实验三:最小错误率的贝叶斯分类预习报告

一、实验原理

贝叶斯分类器的分类原理是通过某对象的先验概率,利用贝叶斯公式计算出其后验概率,即该对象属于某一类的概率,选择具有最大后验概率的类作为该对象所属的类。也就是说,贝叶斯分类器是最小错误率意义上的优化,它遵循“多数占优”这一基本原则。

贝叶斯公式

其中,是先验概率,是条件概率,我们要求的是后验概率。

由于分母项在不管求样本的哪个后验概率时都是一样的,实际上我们需要关注的只是分子,因此有

贝叶斯分类器的分类原理是通过某对象的先验概率,利用贝叶斯公式计算出其后验概率,即该对象属于某一类的概率,选择具有最大后验概率的类作为该对象所属的类。在具有模式的完整统计知识条件下,按照贝叶斯决策理论进行设计的一种最优分类器。分类器是对每一个输入模式赋予一个类别名称的软件或硬件装置,而贝叶斯分类器是各种分类器中分类错误概率最小或者在预先给定代价的情况下平均风险最小的分类器。它的设计方法是一种最基本的统计分类方法。

利用贝叶斯后验概率确定分类:

实验三:最小错误率的贝叶斯分类预习报告_第1张图片

二、实验内容

设有19人进行体检,结果如下表。但事后发现4人忘了写性别,试问,这4人是男是女?

序号

身高

体重

性别

序号

身高

体重

性别

1

170

68

11

140

62

2

130

66

12

150

你可能感兴趣的:(机器学习,模式识别)