python输出24进制时间_python之numpy库

python-numpy

csv文件的写入和存取

写入csv文件

CSV (Comma‐Separated Value, 逗号分隔值),是一种常见的文件格式,用来存储批量数据。

写入csv文件np.savetxt(frame, array, fmt='%.18e', delimiter=None)

• frame : 文件、字符串或产生器,可以是.gz或.bz2的压缩文件

• array : 存入文件的数组

• fmt : 写入文件的格式,例如:%d %.2f %.18e

• delimiter : 分割字符串,默认是任何空格

示例:

>>> a = np.arange(100).reshape(5,20)>>> np.savetxt('a.csv',a,fmt='%d',delimiter=',')

得到的文件是这样的0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19

20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39

40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59

60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79

80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99

改变参数,以浮点数写入

>>> a = np.arange(100).reshape(5,20)>>> np.savetxt('a.csv',a,fmt='%.1f',delimiter=',')0.0,1.0,2.0,3.0,4.0,5.0,6.0,7.0,8.0,9.0,10.0,11.0,12.0,13.0,14.0,15.0,16.0,17.0,18.0,19.0

20.0,21.0,22.0,23.0,24.0,25.0,26.0,27.0,28.0,29.0,30.0,31.0,32.0,33.0,34.0,35.0,36.0,37.0,38.0,39.0

40.0,41.0,42.0,43.0,44.0,45.0,46.0,47.0,48.0,49.0,50.0,51.0,52.0,53.0,54.0,55.0,56.0,57.0,58.0,59.0

60.0,61.0,62.0,63.0,64.0,65.0,66.0,67.0,68.0,69.0,70.0,71.0,72.0,73.0,74.0,75.0,76.0,77.0,78.0,79.0

80.0,81.0,82.0,83.0,84.0,85.0,86.0,87.0,88.0,89.0,90.0,91.0,92.0,93.0,94.0,95.0,96.0,97.0,98.0,99.0

读取csv文件

读取csv文件np.loadtxt(frame, dtype=np.float, delimiter=None, unpack=False)

• frame : 文件、字符串或产生器,可以是.gz或.bz2的压缩文件

• dtype : 数据类型,可选

• delimiter : 分割字符串,默认是任何空格

• unpack : 如果True,读入属性将分别写入不同变量

示例:

>>> b = np.loadtxt('a.csv',delimiter=',')>>> b

array([[ 0., 1., 2., 3., 4., 5., 6., 7., 8., 9., 10., 11., 12., 13., 14., 15., 16., 17., 18., 19.],

[ 20., 21., 22., 23., 24., 25., 26., 27., 28., 29., 30., 31., 32., 33., 34., 35., 36., 37., 38., 39.],

[ 40., 41., 42., 43., 44., 45., 46., 47., 48., 49., 50., 51., 52., 53., 54., 55., 56., 57., 58., 59.],

[ 60., 61., 62., 63., 64., 65., 66., 67., 68., 69., 70., 71., 72., 73., 74., 75., 76., 77., 78., 79.],

[ 80., 81., 82., 83., 84., 85., 86., 87., 88., 89., 90., 91., 92., 93., 94., 95., 96., 97., 98., 99.]])>>> b = np.loadtxt('a.csv',dtype=np.int,delimiter=',')>>> b

array([[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,17, 18, 19],

[20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36,37, 38, 39],

[40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56,57, 58, 59],

[60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76,77, 78, 79],

[80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96,97, 98, 99]])

CSV只能有效存储一维和二维数组

np.savetxt() np.loadtxt()只能有效存取一维和二维数组

多维数据的存取

多维数据的写入a.tofile(frame, sep='', format='%s')

• frame : 文件、字符串

• sep : 数据分割字符串,如果是空串,写入文件为二进制

• format : 写入数据的格式

示例;

>>> a = np.arange(100).reshape(5,10,2)>>> a.tofile("a.dat",sep=',',format='%d')

a.dat的内容:0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99

如果不指定分隔符,则产生二进制文件,无法用文本编辑器看懂。

多维数据的读取np.fromfile(frame, dtype=float, count=‐1, sep='')

• frame : 文件、字符串

• dtype : 读取的数据类型

• count : 读入元素个数,‐1表示读入整个文件

• sep : 数据分割字符串,如果是空串,写入文件为二进制

numpy的随机数函数

NumPy的random子库

np.random.*函数说明rand(d0,d1,...,dn)根据d0-dn创建随机数数组,浮点数,[0,1),均匀分布

randn(d0,d1,...,dn)根据d0-dn创建随机数数组,标准正态分布

randint(low[,high,shape])根据shape创建随机整数或整数数组,范围是[low,high)

seed(s)随机数种子,s是给定的种子值

shuffle(a)根据数组a的第1轴进行随排列,改变数组a

permutation(a)根据数组a的第1轴产生一个新的乱序数组,不改变数组a

choice(a[,size,replace,p])从一维数组a中以概率p抽取元素,形成size形状新数组replace表示是否可能重用元素,默认为False

uniform(low,high,size)产生具有均匀分布的数组,low起始值,high结束值,size为形状

normal(loc,scale,size)产生具有正态分布的数组,loc为均值,scale标准差,size为形状

poisson(lam,size)产生具有泊松分布的数组,lam为随机事件发生率,size为形状

numpy的统计函数

NumPy直接提供的统计类函数

np.*函数说明sum(a,axis=None)根据给定axis计算数组a相关元素之和,axis整数或元组

mean(a,axis=None)根据给定axis计算数组a相关元素的期望,axis整数或元组

average(a,axis=None,weights=None)根据给定axis计算数组a相关元素的加权平均值

std(a,axis=None)根据给定轴axis计算数组a相关元素的标准差

var(a,axis = None)根据给定轴axis计算数组a相关元素的方差

min(a) max(a)计算数组a中元素的最小值,最大值

argmin(a) argmax(a)计算数组a中元素的最小值,最大值的降一维后下标

unravel_index(index,shape)根据shape将一维下标index转换成多维下标

ptp(a)计算数组a中元素最大值和最小值的差

median(a)计算数组a中元素的中位数(中值)

axis=None 是统计函数的标配参数

numpy的梯度函数函数说明np.gradient(f)计算数组f中元素的梯度,当f为多维时,返回每个维度梯度

梯度:连续值之间的变化率,即斜率

XY坐标轴连续三个X坐标对应的Y轴值:a, b, c,其中,b的梯度是: (c‐a)/2

>>> a = np.random.randint(0,20,5)>>> np.gradient(a)

array([ 9. , -0.5, -2. , -3. , -12. ])

你可能感兴趣的:(python输出24进制时间)