- 什么是知识蒸馏技术?
deepdata_cn
垂域模型机器学习人工智能知识蒸馏
知识蒸馏(KnowledgeDistillation)是一种模型压缩和加速技术,旨在将大型模型(通常称为教师模型)所学到的知识迁移到小型模型(通常称为学生模型)中,从而让小型模型在减少计算资源消耗和推理时间的同时,尽可能达到接近大型模型的性能。具有很好的成本效益,在实际应用中有助于降低计算资源需求和部署成本。一、基本原理1.模仿学习:知识蒸馏的核心思想是让学生模型模仿教师模型的行为。教师模型通常是
- WSL开发环境配置(linux + python + nodejs + docker)
Lilixxs
环境搭建基础设施linux运维服务器
配置要求及目标总体目标:完整的Linux开发环境可开发基于node.js的前端程序可开发基于python的后端程序(仅日常程序,不包含机器学习程序)可运行docker容器,用于快速搭建测试环境Linux环境要求支持centos发行版类似的操作方式和指令(如使用rpm、dnf进行软件包管理)登录用户具有root权限(执行高权限命令,输入sudo即可执行)可从国内源更新软件基本优化:内核指令优化、禁用
- AIGC产品数字人 –【字形绘梦】之绘声
拉达曼迪斯II
AI创业WebRTCAIGC学习人工智能音视频AIGCSD数字人微信小程序字形绘梦
最近开始发一些AIGC相关的学习博客,期间用到的RamendeusStudio公司的一款免费图文生成微信小程序【字形绘梦】还是不错。关键是免费。最近貌似它们新增了一个语音还是视频的能力叫【绘声】,简单的试用之后觉得还行,给大家分享下先上效果:PT3-11绘文模块使用方法:打开主界面,点选角色或者自定义图片,选择默认文案或者字形输入,点击生成。完成后微信会自动通知你制作完成,点击过去查看即可。它的绘
- Nginx--日志(介绍、配置、日志轮转)
m0_74825466
nginx运维
前言:本博客仅作记录学习使用,部分图片出自网络,如有侵犯您的权益,请联系删除一、Nginx日志介绍nginx有一个非常灵活的日志记录模式,每个级别的配置可以有各自独立的访问日志,所需日志模块ngx_http_log_module的支持,日志格式通过log_format命令来定义,日志对于统计和排错是非常有利的,下面总结了nginx日志相关的配置包括access_log、log_format、ope
- 在亚马逊云科技上通过LangChain ReAct Agent开发金融多模态数据AI分析中台
佛州小李哥
AWS技术科技langchain人工智能云计算亚马逊云科技aws数据分析
项目简介:小李哥将继续每天介绍一个基于亚马逊云科技AWS云计算平台的全球前沿AI技术解决方案,帮助大家快速了解国际上最热门的云计算平台亚马逊云科技AWSAI最佳实践,并应用到自己的日常工作里。本次介绍的是如何在亚马逊云科技机器学习托管服务AmazonSageMaker上搭建一个多模态LangChainAgent,通过ReAct逻辑让Agent通过AmazonBedrockAI模型托管服务上的大模型
- FreeRTOS深入教程(任务创建的深入和任务调度机制分析)
花落已飘
FreeRTOS全系列教程嵌入式FreeRTOSARM入门STM32
文章目录前言一、深入理解任务的创建二、任务的调度机制1.FreeRTOS中任务调度的策略2.FreeRTOS任务调度策略实现的核心3.FreeRTOS内部链表源码解析4.如何通过就绪链表管理任务的执行顺序三、一个任务能够运行多久1.高优先级任务可抢占低优先级任务一直运行2.相同优先级的任务遵循时间片轮转四、FreeRTOS中任务如何释放CPU总结前言本篇文章将带大家深入学习任务的创建和分析任务调度
- 并发编程 - 线程同步
快乐非自愿
javajvm开发语言
经过前面对线程的尝试使用,我们对线程的了解又进一步加深了。今天我们继续来深入学习线程的新知识——线程同步。01、什么是线程同步线程同步是指在多线程环境下,确保多个线程在同时使用共享资源时不会发生冲突或数据不一致问题的技术,保证线程间的正确协作。它的目的是使得多个线程在执行过程中能够按照某种顺序、安全地使用共享资源。02、为何需要线程同步1、避免竞争条件不知道大家还记得在《并发编程-初识线程》中出现
- Spring MVC 框架:构建高效 Java Web 应用的利器
来恩1003
Java从入门到精通javaspringmvc
Java学习资料Java学习资料Java学习资料一、引言在JavaWeb开发领域,SpringMVC框架是一颗耀眼的明星。它作为Spring框架家族的重要成员,为开发者提供了一套强大而灵活的解决方案,用于构建Web应用程序。SpringMVC遵循模型-视图-控制器(MVC)设计模式,将业务逻辑、数据展示和用户交互进行了有效的分离,使得代码结构清晰、易于维护和扩展。二、MVC设计模式概述2.1基本概
- 《DeepSeek-R1 问世,智能搜索领域迎来新变革》
黑金IT
智能搜索
DeepSeek-R1是由DeepSeek公司开发的一款创新型人工智能模型,自2024年5月7日发布以来,迅速在AI领域引起广泛关注。该模型凭借其卓越的语言理解能力、高效的数据处理能力、自适应学习能力、高安全性与可靠性以及广泛的应用场景与拓展性,在众多人工智能模型中脱颖而出。DeepSeek-R1的核心特点强大的语言理解能力:DeepSeek-R1采用先进的深度学习算法,能够精准解析复杂的语义结构
- AI绘画关键词(咒语)分析与热点研究
集eee
AI作画midjourneychatgpt人工智能prompttext2imgstablediffusion
语义文本图像生成技术关键词分析与热点研究一、研究背景与研究意义随着深度学习的发展,语义文本到图像的生成技术已经取得长足进步,AI绘画也因此快速崛起。只需输入关键词,AI系统就能自动生成符合语义描述的图像,这一技术的出现,使绘画的创作方式发生革命性变化。目前主流的AI绘画模型有Midjourney、Stablediffusion和文心一格等,其使用方式多为输入一段含有图片描述的“prompt(指令)
- Ping Pong Buffer 双缓冲 C++代码学习
gregrgr
#C/C++c++开发语言
1、PingPongBuffer原理分析基本原理如上图所示,当设备有数据来时,先放入缓冲区1然后将缓冲区1的数据放入缓冲区2,这时缓冲区1可接收下次数据。工作区可从缓冲区2拿数据2、C++代码实现相关结构体创建typedefstruct{void*buffer[2];volatileuint8_twriteIndex;volatileuint8_treadIndex;volatileuint8_t
- 【自我提升】一、Hyperledger Fabric 概念梳理
记录菌
hyperledgerfabrichyperledger
写在前面:最近因为业务需要,开始学习HyperledgerFabric了,做java全栈工程师可真难搞。现在算是啥类型的都在涉及了,现在这个技术啥都不懂,就先开个学习专栏,记录记录。顺带也给各位道友参考参考。目录1.什么是hyperledger2.什么是HyperledgerFabric2.1主要特点2.2应用场景3.关键名词4.通道概念4.1通道的关键特性如下:4.2通道的工作机制:5.步骤简单
- 「分块」数列分块入门1 – 9 by hzwer 解题记录
GA_PK
出处学习蓝书的时候感觉书上关于分块的题目太少了.而且都是难度较大的一些分块题目,想巩固一下分块方面的知识,就找到了hzwer大佬的分块入门知识介绍.用这篇博客记录一下.从树状数组到线段树再到分块.都是对区间信息的快速处理来达到想要的效果.树状数组效率最优,可是拓展性实在不高.线段树效率稍微差一点但是拓展性较好,可是在信息不满足区间可加性的情况下代码难度会高很多.而分块效率上最差但是可以接受,且拓展
- 基于深度学习的大规模模型训练
SEU-WYL
深度学习dnn深度学习人工智能dnn
基于深度学习的大规模模型训练涉及训练具有数百万甚至数十亿参数的深度神经网络,以处理复杂的任务,如自然语言处理、计算机视觉和语音识别。以下是关于基于深度学习的大规模模型训练的详细介绍:1.背景和动机数据和模型规模增长:随着数据量和模型复杂度的增加,传统的单机或小规模集群训练难以满足需求。计算资源需求:大规模模型训练需要大量计算资源和存储,单一设备无法满足。任务复杂性:处理复杂任务(如GPT-3、BE
- GNU编译优化级别-O -O1 -O2 -O3
hemmingway
C++Linux
最近做一个算法的GPU加速,发现实际上使用gcc的-O3(最高级编译优化)选项,可以获得很高的加速比,我的程序里达到了3倍的样子,有时效果甚至比GPU加速好。因此小小学习了下GNU的编译优化。附言一句,在进行调试的时候,最好关闭编译优化,不然程序自动优化,执行的步骤可能稍有变化。GNU编译器提供-O选项供程序优化使用:-O提供基础级别的优化-O2提供更加高级的代码优化,会占用更长的编译时间-O3提
- 「DeepSeek接班OpenAI」,最新开源的R1推理模型,让AI圈爆了
人工智能学家
人工智能
来源:前沿科技分享圈近日,AI领域迎来了一次重大突破,DeepSeek正式推出了其最新研发的开源推理模型——DeepSeek-R1。这一模型在数学、代码和自然语言推理等关键任务上的表现,已经能够与OpenAI的o1正式版相媲美,引发了AI研究者和从业者的广泛关注。多阶段训练:创新的模型架构DeepSeek-R1的训练方式采用了多阶段循环的策略,具体包括基础训练、强化学习(RL)、微调等多个阶段。这
- DeepSeek R1:AI领域的新标杆
XianxinMao
人工智能
标题:DeepSeekR1:AI领域的新标杆文章信息摘要:DeepSeek的R1模型在性能上与OpenAI的o1模型相当,甚至在某些方面更具优势,尤其在成本控制上表现出色。R1模型通过开源策略展示了其在AI领域的开放态度,推动了技术的广泛发展。此外,R1-Zero模型通过强化学习和测试时计算实现了强大的推理能力,无需监督微调数据,标志着中国在AI领域的快速崛起,挑战美国的主导地位。AI模型在推理能
- 38字以上的标题:OTFS仿真 MIMO-OTFS MP检测算法:详细注释、ZF均衡、低复杂度LU分解和误差纠正MMSE均衡检测:OMP及基本信道估计、MRC检测,结合索引调制IM、空间调制SM、正交
PGCUZcQeR
网络matlab人工智能
OTFS仿真MIMO-OTFSMP检测算法(详细注释),ZF均衡,低复杂度lu分解和误差纠正mmse均衡检测omp及基本信道估计,MRC检测,结合索引调制IM,空间调制SM,正交空间调制,SM-OFDM,多天线MIMO,AF,DF中继,理想脉冲/矩形脉冲,TDTF域DD域信道以及最新OTSM调制OFDM和OTFS性能对比。代码均可出,均可正常运行。适合本科B设及研究生学习。ID:971873550
- 【学习心得】几种特殊但非常必要学习的pip安装小知识
小oo呆
【学习心得】学习pippython
在学习Python全栈的过程中要接触非常多的库,很多库都是直接pipinstall就搞定了!但有一些总是特立独行!一、安装时的名字与导包时名字不同的首先举例大名鼎鼎的OpenCV#安装OpenCVpipinstallopencv-python#导包importcv2再来一个大名鼎鼎的sklearn#安装pipinstallscikit-learn#导包举例fromsklearn.preproces
- 【Python TensorFlow】入门到精通
极客代码
玩转Pythonpythontensorflow开发语言人工智能深度学习
TensorFlow是一个开源的机器学习框架,由Google开发,广泛应用于机器学习和深度学习领域。本篇将详细介绍TensorFlow的基础知识,并通过一系列示例来帮助读者从入门到精通TensorFlow的使用。1.TensorFlow简介1.1什么是TensorFlow?TensorFlow是一个开源的软件库,主要用于数值计算,特别是在机器学习和深度学习领域。它提供了一个灵活的架构来定义复杂的数
- 【学习心得】Python好库推荐——PEFT
小oo呆
【学习心得】人工智能python语言模型
一、PEFT是什么?PEFT(Parameter-EfficientFine-Tuning)是一种在深度学习中进行参数高效微调的技术。这种技术主要应用于大型预训练模型的微调过程中,目的是在保持模型性能的同时减少所需的计算资源和时间。通过PEFT,可以有效地调整模型以适应特定任务或数据集,而无需对整个模型的所有参数进行全面微调。二、PEFT使用场景在计算资源有限的情况下,如边缘设备、移动设备或低成本
- Python 机器学习 基础 之 【常用机器学习库】 NumPy 数值计算库
仙魁XAN
Python机器学习基础+实战案例python机器学习numpy数值计算
Python机器学习基础之【常用机器学习库】NumPy数值计算库目录Python机器学习基础之【常用机器学习库】NumPy数值计算库一、简单介绍二、Numpy基础1、安装NumPy2、导入NumPy3、创建数组4、数组操作5、常用函数6、矩阵运算7、广播机制8、随机数三、在机器学习中使用到Numpy的简单示例1、数据预处理1.1数据归一化1.2数据标准化2、特征工程1.1多项式特征3、简单线性回归
- 深度学习训练模型损失Loss为NaN或者无穷大(INF)原因及解决办法
余弦的倒数
学习笔记机器学习深度学习pytorch深度学习人工智能机器学习
文章目录一、可能原因==1.学习率过高====2.batchsize过大==3.梯度爆炸4.损失函数不稳定5.数据预处理问题6.数据标签与输入不匹配7.模型初始化问题8.优化器设置问题9.数值问题==10.模型结构设计缺陷==二、调试步骤三、常见预防措施一、可能原因1.学习率过高原因:学习率过高可能导致梯度爆炸,权重更新幅度过大,导致模型参数变为无穷大或NaN。学习率设置过大是常见问题,它会让参数
- 深度解读大语言模型中的Transformer架构
老三不说话、
transformer
一、Transformer的诞生背景传统的循环神经网络(RNN)和长短期记忆网络(LSTM)在处理自然语言时存在诸多局限性。RNN由于其递归的结构,在处理长序列时容易出现梯度消失和梯度爆炸的问题。这导致模型难以捕捉长距离的依赖关系,对于复杂的自然语言文本,无法有效地学习到上下文的关键信息。LSTM虽然在一定程度上缓解了梯度消失的问题,但依然存在梯度不稳定的情况。而且,RNN和LSTM在计算过程中,
- 2.3、numpy 数组:广播机制、遍历数组
融码一生
Python数据处理与分析numpynumpypython开发语言数据分析
点击上方分类专栏、进行系统性学习(文末可扫码领取资料)1、广播机制NumPy中的广播机制(Broadcast)旨在解决不同形状数组之间的算术运算问题。如果进行运算的两个数组形状完全相同,它们直接可以做相应的运算。importnumpyasnpa=np.array([0.1,0.2,0.3,0.4])b=np.array([10,20,30,40])c=a*b#jy:[1.4.9.16.]print
- 通过命令行工作流提升工作效率的实战教程(持续更新)
herosunly
大模型工作流实战教程
大家好,我是herosunly。985院校硕士毕业,现担任算法研究员一职,热衷于机器学习算法研究与应用。曾获得阿里云天池比赛第一名,CCF比赛第二名,科大讯飞比赛第三名。拥有多项发明专利。对机器学习和深度学习拥有自己独到的见解。曾经辅导过若干个非计算机专业的学生进入到算法行业就业。希望和大家一起成长进步。 本文主要介绍了通过命令行工作流提升工作效率的实战教程,希望对使用大语言模型的同学们有所
- Python进阶————迭代器与生成器
记得多吃点
Python进阶知识python开发语言
迭代器与生成器前言一、迭代器二、生成器2.1创建生成器的两种方式2.1.1生成器推导式2.1.2yield关键字2.2使用生成器生成批次数据三、区别与联系3.1区别3.2联系总结前言我们之前学习遍历的时候,系统会一下子给我们显示所有的数据,我们希望当我们需要数据的时候再给我们数据,那么,我们就需要迭代器与生成器的帮助。迭代器和生成器在Python中都是用来处理数据序列的重要工具,它们之间的主要区别
- python入门教程jupyter_Jupyter Notebooks的安装和使用介绍
weixin_39953618
最近又开始重新学习Python,学习中使用到了一款编辑器JupyterNotebooks,非常想安利给初学python的同学。注:本文内容仅针对windows环境下安装和配置JupyterNotebooks。1.JupyterNotebooks简介国际惯例还是来一段官方的介绍:Notebooks其实就像是你的python笔记本一样,不仅可以运行书写的python代码,同时还支持markdown格式
- 第03课:Anaconda 与 Jupyter Notebook
红色石头Will
深度学习PyTorch极简入门人工智能深度学习PyTorch
本文将为大家介绍深度学习实战非常重要的两个工具:Anaconda和JupyterNotebook。Anaconda为什么选择Anaconda我们知道Python是人工智能的首选语言。为了更好、更方便地使用Python来编写深度学习相关程序,可以使用集成开发环境或集成管理系统,最流行的比如PyCharm和Anaconda。本文我推荐使用Anaconda。之所以选择Anaconda,是因为Anacon
- 【PHP】Laravel 介绍 史上最优雅的 PHP 框架
Ustinian_310
laravelphp
1.Laravel介绍Laravel是一个开源的PHPWeb应用框架,由TaylorOtwell创建并于2011年6月首次发布。它遵循模型-视图-控制器(MVC)架构模式,旨在简化Web开发的任务,提供了一套丰富的功能,帮助开发者快速构建安全、可扩展的Web应用程序。附注:文末附有Laravel的社区入口,感兴趣的小伙伴可以去社区寻找更多学习资料以下是Laravel的一些主要特点和组件:核心特点M
- java封装继承多态等
麦田的设计者
javaeclipsejvmcencapsulatopn
最近一段时间看了很多的视频却忘记总结了,现在只能想到什么写什么了,希望能起到一个回忆巩固的作用。
1、final关键字
译为:最终的
&
- F5与集群的区别
bijian1013
weblogic集群F5
http请求配置不是通过集群,而是F5;集群是weblogic容器的,如果是ejb接口是通过集群。
F5同集群的差别,主要还是会话复制的问题,F5一把是分发http请求用的,因为http都是无状态的服务,无需关注会话问题,类似
- LeetCode[Math] - #7 Reverse Integer
Cwind
java题解MathLeetCodeAlgorithm
原题链接:#7 Reverse Integer
要求:
按位反转输入的数字
例1: 输入 x = 123, 返回 321
例2: 输入 x = -123, 返回 -321
难度:简单
分析:
对于一般情况,首先保存输入数字的符号,然后每次取输入的末位(x%10)作为输出的高位(result = result*10 + x%10)即可。但
- BufferedOutputStream
周凡杨
首先说一下这个大批量,是指有上千万的数据量。
例子:
有一张短信历史表,其数据有上千万条数据,要进行数据备份到文本文件,就是执行如下SQL然后将结果集写入到文件中!
select t.msisd
- linux下模拟按键输入和鼠标
被触发
linux
查看/dev/input/eventX是什么类型的事件, cat /proc/bus/input/devices
设备有着自己特殊的按键键码,我需要将一些标准的按键,比如0-9,X-Z等模拟成标准按键,比如KEY_0,KEY-Z等,所以需要用到按键 模拟,具体方法就是操作/dev/input/event1文件,向它写入个input_event结构体就可以模拟按键的输入了。
linux/in
- ContentProvider初体验
肆无忌惮_
ContentProvider
ContentProvider在安卓开发中非常重要。与Activity,Service,BroadcastReceiver并称安卓组件四大天王。
在android中的作用是用来对外共享数据。因为安卓程序的数据库文件存放在data/data/packagename里面,这里面的文件默认都是私有的,别的程序无法访问。
如果QQ游戏想访问手机QQ的帐号信息一键登录,那么就需要使用内容提供者COnte
- 关于Spring MVC项目(maven)中通过fileupload上传文件
843977358
mybatisspring mvc修改头像上传文件upload
Spring MVC 中通过fileupload上传文件,其中项目使用maven管理。
1.上传文件首先需要的是导入相关支持jar包:commons-fileupload.jar,commons-io.jar
因为我是用的maven管理项目,所以要在pom文件中配置(每个人的jar包位置根据实际情况定)
<!-- 文件上传 start by zhangyd-c --&g
- 使用svnkit api,纯java操作svn,实现svn提交,更新等操作
aigo
svnkit
原文:http://blog.csdn.net/hardwin/article/details/7963318
import java.io.File;
import org.apache.log4j.Logger;
import org.tmatesoft.svn.core.SVNCommitInfo;
import org.tmateso
- 对比浏览器,casperjs,httpclient的Header信息
alleni123
爬虫crawlerheader
@Override
protected void doGet(HttpServletRequest req, HttpServletResponse res) throws ServletException, IOException
{
String type=req.getParameter("type");
Enumeration es=re
- java.io操作 DataInputStream和DataOutputStream基本数据流
百合不是茶
java流
1,java中如果不保存整个对象,只保存类中的属性,那么我们可以使用本篇文章中的方法,如果要保存整个对象 先将类实例化 后面的文章将详细写到
2,DataInputStream 是java.io包中一个数据输入流允许应用程序以与机器无关方式从底层输入流中读取基本 Java 数据类型。应用程序可以使用数据输出流写入稍后由数据输入流读取的数据。
- 车辆保险理赔案例
bijian1013
车险
理赔案例:
一货运车,运输公司为车辆购买了机动车商业险和交强险,也买了安全生产责任险,运输一车烟花爆竹,在行驶途中发生爆炸,出现车毁、货损、司机亡、炸死一路人、炸毁一间民宅等惨剧,针对这几种情况,该如何赔付。
赔付建议和方案:
客户所买交强险在这里不起作用,因为交强险的赔付前提是:“机动车发生道路交通意外事故”;
如果是交通意外事故引发的爆炸,则优先适用交强险条款进行赔付,不足的部分由商业
- 学习Spring必学的Java基础知识(5)—注解
bijian1013
javaspring
文章来源:http://www.iteye.com/topic/1123823,整理在我的博客有两个目的:一个是原文确实很不错,通俗易懂,督促自已将博主的这一系列关于Spring文章都学完;另一个原因是为免原文被博主删除,在此记录,方便以后查找阅读。
有必要对
- 【Struts2一】Struts2 Hello World
bit1129
Hello world
Struts2 Hello World应用的基本步骤
创建Struts2的Hello World应用,包括如下几步:
1.配置web.xml
2.创建Action
3.创建struts.xml,配置Action
4.启动web server,通过浏览器访问
配置web.xml
<?xml version="1.0" encoding="
- 【Avro二】Avro RPC框架
bit1129
rpc
1. Avro RPC简介 1.1. RPC
RPC逻辑上分为二层,一是传输层,负责网络通信;二是协议层,将数据按照一定协议格式打包和解包
从序列化方式来看,Apache Thrift 和Google的Protocol Buffers和Avro应该是属于同一个级别的框架,都能跨语言,性能优秀,数据精简,但是Avro的动态模式(不用生成代码,而且性能很好)这个特点让人非常喜欢,比较适合R
- lua set get cookie
ronin47
lua cookie
lua:
local access_token = ngx.var.cookie_SGAccessToken
if access_token then
ngx.header["Set-Cookie"] = "SGAccessToken="..access_token.."; path=/;Max-Age=3000"
end
- java-打印不大于N的质数
bylijinnan
java
public class PrimeNumber {
/**
* 寻找不大于N的质数
*/
public static void main(String[] args) {
int n=100;
PrimeNumber pn=new PrimeNumber();
pn.printPrimeNumber(n);
System.out.print
- Spring源码学习-PropertyPlaceholderHelper
bylijinnan
javaspring
今天在看Spring 3.0.0.RELEASE的源码,发现PropertyPlaceholderHelper的一个bug
当时觉得奇怪,上网一搜,果然是个bug,不过早就有人发现了,且已经修复:
详见:
http://forum.spring.io/forum/spring-projects/container/88107-propertyplaceholderhelper-bug
- [逻辑与拓扑]布尔逻辑与拓扑结构的结合会产生什么?
comsci
拓扑
如果我们已经在一个工作流的节点中嵌入了可以进行逻辑推理的代码,那么成百上千个这样的节点如果组成一个拓扑网络,而这个网络是可以自动遍历的,非线性的拓扑计算模型和节点内部的布尔逻辑处理的结合,会产生什么样的结果呢?
是否可以形成一种新的模糊语言识别和处理模型呢? 大家有兴趣可以试试,用软件搞这些有个好处,就是花钱比较少,就算不成
- ITEYE 都换百度推广了
cuisuqiang
GoogleAdSense百度推广广告外快
以前ITEYE的广告都是谷歌的Google AdSense,现在都换成百度推广了。
为什么个人博客设置里面还是Google AdSense呢?
都知道Google AdSense不好申请,这在ITEYE上也不是讨论了一两天了,强烈建议ITEYE换掉Google AdSense。至少,用一个好申请的吧。
什么时候能从ITEYE上来点外快,哪怕少点
- 新浪微博技术架构分析
dalan_123
新浪微博架构
新浪微博在短短一年时间内从零发展到五千万用户,我们的基层架构也发展了几个版本。第一版就是是非常快的,我们可以非常快的实现我们的模块。我们看一下技术特点,微博这个产品从架构上来分析,它需要解决的是发表和订阅的问题。我们第一版采用的是推的消息模式,假如说我们一个明星用户他有10万个粉丝,那就是说用户发表一条微博的时候,我们把这个微博消息攒成10万份,这样就是很简单了,第一版的架构实际上就是这两行字。第
- 玩转ARP攻击
dcj3sjt126com
r
我写这片文章只是想让你明白深刻理解某一协议的好处。高手免看。如果有人利用这片文章所做的一切事情,盖不负责。 网上关于ARP的资料已经很多了,就不用我都说了。 用某一位高手的话来说,“我们能做的事情很多,唯一受限制的是我们的创造力和想象力”。 ARP也是如此。 以下讨论的机子有 一个要攻击的机子:10.5.4.178 硬件地址:52:54:4C:98
- PHP编码规范
dcj3sjt126com
编码规范
一、文件格式
1. 对于只含有 php 代码的文件,我们将在文件结尾处忽略掉 "?>" 。这是为了防止多余的空格或者其它字符影响到代码。例如:<?php$foo = 'foo';2. 缩进应该能够反映出代码的逻辑结果,尽量使用四个空格,禁止使用制表符TAB,因为这样能够保证有跨客户端编程器软件的灵活性。例
- linux 脱机管理(nohup)
eksliang
linux nohupnohup
脱机管理 nohup
转载请出自出处:http://eksliang.iteye.com/blog/2166699
nohup可以让你在脱机或者注销系统后,还能够让工作继续进行。他的语法如下
nohup [命令与参数] --在终端机前台工作
nohup [命令与参数] & --在终端机后台工作
但是这个命令需要注意的是,nohup并不支持bash的内置命令,所
- BusinessObjects Enterprise Java SDK
greemranqq
javaBOSAPCrystal Reports
最近项目用到oracle_ADF 从SAP/BO 上调用 水晶报表,资料比较少,我做一个简单的分享,给和我一样的新手 提供更多的便利。
首先,我是尝试用JAVA JSP 去访问的。
官方API:http://devlibrary.businessobjects.com/BusinessObjectsxi/en/en/BOE_SDK/boesdk_ja
- 系统负载剧变下的管控策略
iamzhongyong
高并发
假如目前的系统有100台机器,能够支撑每天1亿的点击量(这个就简单比喻一下),然后系统流量剧变了要,我如何应对,系统有那些策略可以处理,这里总结了一下之前的一些做法。
1、水平扩展
这个最容易理解,加机器,这样的话对于系统刚刚开始的伸缩性设计要求比较高,能够非常灵活的添加机器,来应对流量的变化。
2、系统分组
假如系统服务的业务不同,有优先级高的,有优先级低的,那就让不同的业务调用提前分组
- BitTorrent DHT 协议中文翻译
justjavac
bit
前言
做了一个磁力链接和BT种子的搜索引擎 {Magnet & Torrent},因此把 DHT 协议重新看了一遍。
BEP: 5Title: DHT ProtocolVersion: 3dec52cb3ae103ce22358e3894b31cad47a6f22bLast-Modified: Tue Apr 2 16:51:45 2013 -070
- Ubuntu下Java环境的搭建
macroli
java工作ubuntu
配置命令:
$sudo apt-get install ubuntu-restricted-extras
再运行如下命令:
$sudo apt-get install sun-java6-jdk
待安装完毕后选择默认Java.
$sudo update- alternatives --config java
安装过程提示选择,输入“2”即可,然后按回车键确定。
- js字符串转日期(兼容IE所有版本)
qiaolevip
TODateStringIE
/**
* 字符串转时间(yyyy-MM-dd HH:mm:ss)
* result (分钟)
*/
stringToDate : function(fDate){
var fullDate = fDate.split(" ")[0].split("-");
var fullTime = fDate.split("
- 【数据挖掘学习】关联规则算法Apriori的学习与SQL简单实现购物篮分析
superlxw1234
sql数据挖掘关联规则
关联规则挖掘用于寻找给定数据集中项之间的有趣的关联或相关关系。
关联规则揭示了数据项间的未知的依赖关系,根据所挖掘的关联关系,可以从一个数据对象的信息来推断另一个数据对象的信息。
例如购物篮分析。牛奶 ⇒ 面包 [支持度:3%,置信度:40%] 支持度3%:意味3%顾客同时购买牛奶和面包。 置信度40%:意味购买牛奶的顾客40%也购买面包。 规则的支持度和置信度是两个规则兴
- Spring 5.0 的系统需求,期待你的反馈
wiselyman
spring
Spring 5.0将在2016年发布。Spring5.0将支持JDK 9。
Spring 5.0的特性计划还在工作中,请保持关注,所以作者希望从使用者得到关于Spring 5.0系统需求方面的反馈。