Given a binary search tree (BST), find the lowest common ancestor (LCA) of two given nodes in the BST.
According to the definition of LCA on Wikipedia: “The lowest common ancestor is defined between two nodes p and q as the lowest node in T that has both p and q as descendants (where we allow a node to be a descendant of itself).”
Given binary search tree: root = {6,2,8,0,4,7,9,#,#,3,5}
Example
Example 1:
Input:
{6,2,8,0,4,7,9,#,#,3,5}
2
8
Output: 6
Explanation: The LCA of nodes 2 and 8 is 6.
Example 2:
Input:
{6,2,8,0,4,7,9,#,#,3,5}
2
4
Output: 2
Explanation: The LCA of nodes 2 and 4 is 2, since a node can be a descendant of itself according to the LCA definition.
Notice
All of the nodes’ values will be unique.
p and q are different and both values will exist in the BST.
解法1:DFS
/**
* Definition of TreeNode:
* class TreeNode {
* public:
* int val;
* TreeNode *left, *right;
* TreeNode(int val) {
* this->val = val;
* this->left = this->right = NULL;
* }
* }
*/
class Solution {
public:
/**
* @param root: root of the tree
* @param p: the node p
* @param q: the node q
* @return: find the LCA of p and q
*/
TreeNode * lowestCommonAncestor(TreeNode * root, TreeNode * p, TreeNode * q) {
if (!root) return NULL;
if (root->val > p->val && root->val > q->val) return lowestCommonAncestor(root->left, p, q);
if (root->val < p->val && root->val < q->val) return lowestCommonAncestor(root->right, p, q);
return root;
}
};
解法2:迭代
/**
* Definition of TreeNode:
* class TreeNode {
* public:
* int val;
* TreeNode *left, *right;
* TreeNode(int val) {
* this->val = val;
* this->left = this->right = NULL;
* }
* }
*/
class Solution {
public:
/**
* @param root: root of the tree
* @param p: the node p
* @param q: the node q
* @return: find the LCA of p and q
*/
TreeNode * lowestCommonAncestor(TreeNode * root, TreeNode * p, TreeNode * q) {
if (!root) return NULL;
while(root) {
if (root->val > p->val && root->val > q->val) root = root->left;
else if (root->val < p->val && root->val < q->val) root = root->right;
else return root;
}
}
};