 2.1 导入模块
    • 2.2 数据配置项
    • 2.3 全局配置项
  • 3 代码实战
    • 3.1 基础折线
    • 3.2 平滑曲线(is_smooth)
    • 3.3 阶梯折线(is_step)
    • 3.4 空值过渡(is_connect_nones)
    • 3.5 线条颜色(color)
    • 3.6 标记点配置项(markpoint_opts)
    • 3.7 标记的图形(symbol)
    • 3.8 标记线配置项(markline_opts)
    • 3.9 线样式配置项(linestyle_opts)
    • 3.10 填充区域配置项(areastyle_opts)
    • 3.11 标记区域(markarea_opts)
  • 更多可视化项目源码+数据

大家好,我是 【Python当打之年(点击跳转)】

本期是《Pyecharts绘图教程》的第 2 该系列从0到1不断进阶深入,专门 针对零基础和需要进阶提升的小伙伴,逐步掌握使用Pyecharts库进行数据可视化的技能 ,希望对大家有所帮助,如有疑问或者需要改进的地方可以联系小编。

1 简介

折线图是一种常用的可视化图表,可以清晰地展示数据随时间或其他连续变量的变化趋势 ,通过连接数据点,可以观察到数据的上升、下降、波动等变化趋势,帮助人们更直观地理解数据的变化规律。

2 图表配置项

2.1 导入模块

from pyecharts.charts import Line
import pyecharts.options as opts

2.2 数据配置项

通过add_xaxisadd_yaxis函数添加横坐标、纵坐标数据

def add_xaxis(
	# 系列数据
	xaxis_data: types.Sequence[types.Union[opts.LineItem, dict]]
)
def add_yaxis(
    # 系列名称,用于 tooltip 的显示,legend 的图例筛选。
    series_name: str,

    # 系列数据
    y_axis: types.Sequence[types.Union[opts.LineItem, dict]],

    # 是否选中图例
    is_selected: bool = True,

    # 是否连接空数据,空数据使用 `None` 填充
    is_connect_nones: bool = False,

    # 使用的 x 轴的 index,在单个图表实例中存在多个 x 轴的时候有用。
    xaxis_index: Optional[Numeric] = None,

    # 使用的 y 轴的 index,在单个图表实例中存在多个 y 轴的时候有用。
    yaxis_index: Optional[Numeric] = None,

    # 系列 label 颜色
    color: Optional[str] = None,

    # 是否显示 symbol, 如果 false 则只有在 tooltip hover 的时候显示。
    is_symbol_show: bool = True,

    # 标记的图形。
    # ECharts 提供的标记类型包括 'circle', 'rect', 'roundRect', 'triangle', 
    # 'diamond', 'pin', 'arrow', 'none'
    # 可以通过 'image://url' 设置为图片,其中 URL 为图片的链接,或者 dataURI。
    symbol: Optional[str] = None,

    # 标记的大小,可以设置成诸如 10 这样单一的数字,也可以用数组分开表示宽和高,
    # 例如 [20, 10] 表示标记宽为 20,高为 10。
    symbol_size: Union[Numeric, Sequence] = 4,

    # 数据堆叠,同个类目轴上系列配置相同的 stack 值可以堆叠放置。
    stack: Optional[str] = None,

    # 是否平滑曲线
    is_smooth: bool = False,

    # 是否裁剪超出坐标系部分的图形。折线图:裁掉所有超出坐标系的折线部分,拐点图形的逻辑按照散点图处理
    is_clip: bool = True,

    # 是否显示成阶梯图
    is_step: bool = False,

    # 是否开启 hover 在拐点标志上的提示动画效果。
    is_hover_animation: bool = True,

    # 折线图所有图形的 zlevel 值。
    # zlevel用于 Canvas 分层,不同zlevel值的图形会放置在不同的 Canvas 中,Canvas 分层是一种常见的优化手段。
    # zlevel 大的 Canvas 会放在 zlevel 小的 Canvas 的上面。
    z_level: types.Numeric = 0,

    # 折线图组件的所有图形的z值。控制图形的前后顺序。z值小的图形会被z值大的图形覆盖。
    # z 相比 zlevel 优先级更低,而且不会创建新的 Canvas。
    z: types.Numeric = 0,

    # 折线图在数据量远大于像素点时候的降采样策略,开启后可以有效的优化图表的绘制效率,默认关闭,也就是全部绘制不过滤数据点。
    # 可选:
    # 'lttb' 采用 Largest-Triangle-Three-Bucket 算法,可以最大程度保证采样后线条的趋势,形状和极值。
    # 'average' 取过滤点的平均值
    # 'max' 取过滤点的最大值
    # 'min' 取过滤点的最小值
    # 'sum' 取过滤点的和
    sampling: types.Optional[str] = None,

    # 使用 dimensions 定义 series.data 或者 dataset.source 的每个维度的信息。
    # 注意:如果使用了 dataset,那么可以在 dataset.source 的第一行/列中给出 dimension 名称。
    # 于是就不用在这里指定 dimension。
    # 但是,如果在这里指定了 dimensions,那么 ECharts 不再会自动从 dataset.source 的第一行/列中获取维度信息。
    dimensions: types.Union[types.Sequence, None] = None,

    # 当使用 dataset 时,seriesLayoutBy 指定了 dataset 中用行还是列对应到系列上,也就是说,系列“排布”到 dataset 的行还是列上。可取值:
    # 'column':默认,dataset 的列对应于系列,从而 dataset 中每一列是一个维度(dimension)。
    # 'row':dataset 的行对应于系列,从而 dataset 中每一行是一个维度(dimension)。
    series_layout_by: str = "column",

    # 标记点配置项,参考 `series_options.MarkPointOpts`
    markpoint_opts: Union[opts.MarkPointOpts, dict, None] = None,

    # 标记线配置项,参考 `series_options.MarkLineOpts`
    markline_opts: Union[opts.MarkLineOpts, dict, None] = None,

    # 提示框组件配置项,参考 `series_options.TooltipOpts`
    tooltip_opts: Union[opts.TooltipOpts, dict, None] = None,

    # 标签配置项,参考 `series_options.LabelOpts`
    label_opts: Union[opts.LabelOpts, dict] = opts.LabelOpts(),

    # 线样式配置项,参考 `series_options.LineStyleOpts`
    linestyle_opts: Union[opts.LineStyleOpts, dict] = opts.LineStyleOpts(),

    # 填充区域配置项,参考 `series_options.AreaStyleOpts`
    areastyle_opts: Union[opts.AreaStyleOpts, dict] = opts.AreaStyleOpts(),

    # 图元样式配置项,参考 `series_options.ItemStyleOpts`
    itemstyle_opts: Union[opts.ItemStyleOpts, dict, None] = None,

    # 可以定义 data 的哪个维度被编码成什么。
    encode: types.Union[types.JSFunc, dict, None] = None,
)

2.3 全局配置项

通过set_global_opts 函数设置全局样式,包含标题、图例、工具、视觉、图形组件 、坐标轴配置等等,这个目前了解即可,后期会有专门的章节详细介绍每一项的配置:

def set_global_opts(
    title_opts: types.Title = opts.TitleOpts(),
    legend_opts: types.Legend = opts.LegendOpts(),
    tooltip_opts: types.Tooltip = None,
    toolbox_opts: types.Toolbox = None,
    brush_opts: types.Brush = None,
    xaxis_opts: types.Axis = None,
    yaxis_opts: types.Axis = None,
    visualmap_opts: types.VisualMap = None,
    datazoom_opts: types.DataZoom = None,
    graphic_opts: types.Graphic = None,
    axispointer_opts: types.AxisPointer = None,
    ):

3 代码实战

3.1 基础折线

x_data = ["周一", "周二", "周三", "周四", "周五", "周六", "周日"]
y_data1 = [120, 132, 101, 134, 90, 200, 180]
y_data2 = [i/2 for i in y_data1]
line = (
    Line()
    .add_xaxis(x_data)
    .add_yaxis("销量", y_data1)
    .add_yaxis("利润", y_data2)
    .set_global_opts(title_opts=opts.TitleOpts(title="示例1"))
)
line.render_notebook()

Pyecharts绘图教程(2)—— 绘制多种折线图(Line)参数说明+代码实战_第1张图片

3.2 平滑曲线(is_smooth)

is_smooth 参数设置是否平滑显示:

line = (
    Line()
    .add_xaxis(x_data)
    .add_yaxis("销量", y_data1, is_smooth=True)
    .add_yaxis("利润", y_data2)
    .set_global_opts(title_opts=opts.TitleOpts(title="示例2"))
)
line.render_notebook()

Pyecharts绘图教程(2)—— 绘制多种折线图(Line)参数说明+代码实战_第2张图片

3.3 阶梯折线(is_step)

is_step 参数设置是否阶梯显示:

line = (
    Line()
    .add_xaxis(x_data)
    .add_yaxis("销量", y_data, is_step=True)
    .add_yaxis("利润", y_data2)
    .set_global_opts(title_opts=opts.TitleOpts(title="示例3"))
)
line.render_notebook()

Pyecharts绘图教程(2)—— 绘制多种折线图(Line)参数说明+代码实战_第3张图片

3.4 空值过渡(is_connect_nones)

is_connect_nones 参数设置是否连接空数据,空数据使用 None 填充:

y_data = [120, None, 101, 134, 90,None,180]
line = (
    Line()
    .add_xaxis(x_data)
    .add_yaxis("销量", y_data, is_connect_nones=True)
    .add_yaxis("利润", y_data2)
    .set_global_opts(title_opts=opts.TitleOpts(title="示例4"))
)
line.render_notebook()

Pyecharts绘图教程(2)—— 绘制多种折线图(Line)参数说明+代码实战_第4张图片

3.5 线条颜色(color)

color 参数设置线条颜色:

line = (
    Line()
    .add_xaxis(x_data)
    .add_yaxis("销量", y_data1, color='blue')
    .add_yaxis("利润", y_data2, color='green')
    .set_global_opts(title_opts=opts.TitleOpts(title="示例5"))
)
line.render_notebook()

Pyecharts绘图教程(2)—— 绘制多种折线图(Line)参数说明+代码实战_第5张图片
注意!注意!注意!

颜色设置这里有一个经常出错的地方:代码里销量折线 color=‘blue’,利润折线 color=‘green’,但是图上两个颜色是相反的,为什么?小伙伴们可以思考一下,正常要求图像应该是下面这样的:

Pyecharts绘图教程(2)—— 绘制多种折线图(Line)参数说明+代码实战_第6张图片

3.6 标记点配置项(markpoint_opts)

markpoint_opts 参数设置特殊标注点,type_ 取值: min 最大值、max 最大值、average 平均值。

line = (
    Line()
    .add_xaxis(x_data)
    .add_yaxis("销量", y_data1, color='blue',
               markpoint_opts=opts.MarkPointOpts(data=[opts.MarkPointItem(type_="max")]),
              )
    .add_yaxis("利润", y_data2, color='green',
               markpoint_opts=opts.MarkPointOpts(data=[opts.MarkPointItem(type_="min")]),
              )
    .set_global_opts(title_opts=opts.TitleOpts(title="示例6"))
)
line.render_notebook()

Pyecharts绘图教程(2)—— 绘制多种折线图(Line)参数说明+代码实战_第7张图片

3.7 标记的图形(symbol)

symbol 参数设置标记图形,echarts 提供的标记类型包括 :circle、rect、roundRect、triangle、diamond、pin、arrow、none,也可以通过 image://url 设置为图片,其中 URL 为图片的链接,或者 dataURI。

line = (
    Line()
    .add_xaxis(x_data)
    .add_yaxis("销量", y_data1, color='blue',symbol="diamond", symbol_size=20,
              )
    .add_yaxis("利润", y_data2, color='green',symbol="triangle", symbol_size=20,
              )
    .set_global_opts(title_opts=opts.TitleOpts(title="示例7"))
)
line.render_notebook()

Pyecharts绘图教程(2)—— 绘制多种折线图(Line)参数说明+代码实战_第8张图片

3.8 标记线配置项(markline_opts)

markline_opts 参数设置特殊标注线,type_ 取值: min 最大值、max 最大值、average 平均值。

line = (
    Line()
    .add_xaxis(x_data)
    .add_yaxis("销量", y_data1, color='blue',symbol="diamond", symbol_size=20,
               markline_opts=opts.MarkLineOpts(data=[opts.MarkLineItem(type_="average")]),
              )
    .add_yaxis("利润", y_data2, color='green',symbol="triangle", symbol_size=20,
               markline_opts=opts.MarkLineOpts(data=[opts.MarkLineItem(type_="min")]),
              )
    .set_global_opts(title_opts=opts.TitleOpts(title="示例8"))
)
line.render_notebook()

Pyecharts绘图教程(2)—— 绘制多种折线图(Line)参数说明+代码实战_第9张图片

3.9 线样式配置项(linestyle_opts)

linestyle_opts 参数设置线条样式,width 线宽;opacity 图形透明度,支持从 0 到 1 的数字,为 0 时不绘制该图形;curve 线的弯曲度,0 表示完全不弯曲;type_ 线的类型,可选:solid、dashed、dotted

line = (
    Line()
    .add_xaxis(x_data)
    .add_yaxis("销量", y_data1, color='blue',symbol="diamond", symbol_size=20,
               markline_opts=opts.MarkLineOpts(data=[opts.MarkLineItem(type_="average")]),
               linestyle_opts=opts.LineStyleOpts(color="green", width=2, type_="dotted"),
              )
    .add_yaxis("利润", y_data2, color='green',symbol="triangle", symbol_size=20,
               markline_opts=opts.MarkLineOpts(data=[opts.MarkLineItem(type_="min")]),
               linestyle_opts=opts.LineStyleOpts(color="blue", width=4, type_="dashed"),
              )
    .set_global_opts(title_opts=opts.TitleOpts(title="示例9"))
)
line.render_notebook()

Pyecharts绘图教程(2)—— 绘制多种折线图(Line)参数说明+代码实战_第10张图片

3.10 填充区域配置项(areastyle_opts)

areastyle_opts 参数设置填充区域,opacity 图形透明度,支持从 0 到 1 的数字,为 0 时不绘制该图形;color 填充的颜色

line = (
    Line()
    .add_xaxis(x_data)
    .add_yaxis("销量", y_data1, color='blue',symbol="diamond",symbol_size=20,
               areastyle_opts=opts.AreaStyleOpts(opacity=0.5)
              )
    .add_yaxis("利润", y_data2, color='green',symbol="triangle",symbol_size=20,
               areastyle_opts=opts.AreaStyleOpts(opacity=0.5)
              )
    .set_global_opts(title_opts=opts.TitleOpts(title="示例10"))
)
line.render_notebook()

Pyecharts绘图教程(2)—— 绘制多种折线图(Line)参数说明+代码实战_第11张图片

3.11 标记区域(markarea_opts)

markarea_opts 参数设置标记区域,data 标记区域数据; X 相对容器的屏幕 x 坐标,单位像素,支持百分比形式;Y 相对容器的屏幕 y 坐标,单位像素,支持百分比形式;itemstyle_opts 标记样式

line = (
    Line()
    .add_xaxis(x_data)
    .add_yaxis("销量", y_data1, color='blue',symbol="diamond",symbol_size=20,
              )
    .add_yaxis("利润", y_data2, color='green',symbol="triangle",symbol_size=20,
              )
    .set_series_opts(
        markarea_opts=opts.MarkAreaOpts(
            data=[
                opts.MarkAreaItem(name="工作日", x=("周一", "周五"),itemstyle_opts=opts.ItemStyleOpts(color='#EF5350',opacity=0.2)),
                opts.MarkAreaItem(name="休息日", x=("周六", "周日"),itemstyle_opts=opts.ItemStyleOpts(color='#26C6DA',opacity=0.2)),
            ]
        )
    )
    .set_global_opts(title_opts=opts.TitleOpts(title="示例11"))
)
line.render_notebook()

Pyecharts绘图教程(2)—— 绘制多种折线图(Line)参数说明+代码实战_第12张图片

更多可视化项目源码+数据

点击跳转:【全部可视化项目源码+数据】


以上就是本期为大家整理的全部内容了,赶快练习起来吧,原创不易,喜欢的朋友可以点赞、收藏也可以分享注明出处)让更多人知道。

你可能感兴趣的:(Pyecharts基础,信息可视化,数据分析,python)