第三课 大数据技术之Fink1.13的实战学习-时间和窗口

第三课 大数据技术之Fink1.13的实战学习-时间和窗口

文章目录

  • 第三课 大数据技术之Fink1.13的实战学习-时间和窗口
    • 第一节 时间定义
      • 1.1 Flink中的时间语义
      • 1.2 两种时间语义的对比
    • 第二节 水位线
      • 2.1 事件时间和窗口
      • 2.2 什么是水位线
      • 2.3 如何生成水位线
      • 2.4 Flink 内置水位线生成器
      • 2.5 自定义水位线策略
      • 2.6 水位线的传递
    • 第三节 窗口的介绍
      • 3.1 窗口的概念
      • 3.2 窗口的分类-按照驱动类型
      • 3.3 窗口的分类-分配数据的规则
    • 第四节 窗口的使用
      • 4.1 窗口API概览
      • 4.2 窗口分配器
      • 4.3 窗口函数
        • 4.3.1 增量聚合函数-ReduceFunction
        • 4.3.2 增量聚合函数- AggregateFunction
        • 4.3.3 全窗口函数-WindowFunction
        • 4.3.4 全窗口函数-ProcessWindowFunction
        • 4.3.5 增量聚合和全窗口函数的结合使用
        • 4.3.6 测试水位线和窗口的使用
      • 4.4 其他API
        • 4.4.1 触发器
        • 4.4.2 移除器
        • 4.4.3 允许延迟
        • 4.4.4 将迟到的数据放入侧输出流
      • 4.5 窗口的生命周期
    • 第五节 迟到数据的处理
      • 5.1 设置水位线延迟时间
      • 5.2 允许窗口处理迟到数据
      • 5.3 将迟到数据放入窗口侧输出流

第一节 时间定义

1.1 Flink中的时间语义

  1. 对于一台机器而言,“时间”自然就是指系统时间。但我们知道,Flink 是一个分布式处理系统。分布式架构最大的特点,就是节点彼此独立、互不影响,这带来了更高的吞吐量和容错性;但有利必有弊,最大的问题也来源于此。
  2. 在分布式系统中,节点“各自为政”,是没有统一时钟的,数据和控制信息都通过网络进行传输。比如现在有一个任务是窗口聚合,我们希望将每个小时的数据收集起来进行统计处理。而对于并行的窗口子任务,它们所在节点不同,系统时间也会有差异;当我们希望统计 8 点~9 点的数据时,对并行任务来说其实并不是“同时”的,收集到的数据也会有误差。
  3. 那既然一个集群中有 JobManager 作为管理者,是不是让它统一向所有 TaskManager 发送同步时钟信号就行了呢?这也是不行的。因为网络传输会有延迟,而且这延迟是不确定的,所以JobManager 发出的同步信号无法同时到达所有节点;想要拥有一个全局统一的时钟,在分布式系统里是做不到的。
  4. 另一个麻烦的问题是,在流式处理的过程中,数据是在不同的节点间不停流动的,这同样也会有网络传输的延迟。这样一来,当上下游任务需要跨节点传输数据时,它们对于“时间”的理解也会有所不同。例如,上游任务在 8 点 59 分 59 秒发出一条数据,到下游要做窗口计算时已经是 9 点零 1 秒了,那这条数据到底该不该被收到 8 点~9 点的窗口呢?
  5. 所以,当我们希望对数据按照时间窗口来进行收集计算时,“时间”到底以谁为标准就非常重要了。
    第三课 大数据技术之Fink1.13的实战学习-时间和窗口_第1张图片
  6. 我们重新梳理一下流式数据处理的过程。在事件发生之后,生成的数据被收集起来,首先进入分布式消息队列,然后被 Flink 系统中的 Source 算子读取消费,进而向下游的转换算子(窗口算子)传递,最终由窗口算子进行计算处理。很明显,这里有两个非常重要的时间点:一个是数据产生的时间,我们把它叫作事件时间”(Event Time);另一个是数据真正被处理的时刻,叫作处理时间(Processing Time)。我们所定义的窗口操作,到底是以那种时间作为衡量标准,就是所谓的“时间语义”(Notions of Time)。由于分布式系统中网络传输的延迟和时钟漂移,处理时间相对事件发生的时间会有所滞后。
  7. 处理时间(Processing Time)处理时间的概念非常简单,就是指执行处理操作的机器的系统时间。如果我们以它作为衡量标准,那么数据属于哪个窗口就很明显了:只看窗口任务处理这条数据时,当前的系统时间。比如之前举的例子,数据 8 点 59 分 59 秒产生,而窗口计算时的时间是 9 点零 1 秒,那么这条数据就属于 9 点—10 点的窗口;如果数据传输非常快,9 点之前就到了窗口任务,那么它就属于 8 点—9 点的窗口了。每个并行的窗口子任务,就只按照自己的系统时钟划分窗口。假如我们在早上 8 点 10 分启动运行程序,那么接下来一直到 9 点以前处理的所有数据,都属于第一个窗口;9 点之后、10 点之前的所有数据就将属于第二个窗口。这种方法非常简单粗暴,不需要各个节点之间进行协调同步,也不需要考虑数据在流中的位置,简单来说就是“我的地盘听我的”。所以处理时间是最简单的时间语义。
  8. 事件时间(Event Time)事件时间,是指每个事件在对应的设备上发生的时间,也就是数据生成的时间。数据一旦产生,这个时间自然就确定了,所以它可以作为一个属性嵌入到数据中。这其实就是这条数据记录的“时间戳”(Timestamp)。在事件时间语义下,我们对于时间的衡量,就不看任何机器的系统时间了,而是依赖于数据本身。打个比方,这相当于任务处理的时候自己本身是没有时钟的,所以只好来一个数据就问一下“现在几点了”;而数据本身也没有表,只有一个自带的“出厂时间”,于是任务就基于这个时间来确定自己的时钟。由于流处理中数据是源源不断产生的,一般来说,先产生的数据也会先被处理,所以当任务不停地接到数据时,它们的时间戳也基本上是不断增长的,就可以代表时间的推进。
  9. 当然我们会发现,这里有个前提,就是“先产生的数据先被处理”,这要求我们可以保证数据到达的顺序。但是由于分布式系统中网络传输延迟的不确定性,实际应用中我们要面对的数据流往往是乱序的。在这种情况下,就不能简单地把数据自带的时间戳当作时钟了,而需要用另外的标志来表示事件时间进展,在 Flink 中把它叫作事件时间的“水位线”(Watermarks)

1.2 两种时间语义的对比

  1. 两种时间语义都有各自的用途,适用于不同的场景。在实际应用中,事件时间语义会更为常见。一般情况下,业务日志数据中都会记录数据生成的时间戳(timestamp),它就可以作为事件时间的判断基础
  2. 实际应用中,数据产生的时间和处理的时间可能是完全不同的。很长时间收集起来的数据,处理或许只要一瞬间;也有可能数据量过大、处理能力不足,短时间堆了大量数据处理不完,产生“背压”(back pressure)。
  3. 通常来说,处理时间是我们计算效率的衡量标准,而事件时间会更符合我们的业务计算逻辑。所以更多时候我们使用事件时间;不过处理时间也不是一无是处。对于处理时间而言,由于没有任何附加考虑,数据一来就直接处理,因此这种方式可以让我们的流处理延迟降到最低,效率达到最高。
  4. 但是我们前面提到过,在分布式环境中,处理时间其实是不确定的,各个并行任务时钟不统一,而且由于网络延迟,导致数据到达各个算子任务的时间有快有慢,对于窗口操作就可能收集不到正确的数据了,数据处理的顺序也会被打乱。这就会影响到计算结果的正确性。所以处理时间语义, 一般用在对实时性要求极高、而对计算准确性要求不太高的场景。
  5. 而在事件时间语义下,水位线成为了时钟,可以统一控制时间的进度。这就保证了我们总可以将数据划分到正确的窗口中,比如 8 点 59 分 59 秒产生的数据,无论网络传输的延迟是多少,它永远属于 8 点~9 点的窗口,不会错分。但我们知道数据还可能是乱序的,要想让窗口正确地收集到所有数据,就必须等这些错乱的数据都到齐,这就需要一定的等待时间。所以整体上看,事件时间语义是以一定延迟为代价,换来了处理结果的正确性。由于网络延迟一般只有毫秒级,所以即使是事件时间语义,同样可以完成低延迟实时流处理的任务。
  6. 另外,除了事件时间和处理时间,Flink 还有一个“摄入时间”(Ingestion Time)的概念,它是指数据进入 Flink 数据流的时间,也就是 Source 算子读入数据的时间。摄入时间相当于是事件时间和处理时间的一个中和,它是把 Source 任务的处理时间,当作了数据的产生时间添加到数据里。这样一来,水位线(watermark)也就基于这个时间直接生成,不需要单独指定了。这种时间语义可以保证比较好的正确性,同时又不会引入太大的延迟。它的具体行为跟事件时间非常像,可以当作特殊的事件时间来处理。
  7. 在 Flink 中,由于处理时间比较简单,早期版本默认的时间语义是处理时间;而考虑到事件时间在实际应用中更为广泛,从 1.12 版本开始,Flink 已经将事件时间作为了默认的时间语义

第二节 水位线

2.1 事件时间和窗口

  1. 实际应用中,一般会采用事件时间语义。而水位线,就是基于事件时间提出的概念。所以在介绍水位线之前,我们首先来梳理一下事件时间和窗口的关系。
  2. 一个数据产生的时刻,就是流处理中事件触发的时间点,这就是“事件时间”,一般都会以时间戳的形式作为一个字段记录在数据里。这个时间就像商品的“生产日期”一样,一旦产生就是固定的,印在包装袋上,不会因为运输辗转而变化。如果我们想要统计一段时间内的数据,需要划分时间窗口,这时只要判断一下时间戳就可以知道数据属于哪个窗口了。
  3. 明确了一个数据的所属窗口,还不能直接进行计算。因为窗口处理的是有界数据,我们需要等窗口的数据都到齐了,才能计算出最终的统计结果。那什么时候数据就都到齐了呢?对于时间窗口来说这很明显:到了窗口的结束时间,自然就应该收集到了所有数据,就可以触发计算输出结果了。
    第三课 大数据技术之Fink1.13的实战学习-时间和窗口_第2张图片
  4. 在这个处理过程中,我们其实是基于数据的时间戳,自定义了一个“逻辑时钟”。这个时钟的时间不会自动流逝;它的时间进展,就是靠着新到数据的时间戳来推动的。这样的好处在于,计算的过程可以完全不依赖处理时间(系统时间),不论什么时候进行统计处理,得到的结果都是正确的。比如双十一的时候系统处理压力大,我们可能会把大量数据缓存在 Kafka中;过了高峰时段之后再读取出来,在几秒之内就可以处理完几个小时甚至几天的数据,而且依然可以按照数据产生的时间段进行统计,所有窗口都能收集到正确的数据。而一般实时流处理的场景中,事件时间可以基本与处理时间保持同步,只是略微有一点延迟,同时保证了窗口计算的正确性。

2.2 什么是水位线

  1. 在事件时间语义下,我们不依赖系统时间,而是基于数据自带的时间戳去定义了一个时钟,用来表示当前时间的进展。于是每个并行子任务都会有一个自己的逻辑时钟,它的前进是靠数据的时间戳来驱动的。
  2. 但在分布式系统中,这种驱动方式又会有一些问题。因为数据本身在处理转换的过程中会变化,如果遇到窗口聚合这样的操作,其实是要攒一批数据才会输出一个结果,那么下游的数据就会变少,时间进度的控制就不够精细了。另外,数据向下游任务传递时,一般只能传输给一个子任务(除广播外),这样其他的并行子任务的时钟就无法推进了。例如一个时间戳为 9点整的数据到来,当前任务的时钟就已经是 9 点了;处理完当前数据要发送到下游,如果下游任务是一个窗口计算,并行度为 3,那么接收到这个数据的子任务,时钟也会进展到 9 点,9点结束的窗口就可以关闭进行计算了;而另外两个并行子任务则时间没有变化,不能进行窗口计算。
  3. 所以我们应该把时钟也以数据的形式传递出去,告诉下游任务当前时间的进展;而且这个时钟的传递不会因为窗口聚合之类的运算而停滞。一种简单的想法是,在数据流中加入一个时钟标记,记录当前的事件时间;这个标记可以直接广播到下游,当下游任务收到这个标记,就可以更新自己的时钟了。由于类似于水流中用来做标志的记号,在 Flink 中,这种用来衡量事件时间(Event Time)进展的标记,就被称作“水位线”(Watermark)
  4. 具体实现上,水位线可以看作一条特殊的数据记录,它是插入到数据流中的一个标记点,主要内容就是一个时间戳,用来指示当前的事件时间。而它插入流中的位置,就应该是在某个数据到来之后;这样就可以从这个数据中提取时间戳,作为当前水位线的时间戳了。水位线就像它的名字所表达的,是数据流中的一部分,随着数据一起流动,在不同任务之间传输。
    第三课 大数据技术之Fink1.13的实战学习-时间和窗口_第3张图片
  5. 有序流中的水位线。在理想状态下,数据应该按照它们生成的先后顺序、排好队进入流中;也就是说,它们处理的过程会保持原先的顺序不变,遵守先来后到的原则。这样的话我们从每个数据中提取时间戳,就可以保证总是从小到大增长的,从而插入的水位线也会不断增长、事件时钟不断向前推进。
  6. 实际应用中,如果当前数据量非常大,可能会有很多数据的时间戳是相同的,这时每来一条数据就提取时间戳、插入水位线就做了大量的无用功。而且即使时间戳不同,同时涌来的数据时间差会非常小(比如几毫秒),往往对处理计算也没什么影响。所以为了提高效率,一般会每隔一段时间生成一个水位线,这个水位线的时间戳,就是当前最新数据的时间戳。所以这时的水位线,其实就是有序流中的一个周期性出现的时间标记
    第三课 大数据技术之Fink1.13的实战学习-时间和窗口_第4张图片
  7. 这里需要注意的是,水位线插入的“周期”,本身也是一个时间概念。在当前事件时间语义下,假如我们设定了每隔 100ms 生成一次水位线,那就是要等事件时钟推进 100ms 才能插入;但是事件时钟本身的进展,本身就是靠水位线来表示的—现在要插入一个水位线,可前提又是水位线要向前推进 100ms,这就陷入了死循环。所以对于水位线的周期性生成,周期时间是指处理时间(系统时间),而不是事件时间。
  8. 乱序流中的水位线, 有序流的处理非常简单,看起来水位线也并没有起到太大的作用。但这种情况只存在于理想状态下。我们知道在分布式系统中,数据在节点间传输,会因为网络传输延迟的不确定性,导致顺序发生改变,这就是所谓的“乱序数据”。
  9. 这里所说的“乱序”(out-of-order),是指数据的先后顺序不一致,主要就是基于数据的产生时间而言的。一个 7 秒时产生的数据,生成时间自然要比 9 秒的数据早;但是经过数据缓存和传输之后,处理任务可能先收到了 9 秒的数据,之后 7 秒的数据才姗姗来迟。这时如果我们希望插入水位线,来指示当前的事件时间进展,又该怎么做呢?
  10. 最直观的想法自然是跟之前一样,我们还是靠数据来驱动,每来一个数据就提取它的时间戳、插入一个水位线。不过现在的情况是数据乱序,所以有可能新的时间戳比之前的还小,如果直接将这个时间的水位线再插入,我们的“时钟”就回退了—水位线就代表了时钟,时光不能倒流,所以水位线的时间戳也不能减小。
  11. 解决思路也很简单:我们插入新的水位线时,要先判断一下时间戳是否比之前的大,否则就不再生成新的水位线。也就是说,只有数据的时间戳比当前时钟大,才能推动时钟前进,这时才插入水位线。
    第三课 大数据技术之Fink1.13的实战学习-时间和窗口_第5张图片
  12. 如果考虑到大量数据同时到来的处理效率,我们同样可以周期性地生成水位线。这时只需要保存一下之前所有数据中的最大时间戳,需要插入水位线时,就直接以它作为时间戳生成新的水位线。这样做尽管可以定义出一个事件时钟,却也会带来一个非常大的问题:我们无法正确处理迟到的数据。在上面的例子中,当 9 秒产生的数据到来之后,我们就直接将时钟推进到了9 秒;如果有一个窗口结束时间就是 9 秒(比如,要统计 0~9 秒的所有数据),那么这时窗口就应该关闭、将收集到的所有数据计算输出结果了。但事实上,由于数据是乱序的,还可能有时间戳为 7 秒、8 秒的数据在 9 秒的数据之后才到来,这就是“迟到数据”(late data)。它们本来也应该属于 0~9 秒这个窗口,但此时窗口已经关闭,于是这些数据就被遗漏了,这会导致统计结果不正确。
  13. 回到上面的例子,为了让窗口能够正确收集到迟到的数据,我们也可以等上 2 秒;也就是用当前已有数据的最大时间戳减去 2 秒,就是要插入的水位线的时间戳。这样的话,9 秒的数据到来之后,事件时钟不会直接推进到 9 秒,而是进展到了 7 秒;必须等到11 秒的数据到来之后,事件时钟才会进展到 9 秒,这时迟到数据也都已收集齐,0~9 秒的窗口就可以正确计算结果了。
    第三课 大数据技术之Fink1.13的实战学习-时间和窗口_第6张图片
  14. 现在我们可以知道,水位线就代表了当前的事件时间时钟,而且可以在数据的时间戳基础上加一些延迟来保证不丢数据,这一点对于乱序流的正确处理非常重要。
  15. 我们可以总结一下水位线的特性:
    • 水位线是插入到数据流中的一个标记,可以认为是一个特殊的数据
    • 水位线主要的内容是一个时间戳,用来表示当前事件时间的进展
    • 水位线是基于数据的时间戳生成的
    • 水位线的时间戳必须单调递增,以确保任务的事件时间时钟一直向前推进
    • 水位线可以通过设置延迟,来保证正确处理乱序数据
    • 一个水位线 Watermark(t),表示在当前流中事件时间已经达到了时间戳 t, 这代表 t 之前的所有数据都到齐了,之后流中不会出现时间戳 t’ ≤ t 的数据
  16. 水位线是 Flink 流处理中保证结果正确性的核心机制,它往往会跟窗口一起配合,完成对乱序数据的正确处理。

2.3 如何生成水位线

  1. 水位线是用来保证窗口处理结果的正确性的,如果不能正确处理所有乱序数据,可以尝试调大延迟的时间。
  2. 生成水位线的总体原则
    • 我们知道,完美的水位线是“绝对正确”的,也就是一个水位线一旦出现,就表示这个时间之前的数据已经全部到齐、之后再也不会出现了。而完美的东西总是可望不可即,我们只能尽量去保证水位线的正确。如果对结果正确性要求很高、想要让窗口收集到所有数据,我们该怎么做呢?一个字,等。由于网络传输的延迟不确定,为了获取所有迟到数据,我们只能等待更长的时间。作为筹划全局的程序员,我们当然不会傻傻地一直等下去。那到底等多久呢?这就需要对相关领域有一定的了解了。比如,如果我们知道当前业务中事件的迟到时间不会超过 5 秒,那就可以将水位线的时间戳设为当前已有数据的最大时间戳减去 5 秒,相当于设置了 5 秒的延迟等待。
    • 更多的情况下,我们或许没那么大把握。毕竟未来是没有人能说得准的,我们怎么能确信未来不会出现一个超级迟到数据呢?所以另一种做法是,可以单独创建一个 Flink 作业来监控事件流,建立概率分布或者机器学习模型,学习事件的迟到规律。得到分布规律之后,就可以选择置信区间来确定延迟,作为水位线的生成策略了。例如,如果得到数据的迟到时间服从μ=1,σ=1 的正态分布,那么设置水位线延迟为 3 秒,就可以保证至少 97.7%的数据可以正确处理。
  3. 如果我们希望计算结果能更加准确,那可以将水位线的延迟设置得更高一些,等待的时间越长,自然也就越不容易漏掉数据。不过这样做的代价是处理的实时性降低了,我们可能为极少数的迟到数据增加了很多不必要的延迟。
  4. 如果我们希望处理得更快、实时性更强,那么可以将水位线延迟设得低一些。这种情况下,可能很多迟到数据会在水位线之后才到达,就会导致窗口遗漏数据,计算结果不准确。对于这些 “漏网之鱼”,Flink 另外提供了窗口处理迟到数据的方法,我们会在后面介绍。当然,如果我们对准确性完全不考虑、一味地追求处理速度,可以直接使用处理时间语义,这在理论上可以得到最低的延迟。
  5. 所以 Flink 中的水位线,其实是流处理中对低延迟和结果正确性的一个权衡机制,而且把控制的权力交给了程序员,我们可以在代码中定义水位线的生成策略。接下来我们就具体了解一下水位线在代码中的使用。
  6. **水位线生成策略(Watermark Strategies)**在 Flink 的 DataStream API 中 , 有 一 个 单 独 用 于 生 成 水 位 线 的 方法:assignTimestampsAndWatermarks(),它主要用来为流中的数据分配时间戳,并生成水位线来指示事件时间。具体使用时,直接用 DataStream 调用该方法即可,与普通的 transform 方法完全一样。
DataStream<Event> stream = env.addSource(new ClickSource()); DataStream<Event> withTimestampsAndWatermarks = stream.assignTimestampsAndWatermarks(<watermark strategy>);
    public SingleOutputStreamOperator<T> assignTimestampsAndWatermarks(
            WatermarkStrategy<T> watermarkStrategy) {
        final WatermarkStrategy<T> cleanedStrategy = clean(watermarkStrategy);
        // match parallelism to input, to have a 1:1 source -> timestamps/watermarks relationship
        // and chain
        final int inputParallelism = getTransformation().getParallelism();
        final TimestampsAndWatermarksTransformation<T> transformation =
                new TimestampsAndWatermarksTransformation<>(
                        "Timestamps/Watermarks",
                        inputParallelism,
                        getTransformation(),
                        cleanedStrategy);
        getExecutionEnvironment().addOperator(transformation);
        return new SingleOutputStreamOperator<>(getExecutionEnvironment(), transformation);
    }
  1. assignTimestampsAndWatermarks()方法需要传入一个 WatermarkStrategy 作为参数,这就是所谓的水位线生成策略 termarkStrategy包含了时间戳分配器TimestampAssigner和水位线生成器WatermarkGenerator
        stream.assignTimestampsAndWatermarks(new WatermarkStrategy<Event>() {
            @Override
            public WatermarkGenerator<Event> createWatermarkGenerator(WatermarkGeneratorSupplier.Context context) {
                return null;
            }

            @Override
            public TimestampAssigner<Event> createTimestampAssigner(TimestampAssignerSupplier.Context context) {
                return null;
            }
        });
  1. TimestampAssigner:主要负责从流中数据元素的某个字段中提取时间戳,并分配给元素。时间戳的分配是生成水位线的基础。
  2. WatermarkGenerator :主要负责按照既定的方式,基于时间戳生成水位线。在WatermarkGenerator 接口中,主要又有两个方法:onEvent()和 onPeriodicEmit()
  3. onEvent:每个事件(数据)到来都会调用的方法,它的参数有当前事件、时间戳,以及允许发出水位线的一个 WatermarkOutput,可以基于事件做各种操作
  4. onPeriodicEmit周期性调用的方法,可以由 WatermarkOutput 发出水位线。周期时间为处理时间,可以调用环境配置的setAutoWatermarkInterval()方法来设置,默认为200ms
env.getConfig().setAutoWatermarkInterval(60 * 1000L);

2.4 Flink 内置水位线生成器

  1. 水位线的设置离源越近越好,比较好控制,可以传递给下游。
  2. 这两个生成器可以通过调用 WatermarkStrategy 的静态辅助方法来创建。它们都是周期性生成水位线的,分别对应着处理有序流和乱序流的场景。
  3. 对于有序流,主要特点就是时间戳单调增长,所以永远不会出现迟到数据的问题。这是周期性生成水位线的最简单的场景,直接调用WatermarkStrategy.forMonotonousTimestamps()方法就可以实现。简单来说,就是直接拿当前最大的时间戳作为水位线就可以了。将数据中的timestamp字段提取出来,作为时间戳分配给数据元素;然后用内置的有序流水位线生成器构造出了生成策略。这样,提取出的数据时间戳,就是我们处理计算的事件时间。这里需要注意的是,时间戳和水位线的单位,必须都是毫秒。
  4. 由于乱序流中需要等待迟到数据到齐,所以必须设置一个固定量的延迟时间(Fixed Amount of Lateness)。这时生成水位线的时间戳,就是当前数据流中最大的时间戳减去延迟的结果,相当于把表调慢,当前时钟会滞后于数据的最大时间戳。调用 WatermarkStrategy. forBoundedOutOfOrderness()方法就可以实现。这个方法需要传入一个 maxOutOfOrderness 参数,表示“最大乱序程度”,它表示数据流中乱序数据时间戳的最大差值;如果我们能确定乱序程度,那么设置对应时间长度的延迟,就可以等到所有的乱序数据了。我们同样提取了timestamp字段作为时间戳,并且以 5 秒的延迟时间创建了处理乱序流的水位线生成器。事实上,有序流的水位线生成器本质上和乱序流是一样的,相当于延迟设为 0 的乱序流水位线生成器。
  5. 这里需要注意的是,乱序流中生成的水位线真正的时间戳,其实是当前最大时间戳 – 延迟时间 – 1,这里的单位是毫秒。为什么要减 1 毫秒呢?我们可以回想一下水位线的特点:时间戳为 t 的水位线,表示时间戳≤t 的数据全部到齐,不会再来了。如果考虑有序流,也就是延迟时间为 0 的情况,那么时间戳为 7 秒的数据到来时,之后其实是还有可能继续来 7 秒的数据的;所以生成的水位线不是 7 秒,而是 6 秒 999 毫秒,7 秒的数据还可以继续来。这一点可以在BoundedOutOfOrdernessWatermarks 的源码中明显地看到:
package com.atguigu.chapter06;

import com.atguigu.chapter05.Event;
import org.apache.flink.api.common.eventtime.SerializableTimestampAssigner;
import org.apache.flink.api.common.eventtime.WatermarkStrategy;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;

import java.time.Duration;

public class WatermarkTest {
    public static void main(String[] args) throws Exception{
        StreamExecutionEnvironment env	= StreamExecutionEnvironment.getExecutionEnvironment();
        env.setParallelism(1);

        DataStreamSource<Event> stream = env.fromElements(
                new Event("Mary", "./home", 1000L),
                new Event("Bob", "./cart", 2000L),
                new Event("Alice", "./prod?id=100", 3000L),
                new Event("Bob", "./prod?id=1", 3300L),
                new Event("Bob", "./home", 3500L),
                new Event("Alice", "./prod?id=200", 3000L),
                new Event("Bob", "./prod?id=2", 3800L),
                new Event("Bob", "./prod?id=3", 4200L)
        );

        // 有序的水位线生成
        stream.assignTimestampsAndWatermarks(
                WatermarkStrategy.<Event>forMonotonousTimestamps()
                        .withTimestampAssigner(new SerializableTimestampAssigner<Event>()
                        {
                            @Override
                            public long extractTimestamp(Event element, long recordTimestamp)
                            {
                                return element.timestamp;
                            }
                        })
        );


        // 乱序流水位线生成
        stream.assignTimestampsAndWatermarks(
                // 针对乱序流插入水位线,延迟时间设置为 5s
                WatermarkStrategy.<Event>forBoundedOutOfOrderness(Duration.ofSeconds(5))
                        .withTimestampAssigner(new SerializableTimestampAssigner<Event>() {
                               // 抽取时间戳的逻辑
                               @Override
                               public long extractTimestamp(Event element, long
                                       recordTimestamp) {
                                   return element.timestamp;
                               }
                        })
        ).print();

        env.execute();
    }
}

2.5 自定义水位线策略

  1. Flink 内置的水位线生成器就可以满足应用需求了。不过有时我们的业务逻辑可能非常复杂,这时对水位线生成的逻辑也有更高的要求,我们就必须自定义实现水位线策略WatermarkStrategy 了。
  2. 在 WatermarkStrategy 中,时间戳分配器 TimestampAssigner 都是大同小异的,指定字段提取时间戳就可以了;而不同策略的关键就在于 WatermarkGenerator 的实现。整体说来,Flink有两种不同的生成水位线的方式:一种是周期性的(Periodic),另一种是断点式的(Punctuated)。
    还记得 WatermarkGenerator 接口中的两个方法吗?——onEvent()和 onPeriodicEmit(),前者是在每个事件到来时调用,而后者由框架周期性调用。周期性调用的方法中发出水位线,自然就是周期性生成水位线;而在事件触发的方法中发出水位线,自然就是断点式生成了。两种方式的不同就集中体现在这两个方法的实现上。
  3. 周期性水位线生成器(Periodic Generator)周期性生成器一般是通过 onEvent()观察判断输入的事件,而在 onPeriodicEmit()里发出水位线。
  4. 我们在 onPeriodicEmit()里调用 output.emitWatermark(),就可以发出水位线了;这个方法由系统框架周期性地调用,默认 200ms 一次。所以水位线的时间戳是依赖当前已有数据的最大时间戳的(这里的实现与内置生成器类似,也是减去延迟时间再减 1),但具体什么时候生成与数据无关。
package com.atguigu.chapter06;

import com.atguigu.chapter05.ClickSource;
import com.atguigu.chapter05.Event;
import org.apache.flink.api.common.eventtime.*;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;

// 自定义水位线的产生
public class CustomWatermarkTest {
    public static void main(String[] args) throws Exception {

        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.setParallelism(1);

        env.addSource(new ClickSource())
            .assignTimestampsAndWatermarks(new CustomWatermarkStrategy()).print();

        env.execute();
    }


    public static class CustomWatermarkStrategy implements WatermarkStrategy<Event> {
        @Override
        public TimestampAssigner<Event>

        createTimestampAssigner(TimestampAssignerSupplier.Context context) {
            return new SerializableTimestampAssigner<Event>() {
                @Override
                public long extractTimestamp(Event element, long recordTimestamp) {
                    return element.timestamp; // 告诉程序数据源里的时间戳是哪一个字段
                }
            };
        }

        @Override
        public WatermarkGenerator<Event> createWatermarkGenerator(WatermarkGeneratorSupplier.Context context) {
            return new CustomPeriodicGenerator();
        }
    }


    public static class CustomPeriodicGenerator implements WatermarkGenerator<Event> {
        private Long delayTime = 5000L; // 延迟时间
        private Long maxTs = Long.MIN_VALUE + delayTime + 1L; // 观察到的最大时间戳

        @Override
        public void onEvent(Event event, long eventTimestamp, WatermarkOutput
                output) {
            // 每来一条数据就调用一次
            maxTs = Math.max(event.timestamp, maxTs); // 更新最大时间戳
        }

        @Override
        public void onPeriodicEmit(WatermarkOutput output) {
            // 发射水位线,默认 200ms 调用一次
            output.emitWatermark(new Watermark(maxTs - delayTime - 1L));
        }
    }
}
  1. 断点式水位线生成器(Punctuated Generator) 断点式生成器会不停地检测 onEvent()中的事件,当发现带有水位线信息的特殊事件时,就立即发出水位线。一般来说,断点式生成器不会通过onPeriodicEmit()发出水位线。自定义的断点式水位线生成器代码如下:
        public class CustomPunctuatedGenerator implements WatermarkGenerator<Event> {
            @Override
            public void onEvent(Event r, long eventTimestamp, WatermarkOutput output) {
                // 只有在遇到特定的 itemId 时,才发出水位线if (r.user.equals("Mary")) {
                output.emitWatermark(new Watermark(r.timestamp - 1));
            }
        }

            @Override
            public void onPeriodicEmit(WatermarkOutput output) {
                // 不需要做任何事情,因为我们在 onEvent 方法中发射了水位线
            }
        }
  1. 我们在onEvent()中判断当前事件的 user 字段,只有遇到Mary这个特殊的值时,才调用output.emitWatermark()发出水位线。这个过程是完全依靠事件来触发的,所以水位线的生成一定在某个数据到来之后。
  2. 自定义数据源中发送水位线。我们也可以在自定义的数据源中抽取事件时间,然后发送水位线。这里要注意的是,在自定义数据源中发送了水位线以后,就不能再在程序中使用 assignTimestampsAndWatermarks方法来生成水位线了 。 在自定义数据源中生成水位线和在程 序中使用assignTimestampsAndWatermarks方法生成水位线二者只能取其一。
import com.atguigu.chapter05.Event;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.source.SourceFunction;
import org.apache.flink.streaming.api.watermark.Watermark;
import java.util.Calendar;
import java.util.Random;

public class EmitWatermarkInSourceFunction {
    public static void main(String[] args) throws Exception {
        StreamExecutionEnvironment	env	= StreamExecutionEnvironment.getExecutionEnvironment();
        env.setParallelism(1);
        env.addSource(new ClickSourceWithWatermark()).print();
        env.execute();
    }

    // 泛型是数据源中的类型
    public static class ClickSourceWithWatermark implements SourceFunction<Event>
    {
        private boolean running = true;

        @Override
        public void run(SourceContext<Event> sourceContext) throws Exception {
            Random random = new Random();
            String[] userArr = {"Mary", "Bob", "Alice"};
            String[] urlArr = {"./home", "./cart", "./prod?id=1"};
            while (running) {
                long currTs = Calendar.getInstance().getTimeInMillis(); // 毫秒时间戳
                String username = userArr[random.nextInt(userArr.length)];
                String url	= urlArr[random.nextInt(urlArr.length)];
                Event event = new Event(username, url, currTs);
                // 使用 collectWithTimestamp 方法将数据发送出去,并指明数据中的时间戳的字段
                sourceContext.collectWithTimestamp(event, event.timestamp); // 发送水位线
                sourceContext.emitWatermark(new Watermark(event.timestamp - 1L)); Thread.sleep(1000L);
            }
        }

        @Override
        public void cancel() {
            running = false;
        }
    }
}
  1. 在自定义水位线中生成水位线相比 assignTimestampsAndWatermarks 方法更加灵活,可以任意的产生周期性的、非周期性的水位线,以及水位线的大小也完全由我们自定义。所以非常适合用来编写 Flink 的测试程序,测试 Flink 的各种各样的特性。

2.6 水位线的传递

  1. 我们知道水位线是数据流中插入的一个标记,用来表示事件时间的进展,它会随着数据一起在任务间传递。如果只是直通式(forward)的传输,那很简单,数据和水位线都是按照本身的顺序依次传递、依次处理的;一旦水位线到达了算子任务, 那么这个任务就会将它内部的时钟设为这个水位线的时间戳。
  2. 在这里,“任务的时钟”其实仍然是各自为政的,并没有统一的时钟。实际应用中往往上下游都有多个并行子任务,为了统一推进事件时间的进展,我们要求上游任务处理完水位线、时钟改变之后,要把当前的水位线再次发出,广播给所有的下游子任务。这样,后续任务就不需要依赖原始数据中的时间戳(经过转化处理后,数据可能已经改变了),也可以知道当前事件时间了。
  3. 可是还有另外一个问题,那就是在“重分区”(redistributing)的传输模式下,一个任务有可能会收到来自不同分区上游子任务的数据。而不同分区的子任务时钟并不同步,所以同一时刻发给下游任务的水位线可能并不相同。这时下游任务又该听谁的呢
  4. 这就要回到水位线定义的本质了:它表示的是“当前时间之前的数据,都已经到齐了”。这是一种保证,告诉下游任务“只要你接到这个水位线,就代表之后我不会再给你发更早的数据了,你可以放心做统计计算而不会遗漏数据”。所以如果一个任务收到了来自上游并行任务的不同的水位线,说明上游各个分区处理得有快有慢,进度各不相同比如上游有两个并行子任务都发来了水位线,一个是 5 秒,一个是 7 秒;这代表第一个并行任务已经处理完 5 秒之前的所有数据,而第二个并行任务处理到了 7 秒。那这时自己的时钟怎么确定呢?当然也要以“这之前的数据全部到齐”为标准。如果我们以较大的水位线 7 秒作为当前时间,那就表示“7 秒前的数据都已经处理完”,这显然不是事实/第一个上游分区才处理到 5 秒,5~7 秒的数据还会不停地发来;而如果以最小的水位线 5 秒作为当前时钟就不会有这个问题了,因为确实所有上游分区都已经处理完,不会再发 5 秒前的数据了。这让我们想到“木桶原理”:所有的上游并行任务就像围成木桶的一块块木板,它们中最短的那一块,决定了我们桶中的水位
    第三课 大数据技术之Fink1.13的实战学习-时间和窗口_第7张图片
  5. 我们可以用一个具体的例子,将水位线在任务间传递的过程完整梳理一遍。如图 6-12 所示,当前任务的上游,有四个并行子任务,所以会接收到来自四个分区的水位线;而下游有三个并行子任务,所以会向三个分区发出水位线。具体过程如下:
    • 上游并行子任务发来不同的水位线,当前任务会为每一个分区设置一个“分区水位线”,这是一个分区时钟;而当前任务自己的时钟,就是所有分区时钟里最小的那个。
    • 当有一个新的水位线(第一分区的 4)从上游传来时,当前任务会首先更新对应的分区时钟;然后再次判断所有分区时钟中的最小值,如果比之前大,说明事件时间有了进展,当前任务的时钟也就可以更新了。这里要注意,更新后的任务时钟,并不一定是新来的那个分区水位线,比如这里改变的是第一分区的时钟,但最小的分区时钟是第三分区的 3,于是当前任务时钟就推进到了 3。当时钟有进展时,当前任务就会将自己的时钟以水位线的形式,广播给下游所有子任务。
    • 再次收到新的水位线(第二分区的 7)后,执行同样的处理流程。首先将第二个分区时钟更新为 7,然后比较所有分区时钟;发现最小值没有变化,那么当前任务的时钟也不变,也不会向下游任务发出水位线。
    • 同样道理,当又一次收到新的水位线(第三分区的 6)之后,第三个分区时钟更新为6,同时所有分区时钟最小值变成了第一分区的 4,所以当前任务的时钟推进到 4,并发出时间戳为 4 的水位线,广播到下游各个分区任务。
  6. 水位线在上下游任务之间的传递,非常巧妙地避免了分布式系统中没有统一时钟的问题,每个任务都以“处理完之前所有数据”为标准来确定自己的时钟,就可以保证窗口处理的结果总是正确的。对于有多条流合并之后进行处理的场景,水位线传递的规则是类似的。

第三节 窗口的介绍

3.1 窗口的概念

  1. Flink 是一种流式计算引擎,主要是来处理无界数据流的,数据源源不断、无穷无尽。想要更加方便高效地处理无界流,一种方式就是将无限数据切割成有限的数据块进行处理,这就是所谓的窗口(Window)。
  2. 在 Flink 中, 窗口就是用来处理无界流的核心。我们很容易把窗口想象成一个固定位置的框,数据源源不断地流过来,到某个时间点窗口该关闭了,就停止收集数据、触发计算并输出结果。例如,我们定义一个时间窗口,每 10 秒统计一次数据,那么就相当于把窗口放在那里,从 0 秒开始收集数据;到 10 秒时,处理当前窗口内所有数据,输出一个结果,然后清空窗口继续收集数据;到 20 秒时,再对窗口内所有数据进行计算处理,输出结果;
    第三课 大数据技术之Fink1.13的实战学习-时间和窗口_第8张图片
  3. 这里注意为了明确数据划分到哪一个窗口,定义窗口都是包含起始时间、不包含结束时间的,用数学符号表示就是一个左闭右开的区间,例如 0~10 秒的窗口可以表示为[0, 10),这里单位为秒。
  4. 对于处理时间下的窗口而言,这样理解似乎没什么问题。因为窗口的关闭是基于系统时间的,赶不上这班车的数据,就只能坐下一班车了,0~10 秒的窗口关闭后,可能还有时间戳为 9 的数据会来,它就只能进入 10~20 秒的窗口了。这样会造成窗口处理结果的不准确。
  5. 然而如果我们采用事件时间语义,就会有些费解了。由于有乱序数据,我们需要设置一个延迟时间来等所有数据到齐。比如上面的例子中,我们可以设置延迟时间为 2 秒,这样 0~10 秒的窗口会在时间戳为 12 的数据到来之后,才真正关闭计算输出结果,这样就可以正常包含迟到的 9 秒数据了。但是这样一来,0~10 秒的窗口不光包含了迟到的 9 秒数据,连 11 秒和 12 秒的数据也包含进去了。我们为了正确处理迟到数据,结果把早到的数据划分到了错误的窗口——最终结果都是错误的。
  6. 所以在 Flink 中,窗口其实并不是一个“框”,流进来的数据被框住了就只能进这一个窗口。相比之下,我们应该把窗口理解成一个“桶”。在 Flink 中,窗口可以把流切割成有限大小的多个存储桶;每个数据都会分发到对应的桶中,当到达窗口结束时间时,就对每个桶中收集的数据进行计算处理。
    第三课 大数据技术之Fink1.13的实战学习-时间和窗口_第9张图片
  7. 我们可以梳理一下事件时间语义下,之前例子中窗口的处理过程:
    • 第一个数据时间戳为 2,判断之后创建第一个窗口[0, 10),并将 2 秒数据保存进去;
    • 后续数据依次到来,时间戳均在 [0, 10)范围内,所以全部保存进第一个窗口;
    • 11 秒数据到来,判断它不属于[0, 10)窗口,所以创建第二个窗口[10, 20),并将 11秒的数据保存进去。由于水位线设置延迟时间为 2 秒,所以现在的时钟是 9 秒,第一个窗口也没有到关闭时间;
    • 之后又有 9 秒数据到来,同样进入[0, 10)窗口中;
    • 12 秒数据到来,判断属于[10, 20)窗口,保存进去。这时产生的水位线推进到了 10秒,所以 [0, 10)窗口应该关闭了。第一个窗口收集到了所有的 7 个数据,进行处理计算后输出结果,并将窗口关闭销毁;
    • 之后的数据依次进入第二个窗口,遇到 20 秒的数据时会创建第三个窗口[20,30)并将数据保存进去;遇到 22 秒数据时,水位线达到了 20 秒,第二个窗口触发计算,输出结果并关闭。
  8. 这里需要注意的是,Flink 中窗口并不是静态准备好的,而是动态创建。当有落在这个窗口区间范围的数据达到时,才创建对应的窗口。另外,这里我们认为到达窗口结束时间时,窗口就触发计算并关闭,事实上触发计算和窗口关闭两个行为也可以分开。

3.2 窗口的分类-按照驱动类型

  1. 按照驱动类型分类,窗口本身是截取有界数据的一种方式,所以窗口一个非常重要的信息其实就是怎样截取数据。换句话说,就是以什么标准来开始和结束数据的截取,我们把它叫作窗口的驱动类型。
  2. 我们最容易想到的就是按照时间段去截取数据,这种窗口就叫作时间窗口。这在实际应用中最常见,之前所举的例子也都是时间窗口。除了由时间驱动之外,窗口其实也可以由数据驱动,也就是说按照固定的个数,来截取一段数据集,这种窗口叫作计数窗口
    第三课 大数据技术之Fink1.13的实战学习-时间和窗口_第10张图片
  3. 时间窗口以时间点来定义窗口的开始和结束,所以截取出的就是某一时间段的数据。到达结束时间时,窗口不再收集数据,触发计算输出结果,并将窗口关闭销毁。所以可以说基本思路就是定点发车。用结束时间减去开始时间,得到这段时间的长度,就是窗口的大小。这里的时间可以是不同的语义,所以我们可以定义处理时间窗口和事件时间窗口。Flink 中有一个专门的类来表示时间窗口,名称就叫作 TimeWindow。这个类只有两个私有属性:start 和 end,表示窗口的开始和结束的时间戳,单位为毫秒。
private final long start;
private final long end;
  1. 我们可以调用公有的 getStart()和 getEnd()方法直接获取这两个时间戳。另外,TimeWindow
    还提供了一个 maxTimestamp()方法,用来获取窗口中能够包含数据的最大时间戳。
public long maxTimestamp() {
	return end - 1;
}
  1. 很明显,窗口中的数据,最大允许的时间戳就是 end - 1,这也就代表了我们定义的窗口时间范围都是左闭右开的区间[start,end)。对于事件时间语义,窗口的关闭需要水位线推进到窗口的结束时间;而我们知道,水位线 Watermark(t)代表的含义是时间戳小于等于 t 的数据都已到齐,不会再来了。为了简化分析,我们先不考虑乱序流设置的延迟时间。那么当新到一个时间戳为 t 的数据时,当前水位线的时间推进到了 t – 1。所以当时间戳为 end 的数据到来时,水位线推进到了 end - 1;如果我们把窗口定义为不包含 end,那么当前的水位线刚好就是 maxTimestamp,表示窗口能够包含的数据都已经到齐,我们就可以直接关闭窗口了。所以有了这样的定义,我们就不需要再去考虑那烦人的减一了,直接看到时间戳为 end 的数据,就关闭对应的窗口。如果为乱序流设置了水位线延迟时间 delay,也只需要等到时间戳为 end + delay 的数据,就可以关窗了。为了更容易理解,本书中我们对水位线的分析,统一不再考虑“减一”的问题。
  2. 计数窗口基于元素的个数来截取数据,到达固定的个数时就触发计算并关闭窗口。这相当于座位有限、人满就发车,是否发车与时间无关。每个窗口截取数据的个数,就是窗口的大小。计数窗口相比时间窗口就更加简单,我们只需指定窗口大小,就可以把数据分配到对应的窗口中了。在 Flink 内部也并没有对应的类来表示计数窗口,底层是通过全局窗口来实现的。
  3. 时间窗口和计数窗口,只是对窗口的一个大致划分;在具体应用时,还需要定义更加精细的规则,来控制数据应该划分到哪个窗口中去。不同的分配数据的方式,就可以有不同的功能应用。

3.3 窗口的分类-分配数据的规则

  1. 根据分配数据的规则,窗口的具体实现可以分为 4 类:滚动窗口(Tumbling Window)、滑动窗口(Sliding Window)、会话窗口(Session Window),以及全局窗口(Global Window)
  2. 滚动窗口, 滚动窗口有固定的大小,是一种对数据进行均匀切片的划分方式。窗口之间没有重叠,也不会有间隔,是首尾相接的状态。如果我们把多个窗口的创建,看作一个窗口的运动,那就好像它在不停地向前翻滚一样。这是最简单的窗口形式,我们之前所举的例子都是滚动窗口。也正是因为滚动窗口是无缝衔接,所以每个数据都会被分配到一个窗口,而且只会属于一个窗口。滚动窗口可以基于时间定义,也可以基于数据个数定义;需要的参数只有一个,就是窗口的大小。比如我们可以定义一个长度为 1 小时的滚动时间窗口,那么每个小时就会进行一次统计;或者定义一个长度为 10 的滚动计数窗口,就会每 10 个数进行一次统计。
    第三课 大数据技术之Fink1.13的实战学习-时间和窗口_第11张图片
  3. 小圆点表示流中的数据,我们对数据按照 userId 做了分区。当固定了窗口大小之后,所有分区的窗口划分都是一致的;窗口没有重叠,每个数据只属于一个窗口。滚动窗口应用非常广泛,它可以对每个时间段做聚合统计,很多 BI 分析指标都可以用它来实现
  4. 滑动窗口与滚动窗口类似,滑动窗口的大小也是固定的。区别在于,窗口之间并不是首尾相接的,而是可以错开一定的位置。如果看作一个窗口的运动,那么就像是向前小步滑动一样。既然是向前滑动,那么每一步滑多远,就也是可以控制的。所以定义滑动窗口的参数有两个:除去窗口大小之外,还有一个滑动步长,它其实就代表了窗口计算的频率。滑动的距离代表了下个窗口开始的时间间隔,而窗口大小是固定的,所以也就是两个窗口结束时间的间隔;窗口在结束时间触发计算输出结果,那么滑动步长就代表了计算频率。例如,我们定义一个长度为 1 小时、滑动步长为 5 分钟的滑动窗口,那么就会统计 1 小时内的数据,每 5 分钟统计一次。同样,滑动窗口可以基于时间定义,也可以基于数据个数定义。
    第三课 大数据技术之Fink1.13的实战学习-时间和窗口_第12张图片
  5. 我们可以看到,当滑动步长小于窗口大小时,滑动窗口就会出现重叠,这时数据也可能会被同时分配到多个窗口中。而具体的个数,就由窗口大小和滑动步长的比值(size/slide)来决定。滑动步长刚好是窗口大小的一半,那么每个数据都会被分配到 2 个窗口里。比如我们定义的窗口长度为 1 小时、滑动步长为 30 分钟,那么对于 8 点 55 分的数据,应该同时属于[8 点, 9 点)和[8 点半, 9 点半)两个窗口;而对于 8 点 10 分的数据,则同时属于[8点, 9 点)和[7 点半, 8 点半)两个窗口。
  6. 所以,滑动窗口其实是固定大小窗口的更广义的一种形式;换句话说,滚动窗口也可以看作是一种特殊的滑动窗口, 窗口大小等于滑动步长。当然,我们也可以定义滑动步长大于窗口大小,这样的话就会出现窗口不重叠、但会有间隔的情况;这时有些数据不属于任何一个窗口,就会出现遗漏统计。所以一般情况下,我们会让滑动步长小于窗口大小,并尽量设置为整数倍的关系。
  7. 在一些场景中,可能需要统计最近一段时间内的指标,而结果的输出频率要求又很高,甚至要求实时更新,比如股票价格的 24 小时涨跌幅统计,或者基于一段时间内行为检测的异常报警。这时滑动窗口无疑就是很好的实现方式
  8. 会话窗口顾名思义,是基于会话来对数据进行分组的。这里的会话类似Web 应用中 session 的概念,不过并不表示两端的通讯过程,而是借用会话超时失效的机制来描述窗口。对于会话窗口而言,最重要的参数就是这段时间的长度(size),它表示会话的超时时间,也就是两个会话窗口之间的最小距离。如果相邻两个数据到来的时间间隔(Gap)小于指定的大小(size),那说明还在保持会话,它们就属于同一个窗口;如果 gap 大于 size,那么新来的数据就应该属于新的会话窗口,而前一个窗口就应该关闭了。在具体实现上,我们可以设置静态固定的大小(size),也可以通过一个自定义的提取器(gap extractor)动态提取最小间隔 gap 的值。
    第三课 大数据技术之Fink1.13的实战学习-时间和窗口_第13张图片
  9. 考虑到事件时间语义下的乱序流,这里又会有一些麻烦。相邻两个数据的时间间隔 gap大于指定的 size,我们认为它们属于两个会话窗口,前一个窗口就关闭;可在数据乱序的情况下,可能会有迟到数据,它的时间戳刚好是在之前的两个数据之间的。这样一来,之前我们判断的间隔中就不是“一直没有数据”,而缩小后的间隔有可能会比 size 还要小。这表示三个数据本来应该属于同一个会话窗口。
  10. 所以在 Flink 底层,对会话窗口的处理会比较特殊:每来一个新的数据,都会创建一个新的会话窗口;然后判断已有窗口之间的距离,如果小于给定的 size,就对它们进行合并(merge)操作。在 Window 算子中,对会话窗口会有单独的处理逻辑。
  11. 我们可以看到,与前两种窗口不同,会话窗口的长度不固定,起始和结束时间也是不确定的,各个分区之间窗口没有任何关联。会话窗口之间一定是不会重叠的,而且会留有至少为 size 的间隔(session gap)。在一些类似保持会话的场景下,往往可以使用会话窗口来进行数据的处理统计。
  12. 全局窗口,还有一类比较通用的窗口,就是全局窗口。这种窗口全局有效,会把相同 key 的所有数据都分配到同一个窗口中;说直白一点,就跟没分窗口一样。无界流的数据永无止尽,所以这种窗口也没有结束的时候,默认是不会做触发计算的。如果希望它能对数据进行计算处理,还需要自定义“触发器”(Trigger)。全局窗口没有结束的时间点,所以一般在希望做更加灵活的窗口处理时自定义使用。Flink 中的计数窗口(Count Window),底层就是用全局窗口实现的。

第四节 窗口的使用

4.1 窗口API概览

  1. 按键分区(Keyed)和非按键分区(Non-Keyed)。在定义窗口操作之前,首先需要确定,到底是基于按键分区(Keyed)的数据流 KeyedStream来开窗,还是直接在没有按键分区的DataStream 上开窗。也就是说,在调用窗口算子之前,是否有 keyBy 操作
  2. 按键分区窗口(Keyed Windows)经过按键分区 keyBy 操作后,数据流会按照 key 被分为多条逻辑流(logical streams),这就是 KeyedStream。基于 KeyedStream 进行窗口操作时, 窗口计算会在多个并行子任务上同时执行。相同 key 的数据会被发送到同一个并行子任务,而窗口操作会基于每个 key 进行单独的处理。所以可以认为,每个 key 上都定义了一组窗口,各自独立地进行统计计算。我们需要先对 DataStream 调用.keyBy() 进行按键分区,然后再调window()定义窗口。
stream.keyBy(...)
	.window(...)
  1. 非按键分区(Non-Keyed Windows),如果没有进行 keyBy,那么原始的 DataStream 就不会分成多条逻辑流。这时窗口逻辑只能在一个任务(task)上执行,就相当于并行度变成了 1。所以在实际应用中一般不推荐使用这种方式。在代码中,直接基于 DataStream 调用.windowAll()定义窗口。这里需要注意的是,对于非按键分区的窗口操作,手动调大窗口算子的并行度也是无效的,windowAll 本身就是一个非并行的操作。
stream.windowAll(...)
  1. 代码中窗口 API 的调用。有了前置的基础,接下来我们就可以真正在代码中实现一个窗口操作了。简单来说,窗口操作主要有两个部分:窗口分配器(Window Assigners)和窗口函数(Window Functions)
stream.keyBy(<key selector>)
	.window(<window assigner>) 
	.aggregate(<window function>)
  1. 其中.window()方法需要传入一个窗口分配器,它指明了窗口的类型;而后面的.aggregate()方法传入一个窗口函数作为参数,它用来定义窗口具体的处理逻辑。窗口分配器有各种形式,而窗口函数的调用方法也不只.aggregate()一种。
  2. 另外,在实际应用中,一般都需要并行执行任务,非按键分区很少用到,所以我们之后都以按键分区窗口为例;如果想要实现非按键分区窗口,只要前面不做 keyBy,后面调用.window()时直接换成.windowAll()就可以了。

4.2 窗口分配器

  1. 定义窗口分配器(Window Assigners)是构建窗口算子的第一步,它的作用就是定义数据应该被“分配”到哪个窗口。我们知道,窗口分配数据的规则,其实就对应着不同的窗口类型。所以可以说,窗口分配器其实就是在指定窗口的类型。
  2. 窗口分配器最通用的定义方式,就是调用.window() 方法。这个方法需要传入一个WindowAssigner 作为参数,返回 WindowedStream。如果是非按键分区窗口,那么直接调用windowAll()方法,同样传入一个 WindowAssigner,返回的是 AllWindowedStream。
  3. 窗口按照驱动类型可以分成时间窗口和计数窗口,而按照具体的分配规则,又有滚动窗口、滑动窗口、会话窗口、全局窗口四种。除去需要自定义的全局窗口外,其他常用的类型 Flink中都给出了内置的分配器实现,我们可以方便地调用实现各种需求。
  4. 时间窗口是最常用的窗口类型,又可以细分为滚动、滑动和会话三种。在较早的版本中,可以直接调用.timeWindow()来定义时间窗口;这种方式非常简洁,但使用事件时间语义时需要另外声明,程序员往往因为忘记这点而导致运行结果错误。所以在1.12 版本之后,这种方式已经被弃用了,标准的声明方式就是直接调用.window(),在里面传入对应时间语义下的窗口分配器。这样一来,我们不需要专门定义时间语义,默认就是事件时间;如果想用处理时间,那么在这里传入处理时间的窗口分配器就可以了。下面我们列出了每种情况的代码实现。
  5. 滚动处理时间窗口窗口分配器由类 TumblingProcessingTimeWindows 提供,需要调用它的静态方法.of()。这里.of()方法需要传入一个 Time 类型的参数 size,表示滚动窗口的大小,我们这里创建了一个长度为 5 秒的滚动窗口。另外,.of()还有一个重载方法,可以传入两个 Time 类型的参数:size 和 offset。第一个参数当然还是窗口大小,第二个参数则表示窗口起始点的偏移量。
.window(TumblingProcessingTimeWindows.of(Time.days(1), Time.hours(-8)))
  1. 滑动处理时间窗口,窗口分配器由类 SlidingProcessingTimeWindows 提供,同样需要调用它的静态方法.of()。这里.of()方法需要传入两个 Time 类型的参数:size 和 slide,前者表示滑动窗口的大小,后者表示滑动窗口的滑动步长。我们这里创建了一个长度为 10 秒、滑动步长为 5 秒的滑动窗口。滑动窗口同样可以追加第三个参数,用于指定窗口起始点的偏移量,用法与滚动窗口完全一致。
stream.keyBy(...)
.window(SlidingProcessingTimeWindows.of(Time.seconds(10), Time.seconds(5))) .aggregate(...)
  1. 处理时间会话窗口。窗口分配器由类 ProcessingTimeSessionWindows 提供,需要调用它的静态方法.withGap()或者.withDynamicGap()。
    • 这里.withGap()方法需要传入一个 Time 类型的参数 size,表示会话的超时时间,也就是最小间隔 session gap。我们这里创建了静态会话超时时间为 10 秒的会话窗口。
    • 这里.withDynamicGap()方法需要传入一个 SessionWindowTimeGapExtractor 作为参数,用来定义 session gap 的动态提取逻辑。在这里,我们提取了数据元素的第一个字段,用它的长度乘以 1000 作为会话超时的间隔。
stream.keyBy(...)
.window(ProcessingTimeSessionWindows.withGap(Time.seconds(10)))
.aggregate(...)
    
.window(ProcessingTimeSessionWindows.withDynamicGap(new
SessionWindowTimeGapExtractor<Tuple2<String, Long>>() {
    @Override
    public long extract(Tuple2<String, Long> element) {
    // 提取 session gap 值返回, 单位毫秒return element.f0.length() * 1000;
    }
}))
  1. 滚动事件时间窗口窗口分配器由类 TumblingEventTimeWindows 提供,用法与滚动处理事件窗口完全一致。这里.of()方法也可以传入第二个参数 offset,用于设置窗口起始点的偏移量。
stream.keyBy(...)
.window(TumblingEventTimeWindows.of(Time.seconds(5))) .aggregate(...)
  1. 滑动事件时间窗口。窗口分配器由类 SlidingEventTimeWindows 提供,用法与滑动处理事件窗口完全一致。
stream.keyBy(...)
.window(SlidingEventTimeWindows.of(Time.seconds(10), Time.seconds(5))) .aggregate(...)
  1. 事件时间会话窗口。窗口分配器由类 EventTimeSessionWindows 提供,用法与处理事件会话窗口完全一致。
stream.keyBy(...)
.window(EventTimeSessionWindows.withGap(Time.seconds(10))) .aggregate(...)
  1. 计数窗口概念非常简单,本身底层是基于全局窗口(Global Window)实现的。Flink 为我们提供了非常方便的接口:直接调用.countWindow()方法。根据分配规则的不同,又可以分为滚动计数窗口和滑动计数窗口两类,下面我们就来看它们的具体实现。
// 滚动计数窗口只需要传入一个长整型的参数 size,表示窗口的大小。我们定义了一个长度为 10 的滚动计数窗口,当窗口中元素数量达到 10 的时候,就会触发计算执行并关闭窗口。
stream.keyBy(...)
.countWindow(10)

// 滑动计数窗口与滚动计数窗口类似,不过需要在.countWindow()调用时传入两个参数:size 和 slide,前者表示窗口大小,后者表示滑动步长。
stream.keyBy(...)
// 我们定义了一个长度为 10、滑动步长为 3 的滑动计数窗口。每个窗口统计 10 个数据,每隔 3 个数据就统计输出一次结果。
.countWindow(103)

  1. 全局窗口全局窗口是计数窗口的底层实现,一般在需要自定义窗口时使用。它的定义同样是直接调用.window(),分配器由 GlobalWindows 类提供。需要注意使用全局窗口,必须自行定义触发器才能实现窗口计算,否则起不到任何作用
stream.keyBy(...)
.window(GlobalWindows.create());

4.3 窗口函数

  1. 定义了窗口分配器,我们只是知道了数据属于哪个窗口,可以将数据收集起来了;至于收
    集起来到底要做什么,其实还完全没有头绪。所以在窗口分配器之后,必须再接上一个定义窗
    口如何进行计算的操作,这就是所谓的窗口函数window functions。

  2. 经窗口分配器处理之后,数据可以分配到对应的窗口中,而数据流经过转换得到的数据类
    型是WindowedStream。这个类型并不是DataStream,所以并不能直接进行其他转换,而必须进一步调用窗口函数,对收集到的数据进行处理计算之后,才能最终再次得到 DataStream
    第三课 大数据技术之Fink1.13的实战学习-时间和窗口_第14张图片

  3. 窗口函数定义了要对窗口中收集的数据做的计算操作,根据处理的方式可以分为两类:增量聚合函数和全窗口函数

4.3.1 增量聚合函数-ReduceFunction
  1. ** 窗口将数据收集起来,最基本的处理操作当然就是进行聚合,每来一条数据就在之前的结果上聚合一次,这就是增量聚合**。窗口对无限流的切分,可以看作得到了一个有界数据集。如果我们等到所有数据都收集齐,在窗口到了结束时间要输出结果的一瞬间再去进行聚合,显然就不够高效了。这相当于真的在用批处理的思路来做实时流处理。
  2. 为了提高实时性,我们可以再次将流处理的思路发扬光大:就像 DataStream 的简单聚合一样,每来一条数据就立即进行计算,中间只要保持一个简单的聚合状态就可以了;区别只是在于不立即输出结果,而是要等到窗口结束时间。等到窗口到了结束时间需要输出计算结果的时候,我们只需要拿出之前聚合的状态直接输出,这无疑就大大提高了程序运行的效率和实时性。
  3. 典型的增量聚合函数有两个:ReduceFunction 和 AggregateFunction
  4. 归约函数(ReduceFunction),最基本的聚合方式就是归约(reduce)。我们在基本转换的聚合算子中介绍过 reduce 的用法,窗口的归约聚合也非常类似,就是将窗口中收集到的数据两两进行归约。当我们进行流处理时,就是要保存一个状态;每来一个新的数据,就和之前的聚合状态做归约,这样就实现了增量式的聚合。
  5. 窗口函数中也提供了 ReduceFunction:只要基于 WindowedStream 调用.reduce()方法,然后传入 ReduceFunction 作为参数,就可以指定以归约两个元素的方式去对窗口中数据进行聚合了。这里的 ReduceFunction 其实与简单聚合时用到的 ReduceFunction 是同一个函数类接口,所以使用方式也是完全一样的。
  6. ReduceFunction 中需要重写一个 reduce 方法,它的两个参数代表输入的两个元素,而归约最终输出结果的数据类型,与输入的数据类型必须保持一致。也就是说,中间聚合的状态和输出的结果,都和输入的数据类型是一样的。
import com.atguigu.chapter05.Event;
import org.apache.flink.api.common.eventtime.SerializableTimestampAssigner;
import org.apache.flink.api.common.eventtime.WatermarkStrategy;
import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.api.common.functions.ReduceFunction;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.windowing.assigners.TumblingEventTimeWindows;
import org.apache.flink.streaming.api.windowing.time.Time;

import java.time.Duration;

public class WindowTest {

    public static void main(String[] args) throws Exception {
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.setParallelism(1);

// 这里注意: assignTimestampsAndWatermarks直接跟在这里, 不要单独去写。会报错Record has Long.MIN_VALUE timestamp (= no timestamp marker). Is the time characteristic set to 'ProcessingTime', or did you forget to call 'DataStream.assignTimestampsAndWatermarks(...)'?
        SingleOutputStreamOperator<Event> stream = env.fromElements(
                new Event("Mary", "./home", 1000L),
                new Event("Bob", "./cart", 2000L),
                new Event("Alice", "./prod?id=100", 3000L),
                new Event("Bob", "./prod?id=1", 3300L),
                new Event("Bob", "./home", 3500L),
                new Event("Alice", "./prod?id=200", 3000L),
                new Event("Bob", "./prod?id=2", 3800L),
                new Event("Bob", "./prod?id=3", 4200L)
        )
        // 乱序流水位线生成
        .assignTimestampsAndWatermarks(
                // 针对乱序流插入水位线,延迟时间设置为 5s
                WatermarkStrategy.<Event>forBoundedOutOfOrderness(Duration.ofSeconds(5))
                        .withTimestampAssigner(new SerializableTimestampAssigner<Event>() {
                            // 抽取时间戳的逻辑
                            @Override
                            public long extractTimestamp(Event element, long recordTimestamp) {
                                return element.timestamp;
                            }
                        })
        );

        stream.map(new MapFunction<Event, Tuple2<String, Long>>() {
            @Override
            public Tuple2<String, Long> map(Event value) throws Exception {
                // 将数据转换成二元组,方便计算
                return Tuple2.of(value.user, 1L);
            }
        }).keyBy(data -> data.f0)
                .window(TumblingEventTimeWindows.of(Time.seconds(5))) // 滚动事件时间窗口
                //.window(SlidingEventTimeWindows.of(Time.hours(1), Time.minutes(5))) // 滑动事件时间窗口
                //  .window(EventTimeSessionWindows.withGap(Time.seconds(2))) // 事件时间会话窗口
                // .countWindow(10, 2) // 滑动计数窗口
                .reduce((ReduceFunction<Tuple2<String, Long>>) (value1, value2) -> {
                    // 定义累加规则,窗口闭合时,向下游发送累加结果
                    return Tuple2.of(value1.f0, value1.f1 + value2.f1);
                }).print();

        env.execute();
    }
}
  1. 代码中我们对每个用户的行为数据进行了开窗统计。与 word count 逻辑类似,首先将数据转换成(user, count)的二元组形式(类型为 Tuple2),每条数据对应的初始 count值都是 1;然后按照用户 id 分组,在处理时间下开滚动窗口,统计每 5 秒内的用户行为数量。对于窗口的计算,我们用 ReduceFunction 对 count 值做了增量聚合:窗口中会将当前的总 count值保存成一个归约状态,每来一条数据,就会调用内部的 reduce 方法,将新数据中的 count值叠加到状态上,并得到新的状态保存起来。等到了 5 秒窗口的结束时间,就把归约好的状态直接输出。这里需要注意,我们经过窗口聚合转换输出的数据,数据类型依然是二元组 Tuple2
4.3.2 增量聚合函数- AggregateFunction
  1. ReduceFunction 可以解决大多数归约聚合的问题,但是这个接口有一个限制,就是聚合状态的类型、输出结果的类型都必须和输入数据类型一样。这就迫使我们必须在聚合前,先将数据转换成预期结果类型;而在有些情况下,还需要对状态进行进一步处理才能得到输出结果,这时它们的类型可能不同,使用 ReduceFunction 就会非常麻烦。
  2. 如果我们希望计算一组数据的平均值,应该怎样做聚合呢?很明显,这时我们需要计算两个状态量:数据的总和,以及数据的个数,而最终输出结果是两者的商。如果用ReduceFunction,那么我们应该先把数据转换成二元组(sum, count)的形式,然后进行归约聚合,最后再将元组的两个元素相除转换得到最后的平均值。本来应该只是一个任务,可我们却需要 map-reduce-map 三步操作,这显然不够高效。
  3. 于是自然可以想到,如果取消类型一致的限制,让输入数据、中间状态、输出结果三者类型都可以不同,不就可以一步直接搞定了吗?Flink 的 Window API 中的 aggregate 就提供了这样的操作。直接基于 WindowedStream 调用.aggregate() 方法,就可以定义更加灵活的窗口聚合操作。这个方法需要传入一个AggregateFunction 的实现类作为参数。AggregateFunction 在源码中的定义如下:
public interface AggregateFunction<IN, ACC, OUT> extends Function, Serializable {
	ACC createAccumulator();
	ACC add(IN value, ACC accumulator);
    OUT getResult(ACC accumulator);
	ACC merge(ACC a, ACC b);
}
  1. AggregateFunction 可以看作是 ReduceFunction 的通用版本,这里有三种类型:输入类型、累加器类型和输出类型。输入类型 IN 就是输入流中元素的数据类型;累加器类型 ACC 则是我们进行聚合的中间状态类型;而输出类型当然就是最终计算结果的类型了。接口中有四个方法:
    • createAccumulator():创建一个累加器,这就是为聚合创建了一个初始状态,每个聚合任务只会调用一次。
    • add():将输入的元素添加到累加器中。这就是基于聚合状态,对新来的数据进行进一步聚合的过程。方法传入两个参数:当前新到的数据 value,和当前的累加器accumulator;返回一个新的累加器值,也就是对聚合状态进行更新。每条数据到来之后都会调用这个方法。
    • getResult():从累加器中提取聚合的输出结果。也就是说,我们可以定义多个状态,然后再基于这些聚合的状态计算出一个结果进行输出。比如之前我们提到的计算平均值,就可以把 sum 和 count 作为状态放入累加器,而在调用这个方法时相除得到最终结果。这个方法只在窗口要输出结果时调用。
    • merge():合并两个累加器,并将合并后的状态作为一个累加器返回。这个方法只在需要合并窗口的场景下才会被调用;最常见的合并窗口(Merging Window)的场景就是会话窗口(Session Windows)。
  2. 所以可以看到,AggregateFunction 的工作原理是:首先调用 createAccumulator()为任务初始化一个状态(累加器);而后每来一个数据就调用一次 add()方法,对数据进行聚合,得到的结果保存在状态中;等到了窗口需要输出时,再调用 getResult()方法得到计算结果。与 ReduceFunction 相同,AggregateFunction 也是增量式的聚合;而由于输入、中间状态、输出的类型可以不同,使得应用更加灵活方便。
  3. 下面来看一个具体例子。我们知道,在电商网站中,PV(页面浏览量)和 UV(独立访客数)是非常重要的两个流量指标。一般来说,PV 统计的是所有的点击量;而对用户 id 进行去重之后,得到的就是 UV。所以有时我们会用 PV/UV 这个比值,来表示人均重复访问量,也就是平均每个用户会访问多少次页面,这在一定程度上代表了用户的粘度。
import com.atguigu.chapter05.ClickSource;
import com.atguigu.chapter05.Event;
import org.apache.flink.api.common.eventtime.SerializableTimestampAssigner;
import org.apache.flink.api.common.eventtime.WatermarkStrategy;
import org.apache.flink.api.common.functions.AggregateFunction;

import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.windowing.assigners.SlidingEventTimeWindows;
import org.apache.flink.streaming.api.windowing.time.Time;

import java.util.HashSet;

// 开窗统计PV和UV, 计算平均用户活跃度
public class WindowAggregateTest {
    public static void main(String[] args) throws Exception {
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.setParallelism(1);



        SingleOutputStreamOperator<Event> stream = env.addSource(new ClickSource())
                .assignTimestampsAndWatermarks(WatermarkStrategy.<Event>forMonotonousTimestamps()
                        .withTimestampAssigner(new SerializableTimestampAssigner<Event>() {
                            @Override
                            public long extractTimestamp(Event element, long recordTimestamp) {
                                return element.timestamp;
                            }
                        }));

        // 所有数据设置相同的key,发送到同一个分区统计PV和UV,再相除
        stream.keyBy(data -> true)
                .window(SlidingEventTimeWindows.of(Time.seconds(10), Time.seconds(2)))
                .aggregate(new AvgPv())
                .print();


        env.execute();
    }

    public static class AvgPv implements AggregateFunction<Event, Tuple2<HashSet<String>, Long>, Double> {
        @Override
        public Tuple2<HashSet<String>, Long> createAccumulator() {
            // 创建累加器
            return Tuple2.of(new HashSet<String>(), 0L);
        }

        @Override
        public Tuple2<HashSet<String>, Long> add(Event value, Tuple2<HashSet<String>, Long> accumulator) {
            // 属于本窗口的数据来一条累加一次,并返回累加器
            accumulator.f0.add(value.user);
            return Tuple2.of(accumulator.f0, accumulator.f1 + 1L);
        }

        @Override
        public Double getResult(Tuple2<HashSet<String>, Long> accumulator) {
            // 窗口闭合时,增量聚合结束,将计算结果发送到下游
            return (double) accumulator.f1 / accumulator.f0.size();
        }

        @Override
        public Tuple2<HashSet<String>, Long> merge(Tuple2<HashSet<String>, Long> a, Tuple2<HashSet<String>, Long> b) {
            return null;
        }
    }
}
  1. 代码中我们创建了事件时间滑动窗口,统计 10 秒钟的“人均 PV”,每 2 秒统计一次。由于聚合的状态还需要做处理计算,因此窗口聚合时使用了更加灵活的 AggregateFunction。为了统计 UV,我们用一个 HashSet 保存所有出现过的用户 id,实现自动去重;而 PV 的统计则类似一个计数器,每来一个数据加一就可以了。所以这里的状态,定义为包含一个 HashSet 和一个 count 值的二元组(Tuple2, Long>),每来一条数据,就将 user 存入 HashSet,同时 count 加1。这里的 count 就是 PV,而 HashSet 中元素的个数(size)就是 UV;所以最终窗口的输出结果,就是它们的比值, 人均活跃度。
  2. 这里没有涉及会话窗口,所以 merge()方法可以不做任何操作。Flink 也为窗口的聚合提供了一系列预定义的简单聚合方法,可以直接基于WindowedStream调用。主要包括.sum()/max()/maxBy()/min()/minBy(),与 KeyedStream 的简单聚合非常相似。它们的底层,其实都是通过AggregateFunction来实现的。
  3. 通过 reduceFunctionAggregateFunction我们可以发现,增量聚合函数其实就是在用流处理的思路来处理有界数据集,核心是保持一个聚合状态,当数据到来时不停地更新状态。这就是 Flink 所谓的“有状态的流处理”,通过这种方式可以极大地提高程序运行的效率,所以在实际应用中最为常见。
4.3.3 全窗口函数-WindowFunction
  1. 窗口操作中的另一大类就是全窗口函数。与增量聚合函数不同,全窗口函数需要先收集窗口中的数据,并在内部缓存起来,等到窗口要输出结果的时候再取出数据进行计算
  2. 很明显,这就是典型的批处理思路了先攒数据,等一批都到齐了再正式启动处理流程。这样做毫无疑问是低效的:因为窗口全部的计算任务都积压在了要输出结果的那一瞬间,而在之前收集数据的漫长过程中却无所事事。
  3. 那为什么还需要有全窗口函数呢?这是因为有些场景下,我们要做的计算必须基于全部的数据才有效,这时做增量聚合就没什么意义了;另外,输出的结果有可能要包含上下文中的一些信息(比如窗口的起始时间),这是增量聚合函数做不到的。所以,我们还需要有更丰富的窗口计算方式,这就可以用全窗口函数来实现。
  4. 在 Flink 中,全窗口函数也有两种:WindowFunction和ProcessWindowFunction。但现在WindowFunction几乎已经弃用了,ProcessWindowFunction可以全覆盖它的功能。
  5. 窗口函数(WindowFunction)WindowFunction 字面上就是窗口函数,它其实是老版本的通用窗口函数接口。我们可以基于 WindowedStream 调用.apply()方法,传入一个 WindowFunction 的实现类。
stream

.keyBy(<key selector>) .window(<window assigner>)
.apply(new MyWindowFunction());
  1. 这个类中可以获取到包含窗口所有数据的可迭代集合(Iterable),还可以拿到窗口(Window)本身的信息。WindowFunction 接口在源码中实现如下:
public interface WindowFunction<IN, OUT, KEY, W extends Window> extends Function, Serializable {
	void apply(KEY key, W window, Iterable<IN> input, Collector<OUT> out) throws Exception;
}
  1. 当窗口到达结束时间需要触发计算时,就会调用这里的 apply 方法。我们可以从 input 集合中取出窗口收集的数据,结合 key 和 window 信息,通过收集器(Collector)输出结果。这里 Collector 的用法,与 FlatMapFunction 中相同。
  2. 不过我们也看到了,WindowFunction 能提供的上下文信息较少,也没有更高级的功能。事实上,它的作用可以被 ProcessWindowFunction 全覆盖,所以之后可能会逐渐弃用。一般在实际应用,直接使用 ProcessWindowFunction 就可以了
4.3.4 全窗口函数-ProcessWindowFunction
  1. ProcessWindowFunction 是 Window API 中最底层的通用窗口函数接口。之所以说它“最底层”,是因为除了可以拿到窗口中的所有数据之外,ProcessWindowFunction 还可以获取到一个
    上下文对象。这个上下文对象非常强大,不仅能够获取窗口信息,还可以访问当前的时间和状态信息。这里的时间就包括了处理时间和事件时间水位线。这就使得 ProcessWindowFunction更加灵活、功能更加丰富。事实上,ProcessWindowFunction 是 Flink 底层 API处理函数中的一员,关于处理函数我们会在后面展开讲解。
  2. 这些好处是以牺牲性能和资源为代价的作为一个全窗口函数ProcessWindowFunction同样需要将所有数据缓存下来、等到窗口触发计算时才使用。它其实就是一个增强版的 WindowFunction。
    具体使用跟 WindowFunction 非常类似,我们可以基于 WindowedStream 调用.process()方法,传入一个 ProcessWindowFunction 的实现类。下面是一个电商网站统计每小时 UV 的例子:
import com.atguigu.chapter05.ClickSource;
import com.atguigu.chapter05.Event;
import org.apache.flink.api.common.eventtime.SerializableTimestampAssigner;
import org.apache.flink.api.common.eventtime.WatermarkStrategy;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.windowing.ProcessWindowFunction;
import org.apache.flink.streaming.api.windowing.assigners.TumblingEventTimeWindows;
import org.apache.flink.streaming.api.windowing.time.Time;
import org.apache.flink.streaming.api.windowing.windows.TimeWindow;
import org.apache.flink.util.Collector;
import java.sql.Timestamp;
import java.time.Duration;
import java.util.HashSet;


public class UvCountByWindowExample {
    public static void main(String[] args) throws Exception {
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.setParallelism(1);

        SingleOutputStreamOperator<Event> stream = env.addSource(new ClickSource())
                .assignTimestampsAndWatermarks(WatermarkStrategy.<Event>forBoundedOutOfOrderness(Duration.ZERO)
                        .withTimestampAssigner(new SerializableTimestampAssigner<Event>() {
                            @Override
                            public long extractTimestamp(Event element, long recordTimestamp) {
                                return element.timestamp;
                            }
                        }));

        // 将数据全部发往同一分区,按窗口统计UV
        stream.keyBy(data -> true)
                .window(TumblingEventTimeWindows.of(Time.seconds(10)))
                .process(new UvCountByWindow())
                .print();

        env.execute();
    }

    // 实现自定义的ProcessWindowFunction, 输出一条统计信息
    public static class UvCountByWindow extends ProcessWindowFunction<Event, String, Boolean, TimeWindow>{
        @Override
        public void process(Boolean aBoolean, Context context, Iterable<Event> elements, Collector<String> out) throws Exception {
            HashSet<String> userSet = new HashSet<>();
            // 遍历所有数据,放到Set里去重
            for (Event event: elements){
                userSet.add(event.user);
            }
            // 结合窗口信息,包装输出内容
            Long start = context.window().getStart();
            Long end = context.window().getEnd();
            out.collect("窗口: " + new Timestamp(start) + " ~ " + new Timestamp(end)
                    + " 的独立访客数量是:" + userSet.size());
        }
    }
}
  1. 定义10秒钟的滚动事件窗口后,直接使用ProcessWindowFunction来定义处理的逻辑。我们可以创建一个 HashSet,将窗口所有数据的userId 写入实现去重,最终得到 HashSet 的元素个数就是 UV 值。
  2. 这里我们并没有用到上下文中其他信息 ,所以其实没有必要使用ProcessWindowFunction。全窗口函数因为运行效率较低,很少直接单独使用,往往会和增量聚合函数结合在一起,共同实现窗口的处理计算。
4.3.5 增量聚合和全窗口函数的结合使用
  1. 我们已经了解了 Window API 中两类窗口函数的用法,下面我们先来做个简单的总结。增量聚合函数处理计算会更高效。举一个最简单的例子,对一组数据求和。大量的数据连续不断到来,全窗口函数只是把它们收集缓存起来,并没有处理;到了窗口要关闭、输出结果的时候,再遍历所有数据依次叠加,得到最终结果。而如果我们采用增量聚合的方式,那么只需要保存一个当前和的状态,每个数据到来时就会做一次加法,更新状态;到了要输出结果的时候,只要将当前状态直接拿出来就可以了。增量聚合相当于把计算量“均摊”到了窗口收集数据的过程中,自然就会比全窗口聚合更加高效、输出更加实时。
  2. 而全窗口函数的优势在于提供了更多的信息,可以认为是更加“通用”的窗口操作。它只负责收集数据、提供上下文相关信息,把所有的原材料都准备好,至于拿来做什么我们完全可以任意发挥。这就使得窗口计算更加灵活,功能更加强大。
  3. 在实际应用中,我们往往希望兼具这两者的优点,把它们结合在一起使用。Flink的Window API 就给我们实现了这样的用法。
  4. 我们之前在调用 WindowedStream 的.reduce()和.aggregate()方法时,只是简单地直接传入了一个 ReduceFunction 或 AggregateFunction 进行增量聚合。除此之外,其实还可以传入第二个参数:一个全窗口函数,可以是 WindowFunction 或者 ProcessWindowFunction。
  5. 基于第一个参数(增量聚合函数)来处理窗口数据,每来一个数据就做一次聚合;等到窗口需要触发计算时,则调用第二个参数(全窗口函数)的处理逻辑输出结果。需要注意的是,这里的全窗口函数就不再缓存所有数据了,而是直接将增量聚合函数的结果拿来当作了 Iterable 类型的输入一般情况下,这时的可迭代集合中就只有一个元素了。
  6. 下面我们举一个具体的实例来说明。在网站的各种统计指标中,一个很重要的统计指标就是热门的链接;想要得到热门的 url,前提是得到每个链接的热门度。一般情况下,可以用url 的浏览量点击量表示热门度。我们这里统计 10 秒钟的 url 浏览量,每 5 秒钟更新一次;另外为了更加清晰地展示,还应该把窗口的起始结束时间一起输出。我们可以定义滑动窗口,并结合增量聚合函数和全窗口函数来得到统计结果。
import com.atguigu.chapter05.ClickSource;
import com.atguigu.chapter05.Event;
import org.apache.flink.api.common.eventtime.SerializableTimestampAssigner;
import org.apache.flink.api.common.eventtime.WatermarkStrategy;
import org.apache.flink.api.common.functions.AggregateFunction;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.windowing.ProcessWindowFunction;
import org.apache.flink.streaming.api.windowing.assigners.SlidingEventTimeWindows;
import org.apache.flink.streaming.api.windowing.time.Time;
import org.apache.flink.streaming.api.windowing.windows.TimeWindow;
import org.apache.flink.util.Collector;


public class UrlViewCountExample {
    public static void main(String[] args) throws Exception {
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.setParallelism(1);

        SingleOutputStreamOperator<Event> stream = env.addSource(new ClickSource())
                .assignTimestampsAndWatermarks(WatermarkStrategy.<Event>forMonotonousTimestamps()
                        .withTimestampAssigner(new SerializableTimestampAssigner<Event>() {
                            @Override
                            public long extractTimestamp(Event element, long recordTimestamp) {
                                return element.timestamp;
                            }
                        }));

        // 需要按照url分组,开滑动窗口统计
        stream.keyBy(data -> data.url)
                .window(SlidingEventTimeWindows.of(Time.seconds(10), Time.seconds(5)))
                // 同时传入增量聚合函数和全窗口函数
                .aggregate(new UrlViewCountAgg(), new UrlViewCountResult())
                .print();

        env.execute();
    }

    // 自定义增量聚合函数,来一条数据就加一
    public static class UrlViewCountAgg implements AggregateFunction<Event, Long, Long> {
        @Override
        public Long createAccumulator() {
            return 0L;
        }

        @Override
        public Long add(Event value, Long accumulator) {
            return accumulator + 1;
        }

        @Override
        public Long getResult(Long accumulator) {
            return accumulator;
        }

        @Override
        public Long merge(Long a, Long b) {
            return null;
        }
    }

    // 自定义窗口处理函数,只需要包装窗口信息
    public static class UrlViewCountResult extends ProcessWindowFunction<Long, UrlViewCount, String, TimeWindow> {

        @Override
        public void process(String url, Context context, Iterable<Long> elements, Collector<UrlViewCount> out) throws Exception {
            // 结合窗口信息,包装输出内容
            Long start = context.window().getStart();
            Long end = context.window().getEnd();
            // 迭代器中只有一个元素,就是增量聚合函数的计算结果
            out.collect(new UrlViewCount(url, elements.iterator().next(), start, end));
        }
    }
}
  1. 这里我们为了方便处理,单独定义了一个 POJO 类 UrlViewCount 来表示聚合输出结果的数据类型,包含了 url、浏览量以及窗口的起始结束时间。
import java.sql.Timestamp;

public class UrlViewCount {
    public String url;
    public Long count;
    public Long windowStart;
    public Long windowEnd;

    public UrlViewCount() {
    }

    public UrlViewCount(String url, Long count, Long windowStart, Long windowEnd) {
        this.url = url;
        this.count = count;
        this.windowStart = windowStart;
        this.windowEnd = windowEnd;
    }

    @Override
    public String toString() {
        return "UrlViewCount{" +
                "url='" + url + '\'' +
                ", count=" + count +
                ", windowStart=" + new Timestamp(windowStart) +
                ", windowEnd=" + new Timestamp(windowEnd) +
                '}';
    }
}
  1. 代码中用一个 AggregateFunction 来实现增量聚合,每来一个数据就计数加一;得到的结果交给 ProcessWindowFunction,结合窗口信息包装成我们想要的 UrlViewCount,最终输出统计结果。注:ProcessWindowFunction 是处理函数中的一种。这里只用它来将增量聚合函数的输出结果包裹一层窗口信息。
  2. 窗口处理的主体还是增量聚合,而引入全窗口函数又可以获取到更多的信息包装输出,这样的结合兼具了两种窗口函数的优势,在保证处理性能和实时性的同时支持了更加丰富的应用场景。
4.3.6 测试水位线和窗口的使用
  1. 当水位线到达窗口结束时间时,窗口就会闭合不再接收迟到的数据,因为根据水位线的定义,所有小于等于水位线的数据都已经到达,所以显然 Flink 会认为窗口中的数据都到达了,尽管可能存在迟到数据,也就是时间戳小于当前水位线的数据。我们可以在之前生成水位线代码WatermarkTest 的基础上,增加窗口应用做一下测试:
import com.atguigu.chapter05.Event;
import org.apache.flink.api.common.eventtime.SerializableTimestampAssigner;
import org.apache.flink.api.common.eventtime.WatermarkStrategy;
import org.apache.flink.api.common.functions.MapFunction;;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.windowing.ProcessWindowFunction;
import org.apache.flink.streaming.api.windowing.assigners.TumblingEventTimeWindows;
import org.apache.flink.streaming.api.windowing.time.Time;
import org.apache.flink.streaming.api.windowing.windows.TimeWindow;
import org.apache.flink.util.Collector;

import java.time.Duration;


public class WatermarkTest {
    public static void main(String[] args) throws Exception {
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.setParallelism(1);

        // 将数据源改为socket文本流,并转换成Event类型
        env.socketTextStream("localhost", 7777)
                .map(new MapFunction<String, Event>() {
                    @Override
                    public Event map(String value) throws Exception {
                        String[] fields = value.split(",");
                        return new Event(fields[0].trim(), fields[1].trim(), Long.valueOf(fields[2].trim()));
                    }
                })
                // 插入水位线的逻辑
                .assignTimestampsAndWatermarks(
                        // 针对乱序流插入水位线,延迟时间设置为5s
                        WatermarkStrategy.<Event>forBoundedOutOfOrderness(Duration.ofSeconds(5))
                                .withTimestampAssigner(new SerializableTimestampAssigner<Event>() {
                                    // 抽取时间戳的逻辑
                                    @Override
                                    public long extractTimestamp(Event element, long recordTimestamp) {
                                        return element.timestamp;
                                    }
                                })
                )
                // 根据user分组,开窗统计
                .keyBy(data -> data.user)
                .window(TumblingEventTimeWindows.of(Time.seconds(10)))
                .process(new WatermarkTestResult())
                .print();

        env.execute();
    }

    // 自定义处理窗口函数,输出当前的水位线和窗口信息
    public static class WatermarkTestResult extends ProcessWindowFunction<Event, String, String, TimeWindow>{
        @Override
        public void process(String s, Context context, Iterable<Event> elements, Collector<String> out) throws Exception {
            Long start = context.window().getStart();
            Long end = context.window().getEnd();
            Long currentWatermark = context.currentWatermark();
            Long count = elements.spliterator().getExactSizeIfKnown();
            out.collect("窗口" + start + " ~ " + end + "中共有" + count + "个元素,窗口闭合计算时,水位线处于:" + currentWatermark);
        }
    }
}
  1. 我们这里设置的最大延迟时间是 5 秒,所以当我们在终端启动 nc 程序,也就是 nc –lk 7777然后输入如下数据时:
Alice, ./home, 1000
Alice, ./cart, 2000
Alice, ./prod?id=100, 10000 
Alice, ./prod?id=200, 8000
Alice, ./prod?id=300, 15000
  1. 我们会看到如下结果:窗口 0 ~ 10000 中共有 3 个元素,窗口闭合计算时,水位线处于:9999
  2. 我们就会发现,当最后输入[Alice, ./prod?id=300, 15000]时,流中会周期性地(默认 200毫秒)插入一个时间戳为 15000L – 5 * 1000L – 1L = 9999 毫秒的水位线,已经到达了窗口[0,10000)的结束时间,所以会触发窗口的闭合计算。而后面再输入一条[Alice, ./prod?id=200, 9000]时,将不会有任何结果;因为这是一条迟到数据,它所属于的窗口已经触发计算然后销毁了(窗口默认被销毁),所以无法再进入到窗口中,自然也就无法更新计算结果了。窗口中的迟到数据默认会被丢弃,这会导致计算结果不够准确。

4.4 其他API

  1. 对于一个窗口算子而言,窗口分配器和窗口函数是必不可少的。除此之外,Flink 还提供了其他一些可选的 API,让我们可以更加灵活地控制窗口行为。
4.4.1 触发器
  1. 触发器主要是用来控制窗口什么时候触发计算。所谓的“触发计算”,本质上就是执行窗口函数,所以可以认为是计算得到结果并输出的过程。
  2. 基于 WindowedStream 调用.trigger()方法,就可以传入一个自定义的窗口触发器(Trigger)
stream.keyBy(...)
.window(...)
.trigger(new MyTrigger())
  1. Trigger 是窗口算子的内部属性,每个窗口分配器(WindowAssigner)都会对应一个默认的触发器;对于 Flink 内置的窗口类型,它们的触发器都已经做了实现。例如,所有事件时间窗口,默认的触发器都是 EventTimeTrigger;类似还有 ProcessingTimeTrigger 和 CountTrigger。所以一般情况下是不需要自定义触发器的,不过我们依然有必要了解它的原理。Trigger 是一个抽象类,自定义时必须实现下面四个抽象方法:
    • onElement():窗口中每到来一个元素,都会调用这个方法。
    • onEventTime():当注册的事件时间定时器触发时,将调用这个方法。
    • onProcessingTime ():当注册的处理时间定时器触发时,将调用这个方法。
    • clear():当窗口关闭销毁时,调用这个方法。一般用来清除自定义的状态。
  2. 除了 clear()比较像生命周期方法,其他三个方法其实都是对某种事件的响应。onElement()是对流中数据元素到来的响应;而另两个则是对时间的响应。这几个方法的参数中都有一个触发器上下文对象,可以用来注册定时器回调。这里提到的定时器,其实就是我们设定的一个“闹钟”,代表未来某个时间点会执行的事件;当时间进展到设定的值时,就会执行定义好的操作。很明显,对于时间窗口而言,就应该是在窗口的结束时间设定了一个定时器,这样到时间就可以触发窗口的计算输出了。
  3. 上面的前三个方法可以响应事件,那它们又是怎样跟窗口操作联系起来的呢?这就需要了解一下它们的返回值。这三个方法返回类型都是 TriggerResult,这是一个枚举类型(enum),其中定义了对窗口进行操作的四种类型。
    • CONTINUE(继续):什么都不做
    • FIRE(触发):触发计算,输出结果
    • PURGE(清除):清空窗口中的所有数据,销毁窗口
    • FIRE_AND_PURGE(触发并清除):触发计算输出结果,并清除窗口
  4. Trigger 除了可以控制触发计算,还可以定义窗口什么时候关闭(销毁)。上面的四种类型,其实也就是这两个操作交叉配对产生的结果。一般我们会认为,到了窗口的结束时间,那么就会触发计算输出结果,然后关闭窗口——似乎这两个操作应该是同时发生的;但 TriggerResult 的定义告诉我们,两者可以分开。稍后我们就会看到它们分开操作的场景。
  5. 下面我们举一个例子。在日常业务场景中,我们经常会开比较大的窗口来计算每个窗口的pv 或者 uv 等数据。但窗口开的太大,会使我们看到计算结果的时间间隔变长。所以我们可以使用触发器,来隔一段时间触发一次窗口计算。我们在代码中计算了每个 url 在 10 秒滚动窗口的 pv 指标,然后设置了触发器,每隔 1 秒钟触发一次窗口的计算。
import com.atguigu.chapter05.ClickSource;
import com.atguigu.chapter05.Event;
import org.apache.flink.api.common.eventtime.SerializableTimestampAssigner;
import org.apache.flink.api.common.eventtime.WatermarkStrategy;
import org.apache.flink.api.common.state.ValueState;
import org.apache.flink.api.common.state.ValueStateDescriptor;
import org.apache.flink.api.common.typeinfo.Types;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.windowing.ProcessWindowFunction;
import org.apache.flink.streaming.api.windowing.assigners.TumblingEventTimeWindows;
import org.apache.flink.streaming.api.windowing.time.Time;
import org.apache.flink.streaming.api.windowing.triggers.Trigger;
import org.apache.flink.streaming.api.windowing.triggers.TriggerResult;
import org.apache.flink.streaming.api.windowing.windows.TimeWindow;
import org.apache.flink.util.Collector;

public class TriggerExample {
    public static void main(String[] args) throws Exception {
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.setParallelism(1);

        env
                .addSource(new ClickSource())
                .assignTimestampsAndWatermarks(
                        WatermarkStrategy.<Event>forMonotonousTimestamps()
                                .withTimestampAssigner(new SerializableTimestampAssigner<Event>() {
                                    @Override
                                    public long extractTimestamp(Event event, long l) {
                                        return event.timestamp;
                                    }
                                })
                )
                .keyBy(r -> r.url)
                .window(TumblingEventTimeWindows.of(Time.seconds(10)))
                .trigger(new MyTrigger())
                .process(new WindowResult())
                .print();

        env.execute();
    }

    public static class WindowResult extends ProcessWindowFunction<Event, UrlViewCount, String, TimeWindow> {
        @Override
        public void process(String s, Context context, Iterable<Event> iterable, Collector<UrlViewCount> collector) throws Exception {
            collector.collect(
                    new UrlViewCount(
                            s,
                            // 获取迭代器中的元素个数
                            iterable.spliterator().getExactSizeIfKnown(),
                            context.window().getStart(),
                            context.window().getEnd()
                    )
            );
        }
    }

    public static class MyTrigger extends Trigger<Event, TimeWindow> {
        @Override
        public TriggerResult onElement(Event event, long l, TimeWindow timeWindow, TriggerContext triggerContext) throws Exception {
            ValueState<Boolean> isFirstEvent = triggerContext.getPartitionedState(
                    new ValueStateDescriptor<Boolean>("first-event", Types.BOOLEAN)
            );
            if (isFirstEvent.value() == null) {
                for (long i = timeWindow.getStart(); i < timeWindow.getEnd(); i = i + 1000L) {
                    triggerContext.registerEventTimeTimer(i);
                }
                isFirstEvent.update(true);
            }
            return TriggerResult.CONTINUE;
        }

        @Override
        public TriggerResult onEventTime(long l, TimeWindow timeWindow, TriggerContext triggerContext) throws Exception {
            return TriggerResult.FIRE;
        }

        @Override
        public TriggerResult onProcessingTime(long l, TimeWindow timeWindow, TriggerContext triggerContext) throws Exception {
            return TriggerResult.CONTINUE;
        }

        @Override
        public void clear(TimeWindow timeWindow, TriggerContext triggerContext) throws Exception {
            ValueState<Boolean> isFirstEvent = triggerContext.getPartitionedState(
                    new ValueStateDescriptor<Boolean>("first-event", Types.BOOLEAN)
            );
            isFirstEvent.clear();
        }
    }
}
  1. 输出结果如下:
UrlViewCount{url='./prod?id=1', count=1, windowStart=2021-07-01 14:44:10.0, windowEnd=2021-07-01 14:44:20.0}
UrlViewCount{url='./prod?id=1', count=1, windowStart=2021-07-01 14:44:10.0, windowEnd=2021-07-01 14:44:20.0}
UrlViewCount{url='./prod?id=1', count=1, windowStart=2021-07-01 14:44:10.0,
windowEnd=2021-07-01 14:44:20.0}
UrlViewCount{url='./prod?id=1', count=1, windowStart=2021-07-01 14:44:10.0, windowEnd=2021-07-01 14:44:20.0}
4.4.2 移除器
  1. 移除器主要用来定义移除某些数据的逻辑。基于 WindowedStream 调用.evictor()方法,就可以传入一个自定义的移除器(Evictor)。Evictor 是一个接口,不同的窗口类型都有各自预实现的移除器。
stream.keyBy(...)
.window(...)
.evictor(new MyEvictor())
  1. Evictor 接口定义了两个方法:
    • evictBefore():定义执行窗口函数之前的移除数据操作
    • evictAfter():定义执行窗口函数之后的以处数据操作
  2. 默认情况下,预实现的移除器都是在执行窗口函数(window fucntions)之前移除数据的。
4.4.3 允许延迟
  1. 在事件时间语义下,窗口中可能会出现数据迟到的情况。这是因为在乱序流中,水位线并不一定能保证时间戳更早的所有数据不会再来。当水位线已经到达窗口结束时间时,窗口会触发计算并输出结果,这时一般也就要销毁窗口了;如果窗口关闭之后,又有本属于窗口内的数据姗姗来迟,默认情况下就会被丢弃。这也很好理解:窗口触发计算就像发车,如果要赶的车已经开走了,又不能坐其他的车(保证分配窗口的正确性),那就只好放弃坐班车了。
  2. 不过在多数情况下,直接丢弃数据也会导致统计结果不准确,我们还是希望该上车的人都能上来。为了解决迟到数据的问题,Flink 提供了一个特殊的接口,可以为窗口算子设置一个允许的最大延迟。也就是说,我们可以设定允许延迟一段时间,在这段时间内,窗口不会销毁,继续到来的数据依然可以进入窗口中并触发计算。直到水位线推进到了 窗口结束时间 + 延迟时间,才真正将窗口的内容清空,正式关闭窗口。
  3. 基于 WindowedStream 调用.allowedLateness()方法,传入一个 Time 类型的延迟时间,就可以表示允许这段时间内的延迟数据。
stream.keyBy(...)
.window(TumblingEventTimeWindows.of(Time.hours(1))) .allowedLateness(Time.minutes(1))
  1. 比如上面的代码中,我们定义了 1 小时的滚动窗口,并设置了允许 1 分钟的延迟数据。也就是说,在不考虑水位线延迟的情况下,对于 8 点~9 点的窗口,本来应该是水位线到达 9 点整就触发计算并关闭窗口;现在允许延迟 1 分钟,那么 9 点整就只是触发一次计算并输出结果,并不会关窗。后续到达的数据,只要属于 8 点~9 点窗口,依然可以在之前统计的基础上继续叠加,并且再次输出一个更新后的结果。直到水位线到达了 9 点零 1 分,这时就真正清空状态、关闭窗口,之后再来的迟到数据就会被丢弃了。
  2. 从这里我们就可以看到,窗口的触发计算(Fire)和清除(Purge)操作确实可以分开。不过在默认情况下,允许的延迟是 0,这样一旦水位线到达了窗口结束时间就会触发计算并清除窗口,两个操作看起来就是同时发生了。当窗口被清除(关闭)之后,再来的数据就会被丢弃。
4.4.4 将迟到的数据放入侧输出流
  1. 我们自然会想到,即使可以设置窗口的延迟时间,终归还是有限的,后续的数据还是会被丢弃。如果不想丢弃任何一个数据,又该怎么做呢?
  2. Flink 还提供了另外一种方式处理迟到数据。我们可以将未收入窗口的迟到数据,放入侧输出流进行另外的处理。所谓的侧输出流,相当于是数据流的一个“分支”,这个流中单独放置那些错过了该上的车、本该被丢弃的数据。
  3. 基于 WindowedStream 调用.sideOutputLateData() 方法,就可以实现这个功能。方法需要传入一个输出标签,用来标记分支的迟到数据流。因为保存的就是流中的原始数据,所以 OutputTag 的类型与流中数据类型相同。
DataStream<Event> stream = env.addSource(...);
OutputTag<Event> outputTag = new OutputTag<Event>("late") {};
stream.keyBy(...)
.window(TumblingEventTimeWindows.of(Time.hours(1)))
.sideOutputLateData(outputTag)
  1. 将迟到数据放入侧输出流之后,还应该可以将它提取出来。基于窗口处理完成之后的DataStream,调用.getSideOutput()方法,传入对应的输出标签,就可以获取到迟到数据所在的流了。
SingleOutputStreamOperator<AggResult> winAggStream = stream.keyBy(...)
.window(TumblingEventTimeWindows.of(Time.hours(1)))
.sideOutputLateData(outputTag)
.aggregate(new MyAggregateFunction())
DataStream<Event> lateStream = winAggStream.getSideOutput(outputTag);
  1. 这里注意,getSideOutput()是 SingleOutputStreamOperator 的方法,获取到的侧输出流数据类型应该和 OutputTag 指定的类型一致,与窗口聚合之后流中的数据类型可以不同。

4.5 窗口的生命周期

  1. 熟悉了窗口 API 的使用,我们再回头梳理一下窗口本身的生命周期,这也是对窗口所有操作的一个总结。

  2. 窗口的创建。

    • 窗口的类型和基本信息由窗口分配器(window assigners)指定,但窗口不会预先创建好,而是由数据驱动创建。当第一个应该属于这个窗口的数据元素到达时,就会创建对应的窗口。
  3. 窗口计算的触发。

    • 除了窗口分配器,每个窗口还会有自己的窗口函数(window functions)和触发器(trigger)。窗口函数可以分为增量聚合函数和全窗口函数,主要定义了窗口中计算的逻辑;而触发器则是指定调用窗口函数的条件。
    • 对于不同的窗口类型,触发计算的条件也会不同。例如,一个滚动事件时间窗口,应该在水位线到达窗口结束时间的时候触发计算,属于“定点发车”;而一个计数窗口,会在窗口中元素数量达到定义大小时触发计算,属于“人满就发车”。所以 Flink 预定义的窗口类型都有对应内置的触发器。
    • 对于事件时间窗口而言,除去到达结束时间的“定点发车”,还有另一种情形。当我们设置了允许延迟,那么如果水位线超过了窗口结束时间、但还没有到达设定的最大延迟时间,这期间内到达的迟到数据也会触发窗口计算。这类似于没有准时赶上班车的人又追上了车,这时车要再次停靠、开门,将新的数据整合统计进来。
  4. 窗口的销毁

    • 一般情况下,当时间达到了结束点,就会直接触发计算输出结果、进而清除状态销毁窗口。这时窗口的销毁可以认为和触发计算是同一时刻。这里需要注意,Flink 中只对时间窗口有销毁机制;由于计数窗口(CountWindow)是基于全局窗口(GlobalWindw)实现的,而全局窗口不会清除状态,所以就不会被销毁。
    • 在特殊的场景下,窗口的销毁和触发计算会有所不同。事件时间语义下,如果设置了允许延迟,那么在水位线到达窗口结束时间时,仍然不会销毁窗口;窗口真正被完全删除的时间点,是窗口的结束时间加上用户指定的允许延迟时间。
  5. 窗口 API 调用总结到目前为止,我们已经彻底明白了 Flink 中窗口的概念和 Window API 的调用,我们再用一张图做一个完整总结。
    第三课 大数据技术之Fink1.13的实战学习-时间和窗口_第15张图片

  6. Window API 首先按照时候按键分区分成两类。keyBy 之后的 KeyedStream,可以调用.window()方法声明按键分区窗口(Keyed Windows);而如果不做 keyBy,DataStream 也可以直接调用.windowAll()声明非按键分区窗口。之后的方法调用就完全一样了。

  7. 接下来首先是通过.window()/.windowAll()方法定义窗口分配器,得到 WindowedStream;然 后 通 过 各 种 转 换 方 法 ( reduce/aggregate/apply/process ) 给 出 窗 口 函 数(ReduceFunction/AggregateFunction/ProcessWindowFunction),定义窗口的具体计算处理逻辑,转换之后重新得到 DataStream。这两者必不可少,是窗口算子(WindowOperator)最重要的组成部分。

  8. 此外,在这两者之间,还可以基于 WindowedStream 调用.trigger()自定义触发器、调用.evictor()定义移除器、调用.allowedLateness()指定允许延迟时间、调用.sideOutputLateData()将迟到数据写入侧输出流,这些都是可选的 API,一般不需要实现。而如果定义了侧输出流,可以基于窗口聚合之后的 DataStream 调用.getSideOutput()获取侧输出流。

第五节 迟到数据的处理

5.1 设置水位线延迟时间

  1. 水位线是事件时间的进展,它是我们整个应用的全局逻辑时钟。水位线生成之后,会随着数据在任务间流动,从而给每个任务指明当前的事件时间。所以从这个意义上讲,水位线是一个覆盖万物的存在,它并不只针对事件时间窗口有效。
  2. 之前我们讲到触发器时曾提到过“定时器”,时间窗口的操作底层就是靠定时器来控制触发的。既然是底层机制,定时器自然就不可能是窗口的专利了;事实上它是 Flink 底层 API处理函数的重要部分。
  3. 所以水位线其实是所有事件时间定时器触发的判断标准。那么水位线的延迟,当然也就是全局时钟的滞后,相当于是上帝拨动了琴弦,所有人的表都变慢了。既然水位线这么重要,那一般情况就不应该把它的延迟设置得太大,否则流处理的实时性就会大大降低。因为水位线的延迟主要是用来对付分布式网络传输导致的数据乱序,而网络传输的乱序程度一般并不会很大,大多集中在几毫秒至几百毫秒。所以实际应用中,我们往往会给水位线设置一个“能够处理大多数乱序数据的小延迟”,视需求一般设在毫秒~秒级。
  4. 当我们设置了水位线延迟时间后,所有定时器就都会按照延迟后的水位线来触发。如果一个数据所包含的时间戳,小于当前的水位线,那么它就是所谓的“迟到数据”。

5.2 允许窗口处理迟到数据

  1. 水位线延迟设置的比较小,那之后如果仍有数据迟到该怎么办?对于窗口计算而言,如果水位线已经到了窗口结束时间,默认窗口就会关闭,那么之后再来的数据就要被丢弃了。自然想到,Flink 的窗口也是可以设置延迟时间,允许继续处理迟到数据的。
  2. 这种情况下,由于大部分乱序数据已经被水位线的延迟等到了,所以往往迟到的数据不会太多。这样,我们会在水位线到达窗口结束时间时,先快速地输出一个近似正确的计算结果;然后保持窗口继续等到延迟数据,每来一条数据,窗口就会再次计算,并将更新后的结果输出。这样就可以逐步修正计算结果,最终得到准确的统计值了。
  3. 类比班车的例子,我们可以这样理解:大多数人是在发车时刻前后到达的,所以我们只要把表调慢,稍微等一会儿,绝大部分人就都上车了,这个把表调慢的时间就是水位线的延迟;到点之后,班车就准时出发了,不过可能还有该来的人没赶上。于是我们就先慢慢往前开,这段时间内,如果迟到的人抓点紧还是可以追上的;如果有人追上来了,就停车开门让他上来,然后车继续向前开。当然我们的车不能一直慢慢开,需要有一个时间限制,这就是窗口的允许延迟时间。一旦超过了这个时间,班车就不再停留,开上高速疾驰而去了。
  4. 所以我们将水位线的延迟和窗口的允许延迟数据结合起来,最后的效果就是先快速实时地输出一个近似的结果,而后再不断调整,最终得到正确的计算结果。回想流处理的发展过程,这不就是著名的 Lambda 架构吗?原先需要两套独立的系统来同时保证实时性和结果的最终正确性,如今 Flink 一套系统就全部搞定了。

5.3 将迟到数据放入窗口侧输出流

  1. 即使我们有了前面的双重保证,可窗口不能一直等下去,最后总要真正关闭。窗口一旦关
    闭,后续的数据就都要被丢弃了。那如果真的还有漏网之鱼又该怎么办呢?
  2. 那就要用到最后一招了:用窗口的侧输出流来收集关窗以后的迟到数据。这种方式是最后“兜底”的方法,只能保证数据不丢失;因为窗口已经真正关闭,所以是无法基于之前窗口的结果直接做更新的。我们只能将之前的窗口计算结果保存下来,然后获取侧输出流中的迟到数据,判断数据所属的窗口,手动对结果进行合并更新。尽管有些烦琐,实时性也不够强,但能够保证最终结果一定是正确的。
  3. 如果还用赶班车来类比,那就是车已经上高速开走了,这班车是肯定赶不上了。不过我们还留下了行进路线和联系方式,迟到的人如果想办法辗转到了目的地,还是可以和大部队会合的。最终,所有该到的人都会在目的地出现。
  4. 所以总结起来,Flink 处理迟到数据,对于结果的正确性有三重保障:水位线的延迟,窗口允许迟到数据,以及将迟到数据放入窗口侧输出流。我们可以回忆一下之前统计每个 url 浏览次数的代码 UrlViewCountExample,稍作改进,增加处理迟到数据的功能。具体代码如下。
import com.atguigu.chapter05.ClickSource;
import com.atguigu.chapter05.Event;
import org.apache.flink.api.common.eventtime.SerializableTimestampAssigner;
import org.apache.flink.api.common.eventtime.WatermarkStrategy;
import org.apache.flink.api.common.functions.AggregateFunction;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.windowing.ProcessWindowFunction;
import org.apache.flink.streaming.api.windowing.assigners.SlidingEventTimeWindows;
import org.apache.flink.streaming.api.windowing.time.Time;
import org.apache.flink.streaming.api.windowing.windows.TimeWindow;
import org.apache.flink.util.Collector;


public class UrlViewCountExample {
    public static void main(String[] args) throws Exception {
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.setParallelism(1);

        SingleOutputStreamOperator<Event> stream = env.addSource(new ClickSource())
                .assignTimestampsAndWatermarks(WatermarkStrategy.<Event>forMonotonousTimestamps()
                        .withTimestampAssigner(new SerializableTimestampAssigner<Event>() {
                            @Override
                            public long extractTimestamp(Event element, long recordTimestamp) {
                                return element.timestamp;
                            }
                        }));

        // 需要按照url分组,开滑动窗口统计
        stream.keyBy(data -> data.url)
                .window(SlidingEventTimeWindows.of(Time.seconds(10), Time.seconds(5)))
                // 同时传入增量聚合函数和全窗口函数
                .aggregate(new UrlViewCountAgg(), new UrlViewCountResult())
                .print();

        env.execute();
    }

    // 自定义增量聚合函数,来一条数据就加一
    public static class UrlViewCountAgg implements AggregateFunction<Event, Long, Long> {
        @Override
        public Long createAccumulator() {
            return 0L;
        }

        @Override
        public Long add(Event value, Long accumulator) {
            return accumulator + 1;
        }

        @Override
        public Long getResult(Long accumulator) {
            return accumulator;
        }

        @Override
        public Long merge(Long a, Long b) {
            return null;
        }
    }

    // 自定义窗口处理函数,只需要包装窗口信息
    public static class UrlViewCountResult extends ProcessWindowFunction<Long, UrlViewCount, String, TimeWindow> {

        @Override
        public void process(String url, Context context, Iterable<Long> elements, Collector<UrlViewCount> out) throws Exception {
            // 结合窗口信息,包装输出内容
            Long start = context.window().getStart();
            Long end = context.window().getEnd();
            // 迭代器中只有一个元素,就是增量聚合函数的计算结果
            out.collect(new UrlViewCount(url, elements.iterator().next(), start, end));
        }
    }
}
  1. 我们还是先启动 nc –lk 7777,然后依次输入以下数据:
Alice, ./home, 1000 
Alice, ./home, 2000 
Alice, ./home, 10000 
Alice, ./home, 9000 
Alice, ./cart, 12000
Alice, ./prod?id=100, 15000
Alice, ./home, 9000 
Alice, ./home, 8000
Alice, ./prod?id=200, 70000
Alice, ./home, 8000
Alice, ./prod?id=300, 72000
Alice, ./home, 8000
  1. 下面我们来分析一下程序的运行过程。当输入数据[Alice, ./home, 10000]时,时间戳为10000,由于设置了 2 秒钟的水位线延迟时间,所以此时水位线到达了 8 秒(事实上是 7999毫秒,这里不再追究减 1 的细节),并没有触发 [0, 10s) 窗口的计算;所以接下来时间戳为 9000的数据到来,同样可以直接进入窗口做增量聚合。当时间戳为 12000 的数据到来时(无所谓url 是什么,所有数据都可以推动水位线前进),水位线到达了 12000 – 2 * 1000 = 10000,所以触发了[0, 10s) 窗口的计算,第一次输出了窗口统计结果,如下所示:
result> UrlViewCount{url='./home,', count=3, windowStart=1970-01-01 08:00:00.0, windowEnd=1970-01-01 08:00:10.0}
  1. 这里 count 值为 3,就包括了之前输入的时间戳为 1000、2000、9000 的三条数据。不过窗口触发计算之后并没有关闭销毁,而是继续等待迟到数据。之后时间戳为 15000的数据继续推进水位线,此时时钟已经进展到了 13000ms;此时再来一条时间戳为 9000 的数据,我们会发现立即输出了一条统计结果:
result>   UrlViewCount{url='./home,',   count=4,   windowStart=1970-01-01
08:00:00.0, windowEnd=1970-01-01 08:00:10.0}
  1. 很明显,这仍然是[0, 10s) 的窗口,在之前计数值 3 的基础上继续叠加,更新统计结果为
  2. 所以允许窗口处理迟到数据之后,相当于窗口有了一段等待时间,在这期间所有的迟到数据都会立即触发窗口计算,更新之前的结果。因此,之后时间戳为 8000 的数据到来,同样会立即输出:
result>   UrlViewCount{url='./home,',   count=5,   windowStart=1970-01-01
08:00:00.0, windowEnd=1970-01-01 08:00:10.0}
  1. 我们设置窗口等待的时间为 1 分钟,所以当时间推进到 10000 + 60 * 1000 = 70000 时,窗口就会真正被销毁。此前的所有迟到数据可以直接更新窗口的计算结果,而之后的迟到数据已经无法整合进窗口,就只能用侧输出流来捕获了。需要注意的是,这里的“时间”依然是由水位线来指示的,所以时间戳为 70000 的数据到来,并不会触发窗口的销毁;当时间戳为 72000的数据到来,水位线推进到了 72000 – 2 * 1000 = 70000,此时窗口真正销毁关闭,之后再来的迟到数据就会输出到侧输出流了:
late> Event{user='Alice,', url='./home,', timestamp=1970-01-01 08:00:08.0}

你可能感兴趣的:(大数据Flink1.13,big,data)