任何数学技巧都不能弥补信息的缺失。
——科尼利厄斯·兰佐斯(Cornelius Lanczos)匈牙利数学家、物理学家
深度神经网络在机器学习中应用时面临两类主要问题:优化问题和泛化问题。
优化问题:深度神经网络的优化具有挑战性。
泛化问题:由于深度神经网络的复杂度较高且具有强大的拟合能力,很容易在训练集上产生过拟合现象。因此,在训练深度神经网络时需要采用一定的正则化方法来提高网络的泛化能力。
目前,研究人员通过大量实践总结了一些经验方法,以在神经网络的表示能力、复杂度、学习效率和泛化能力之间取得良好的平衡,从而得到良好的网络模型。本系列文章将从网络优化和网络正则化两个方面来介绍如下方法:
本文将介绍使用动量优化的随机梯度下降算法(Stochastic Gradient Descent with Momentum)
本系列实验使用了PyTorch深度学习框架,相关操作如下:
conda create -n DL python=3.7
conda activate DL
pip install torch==1.8.1+cu102 torchvision==0.9.1+cu102 torchaudio==0.8.1 -f https://download.pytorch.org/whl/torch_stable.html
conda install matplotlib
conda install scikit-learn
软件包 | 本实验版本 | 目前最新版 |
---|---|---|
matplotlib | 3.5.3 | 3.8.0 |
numpy | 1.21.6 | 1.26.0 |
python | 3.7.16 | |
scikit-learn | 0.22.1 | 1.3.0 |
torch | 1.8.1+cu102 | 2.0.1 |
torchaudio | 0.8.1 | 2.0.2 |
torchvision | 0.9.1+cu102 | 0.15.2 |
import torch
import torch.nn.functional as F
from d2l import torch as d2l
from sklearn.datasets import load_iris
from torch.utils.data import Dataset, DataLoader
随机梯度下降(Stochastic Gradient Descent,SGD)是一种常用的优化算法,用于训练深度神经网络。在每次迭代中,SGD通过随机均匀采样一个数据样本的索引,并计算该样本的梯度来更新网络参数。
具体而言,SGD的更新步骤如下:
Pytorch官方教程
optimizer = torch.optim.SGD(model.parameters(), lr=0.2)
【深度学习实验】前馈神经网络(final):自定义鸢尾花分类前馈神经网络模型并进行训练及评价
传统的SGD在某些情况下可能存在一些问题,例如学习率选择困难和梯度的不稳定性。为了改进这些问题,提出了一些随机梯度下降的改进方法,其中包括学习率的调整和梯度的优化。
学习率衰减(Learning Rate Decay):随着训练的进行,逐渐降低学习率。常见的学习率衰减方法有固定衰减、按照指数衰减、按照时间表衰减等。
Adagrad:自适应地调整学习率。Adagrad根据参数在训练过程中的历史梯度进行调整,对于稀疏梯度较大的参数,降低学习率;对于稀疏梯度较小的参数,增加学习率。这样可以在不同参数上采用不同的学习率,提高收敛速度。
Adadelta:与Adagrad类似,但进一步解决了Adagrad学习率递减过快的问题。Adadelta不仅考虑了历史梯度,还引入了一个累积的平方梯度的衰减平均,以动态调整学习率。
RMSprop:也是一种自适应学习率的方法,通过使用梯度的指数加权移动平均来调整学习率。RMSprop结合了Adagrad的思想,但使用了衰减平均来减缓学习率的累积效果,从而更加稳定。
Momentum:使用梯度的“加权移动平均”作为参数的更新方向。Momentum方法引入了一个动量项,用于加速梯度下降的过程。通过积累之前的梯度信息,可以在更新参数时保持一定的惯性,有助于跳出局部最优解、加快收敛速度。
Nesterov accelerated gradient:Nesterov加速梯度(NAG)是Momentum的一种变体。与Momentum不同的是,NAG会先根据当前的梯度估计出一个未来位置,然后在该位置计算梯度。这样可以更准确地估计当前位置的梯度,并且在参数更新时更加稳定。
梯度截断(Gradient Clipping):为了应对梯度爆炸或梯度消失的问题,梯度截断的方法被提出。梯度截断通过限制梯度的范围,将梯度控制在一个合理的范围内。常见的梯度截断方法有阈值截断和梯度缩放。
动量(Momentum)是模拟物理中的概念.一个物体的动量指的是该物体在它运动方向上保持运动的趋势,是该物体的质量和速度的乘积.动量法(Momentum Method)是用之前积累动量来替代真正的梯度.每次迭代的梯度可以看作加速度。
在第 次迭代时,计算**负梯度的“加权移动平均”**作为参数的更新方向,
其中为动量因子,通常设为0.9,为学习率。
这样,每个参数的实际更新差值取决于最近一段时间内梯度的加权平均值。当某个参数在最近一段时间内的梯度方向不一致时,其真实的参数更新幅度变小;相反,当在最近一段时间内的梯度方向都一致时,其真实的参数更新幅度变大,起到加速作用。一般而言:
从某种角度来说,当前梯度叠加上部分的上次梯度,一定程度上可以近似看作二阶梯度,下面将介绍如何使用动量法训练模型:
def init_momentum_states(feature_dim):
v_w = torch.zeros((feature_dim, 3))
v_b = torch.zeros(3)
return (v_w, v_b)
init_momentum_states(feature_dim)
函数用于初始化动量状态:
feature_dim
作为输入,返回一个包含两个张量的元组 (v_w, v_b)
。v_w
是一个形状为 (feature_dim, 3)
的全零张量,v_b
是一个长度为 3 的全零张量。def sgd_momentum(params, states, hyperparams):
for p, v in zip(params, states):
with torch.no_grad():
v[:] = hyperparams['momentum'] * v + p.grad
p[:] -= hyperparams['lr'] * v
p.grad.data.zero_()
sgd_momentum(params, states, hyperparams)
函数实现了使用动量优化的随机梯度下降算法:
params
是模型的参数张量列表,states
是动量状态的元组 (v_w, v_b)
,hyperparams
是超参数字典,包含学习率和动量参数。p
和对应的动量状态 v
,它执行以下操作:
v[:] = hyperparams['momentum'] * v + p.grad
:更新动量状态,将当前梯度 p.grad
乘以动量参数 hyperparams['momentum']
并加到动量状态 v
上。p[:] -= hyperparams['lr'] * v
:更新参数 p
,将学习率 hyperparams['lr']
乘以动量 v
得到的梯度,从当前参数 p
中减去。p.grad.data.zero_()
:清零参数 p
的梯度。def evaluate_loss(net, data_iter, loss):
"""评估给定数据集上模型的损失
Defined in :numref:`sec_model_selection`"""
metric = d2l.Accumulator(2) # 损失的总和,样本数量
for X, y in data_iter:
X = X.to(torch.float32)
out = net(X)
# y = d2l.reshape(y, out.shape)
l = loss(out, y.long())
metric.add(d2l.reduce_sum(l), d2l.size(l))
return metric[0] / metric[1]
evaluate_loss
函数用于在给定数据集上评估模型的损失。
net
、一个数据迭代器 data_iter
和一个损失函数 loss
作为输入。def train(trainer_fn, states, hyperparams, data_iter, feature_dim, num_epochs=2):
"""Defined in :numref:`sec_minibatches`"""
# 初始化模型
w = torch.normal(mean=0.0, std=0.01, size=(feature_dim, 3),
requires_grad=True)
b = torch.zeros((3), requires_grad=True)
# 训练模型
animator = d2l.Animator(xlabel='epoch', ylabel='loss',
xlim=[0, num_epochs], ylim=[0.9, 1.1])
n, timer = 0, d2l.Timer()
# 这是一个单层线性层
net = lambda X: d2l.linreg(X, w, b)
loss = F.cross_entropy
for _ in range(num_epochs):
for X, y in data_iter:
X = X.to(torch.float32)
l = loss(net(X), y.long()).mean()
l.backward()
trainer_fn([w, b], states, hyperparams)
n += X.shape[0]
if n % 48 == 0:
timer.stop()
animator.add(n / X.shape[0] / len(data_iter),
(evaluate_loss(net, data_iter, loss),))
timer.start()
print(f'loss: {animator.Y[0][-1]:.3f}, {timer.avg():.3f} sec/epoch')
return timer.cumsum(), animator.Y[0]
trainer_fn
、状态列表 states
、超参数字典 hyperparams
、数据迭代器 data_iter
、输入特征维度 feature_dim
和训练的总轮数 num_epochs
(默认为2)。w
和 b
,然后使用训练数据迭代器进行训练。
l
。trainer_fn
函数来更新参数。
trainer_fn
函数接受参数列表 [w, b]
、状态列表 states
和超参数字典 hyperparams
,用于更新模型的参数。n
,并根据一定条件计算并绘制损失值的动画图。batch_size = 24
train_dataset = IrisDataset(mode='train')
train_loader = DataLoader(train_dataset, batch_size=batch_size,shuffle=True)
lr = 0.02
momentum = 0.9
train(sgd_momentum, init_momentum_states(4), {'lr': lr, 'momentum': momentum}, train_loader, 4, num_epochs=100)
batch_size
;train_dataset
;
DataLoader
创建一个训练数据迭代器 train_loader
,用于按批次加载训练数据;lr
和动量 momentum
超参数;train
函数进行模型训练。
sgd_momentum
、初始化的动量状态 init_momentum_states(4)
、超参数字典 {'lr': lr, 'momentum': momentum}
、训练数据迭代器 train_loader
、特征维度 4
和训练的总轮数 100
。# 导入需要的工具包
import torch
import torch.nn.functional as F
from d2l import torch as d2l
from sklearn.datasets import load_iris
from torch.utils.data import Dataset, DataLoader
def evaluate_loss(net, data_iter, loss):
"""评估给定数据集上模型的损失
Defined in :numref:`sec_model_selection`"""
metric = d2l.Accumulator(2) # 损失的总和,样本数量
for X, y in data_iter:
X = X.to(torch.float32)
out = net(X)
# y = d2l.reshape(y, out.shape)
l = loss(out, y.long())
metric.add(d2l.reduce_sum(l), d2l.size(l))
return metric[0] / metric[1]
def train(trainer_fn, states, hyperparams, data_iter, feature_dim, num_epochs=2):
"""Defined in :numref:`sec_minibatches`"""
# 初始化模型
w = torch.normal(mean=0.0, std=0.01, size=(feature_dim, 3),
requires_grad=True)
b = torch.zeros((3), requires_grad=True)
# 训练模型
animator = d2l.Animator(xlabel='epoch', ylabel='loss',
xlim=[0, num_epochs], ylim=[0.9, 1.1])
n, timer = 0, d2l.Timer()
# 这是一个单层线性层
net = lambda X: d2l.linreg(X, w, b)
loss = F.cross_entropy
for _ in range(num_epochs):
for X, y in data_iter:
X = X.to(torch.float32)
l = loss(net(X), y.long()).mean()
l.backward()
trainer_fn([w, b], states, hyperparams)
n += X.shape[0]
if n % 48 == 0:
timer.stop()
animator.add(n / X.shape[0] / len(data_iter),
(evaluate_loss(net, data_iter, loss),))
timer.start()
print(f'loss: {animator.Y[0][-1]:.3f}, {timer.avg():.3f} sec/epoch')
return timer.cumsum(), animator.Y[0]
def load_data(shuffle=True):
x = torch.tensor(load_iris().data)
y = torch.tensor(load_iris().target)
# 数据归一化
x_min = torch.min(x, dim=0).values
x_max = torch.max(x, dim=0).values
x = (x - x_min) / (x_max - x_min)
if shuffle:
idx = torch.randperm(x.shape[0])
x = x[idx]
y = y[idx]
return x, y
class IrisDataset(Dataset):
def __init__(self, mode='train', num_train=120, num_dev=15):
super(IrisDataset, self).__init__()
x, y = load_data(shuffle=True)
if mode == 'train':
self.x, self.y = x[:num_train], y[:num_train]
elif mode == 'dev':
self.x, self.y = x[num_train:num_train + num_dev], y[num_train:num_train + num_dev]
else:
self.x, self.y = x[num_train + num_dev:], y[num_train + num_dev:]
def __getitem__(self, idx):
return self.x[idx], self.y[idx]
def __len__(self):
return len(self.x)
def init_momentum_states(feature_dim):
v_w = torch.zeros((feature_dim, 3))
v_b = torch.zeros(3)
return (v_w, v_b)
def sgd_momentum(params, states, hyperparams):
for p, v in zip(params, states):
with torch.no_grad():
v[:] = hyperparams['momentum'] * v + p.grad
p[:] -= hyperparams['lr'] * v
p.grad.data.zero_()
# batch_size = 1
batch_size = 24
# batch_size = 120
# 分别构建训练集、验证集和测试集
train_dataset = IrisDataset(mode='train')
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
lr = 0.02
momentum = 0.9
train(sgd_momentum, init_momentum_states(4), {'lr': lr, 'momentum': momentum}, train_loader, 4, num_epochs=100)