在push数据的时候,只要数据放进输入栈就好,但在pop的时候,操作就复杂一些,输出栈如果为空,就把进栈数据全部导入进来(注意是全部导入),再从出栈弹出数据,如果输出栈不为空,则直接从出栈弹出数据就可以了。
最后如何判断队列为空呢?如果进栈和出栈都为空的话,说明模拟的队列为空了。
在代码实现的时候,会发现pop() 和 peek()两个函数功能类似,代码实现上也是类似的,可以思考一下如何把代码抽象一下。
class MyQueue {
Stack<Integer> stackIn;
Stack<Integer> stackOut;
/** Initialize your data structure here. */
public MyQueue() {
stackIn = new Stack<>(); // 负责进栈
stackOut = new Stack<>(); // 负责出栈
}
/** Push element x to the back of queue. */
public void push(int x) {
stackIn.push(x);
}
/** Removes the element from in front of queue and returns that element. */
public int pop() {
dumpstackIn();
return stackOut.pop();
}
/** Get the front element. */
public int peek() {
dumpstackIn();
return stackOut.peek();
}
/** Returns whether the queue is empty. */
public boolean empty() {
return stackIn.isEmpty() && stackOut.isEmpty();
}
// 如果stackOut为空,那么将stackIn中的元素全部放到stackOut中
private void dumpstackIn(){
if (!stackOut.isEmpty()) return;
while (!stackIn.isEmpty()){
stackOut.push(stackIn.pop());
}
}
}
/**
* Your MyQueue object will be instantiated and called as such:
* MyQueue obj = new MyQueue();
* obj.push(x);
* int param_2 = obj.pop();
* int param_3 = obj.peek();
* boolean param_4 = obj.empty();
*/
# 用队列实现栈
```![在这里插入图片描述](https://img-blog.csdnimg.cn/c39dfa3165c44a3f85966e4d197d8f95.png)
```java
class MyStack {
// Deque 接口继承了 Queue 接口
// 所以 Queue 中的 add、poll、peek等效于 Deque 中的 addLast、pollFirst、peekFirst
Deque<Integer> que1; // 和栈中保持一样元素的队列
Deque<Integer> que2; // 辅助队列
/** Initialize your data structure here. */
public MyStack() {
que1 = new ArrayDeque<>();
que2 = new ArrayDeque<>();
}
/** Push element x onto stack. */
public void push(int x) {
que1.addLast(x);
}
/** Removes the element on top of the stack and returns that element. */
public int pop() {
int size = que1.size();
size--;
// 将 que1 导入 que2 ,但留下最后一个值
while (size-- > 0) {
que2.addLast(que1.peekFirst());
que1.pollFirst();
}
int res = que1.pollFirst();
// 将 que2 对象的引用赋给了 que1 ,此时 que1,que2 指向同一个队列
que1 = que2;
// 如果直接操作 que2,que1 也会受到影响,所以为 que2 分配一个新的空间
que2 = new ArrayDeque<>();
return res;
}
/** Get the top element. */
public int top() {
return que1.peekLast();
}
/** Returns whether the stack is empty. */
public boolean empty() {
return que1.isEmpty();
}
由于栈结构的特殊性,非常适合做对称匹配类的题目。
首先要弄清楚,字符串里的括号不匹配有几种情况。
一些同学,在面试中看到这种题目上来就开始写代码,然后就越写越乱。
建议要写代码之前要分析好有哪几种不匹配的情况,如果不动手之前分析好,写出的代码也会有很多问题。
public class IsValid {
public boolean isValid(String s) {
Stack<Character> stack = new Stack<>();
char ch;
for (int i = 0; i < s.length(); i++) {
ch = s.charAt(i);
//碰到左括号,就把相应的右括号入栈
if (ch == '(') {
stack.push(')');
}else if (ch == '{') {
stack.push('}');
}else if (ch == '[') {
stack.push(']');
} else if (stack.isEmpty() || stack.peek() != ch) {
return false;
}else {//如果是右括号判断是否和栈顶元素匹配
stack.pop();
}
}
//最后判断栈中元素是否匹配
return stack.isEmpty();
}
}
给出由小写字母组成的字符串 S,重复项删除操作会选择两个相邻且相同的字母,并删除它们。
在 S 上反复执行重复项删除操作,直到无法继续删除。
在完成所有重复项删除操作后返回最终的字符串。答案保证唯一。
示例:
输入:“abbaca”
输出:“ca”
解释:例如,在 “abbaca” 中,我们可以删除 “bb” 由于两字母相邻且相同,这是此时唯一可以执行删除操作的重复项。之后我们得到字符串 “aaca”,其中又只有 “aa” 可以执行重复项删除操作,所以最后的字符串为 “ca”。
提示:
1 <= S.length <= 20000
S 仅由小写英文字母组成。
本题要删除相邻相同元素,其实也是匹配问题,相同左元素相当于左括号,相同右元素就是相当于右括号,匹配上了就删除。
那么再来看一下本题:可以把字符串顺序放到一个栈中,然后如果相同的话 栈就弹出,这样最后栈里剩下的元素都是相邻不相同的元素了。
class Solution {
public String removeDuplicates(String S) {
//ArrayDeque会比LinkedList在除了删除元素这一点外会快一点
//参考:https://stackoverflow.com/questions/6163166/why-is-arraydeque-better-than-linkedlist
ArrayDeque<Character> deque = new ArrayDeque<>();
char ch;
for (int i = 0; i < S.length(); i++) {
ch = S.charAt(i);
if (deque.isEmpty() || deque.peek() != ch) {
deque.push(ch);
} else {
deque.pop();
}
}
String str = "";
//剩余的元素即为不重复的元素
while (!deque.isEmpty()) {
str = deque.pop() + str;
}
return str;
}
}
class Solution {
public String removeDuplicates(String s) {
// 将 res 当做栈
StringBuffer res = new StringBuffer();
// top为 res 的长度
int top = -1;
for (int i = 0; i < s.length(); i++) {
char c = s.charAt(i);
// 当 top > 0,即栈中有字符时,当前字符如果和栈中字符相等,弹出栈顶字符,同时 top--
if (top >= 0 && res.charAt(top) == c) {
res.deleteCharAt(top);
top--;
// 否则,将该字符 入栈,同时top++
} else {
res.append(c);
top++;
}
}
return res.toString();
}
}
去掉括号后表达式无歧义,上式即便写成 1 2 + 3 4 + * 也可以依据次序计算出正确结果。
适合用栈操作运算:遇到数字则入栈;遇到算符则取出栈顶两个数字进行计算,并将结果压入栈中。
在上一篇文章中1047.删除字符串中的所有相邻重复项 (opens new window)提到了 递归就是用栈来实现的。
所以栈与递归之间在某种程度上是可以转换的! 这一点我们在后续讲解二叉树的时候,会更详细的讲解到。
那么来看一下本题,其实逆波兰表达式相当于是二叉树中的后序遍历。 大家可以把运算符作为中间节点,按照后序遍历的规则画出一个二叉树。
但我们没有必要从二叉树的角度去解决这个问题,只要知道逆波兰表达式是用后续遍历的方式把二叉树序列化了,就可以了。
在进一步看,本题中每一个子表达式要得出一个结果,然后拿这个结果再进行运算,那么这岂不就是一个相邻字符串消除的过程,和1047.删除字符串中的所有相邻重复项 (opens new window)中的对对碰游戏是不是就非常像了。
public int evalRPN(String[] tokens) {
Deque<Integer> stack = new LinkedList();
for (String s : tokens) {
if ("+".equals(s)) { // leetcode 内置jdk的问题,不能使用==判断字符串是否相等
stack.push(stack.pop() + stack.pop()); // 注意 - 和/ 需要特殊处理
} else if ("-".equals(s)) {
stack.push(-stack.pop() + stack.pop());
} else if ("*".equals(s)) {
stack.push(stack.pop() * stack.pop());
} else if ("/".equals(s)) {
int temp1 = stack.pop();
int temp2 = stack.pop();
stack.push(temp2 / temp1);
} else {
stack.push(Integer.valueOf(s));
}
}
return stack.pop();
}
每次窗口移动的时候,调用que.pop(滑动窗口中移除元素的数值),que.push(滑动窗口添加元素的数值),然后que.front()就返回我们要的最大值。
这么个队列香不香,要是有现成的这种数据结构是不是更香了!
可惜了,没有! 我们需要自己实现这么个队列。
然后在分析一下,队列里的元素一定是要排序的,而且要最大值放在出队口,要不然怎么知道最大值呢。
但如果把窗口里的元素都放进队列里,窗口移动的时候,队列需要弹出元素。
那么问题来了,已经排序之后的队列 怎么能把窗口要移除的元素(这个元素可不一定是最大值)弹出呢。
大家此时应该陷入深思…
其实队列没有必要维护窗口里的所有元素,只需要维护有可能成为窗口里最大值的元素就可以了,同时保证队里里的元素数值是由大到小的。
那么这个维护元素单调递减的队列就叫做单调队列,即单调递减或单调递增的队列。C++中没有直接支持单调队列,需要我们自己来一个单调队列
不要以为实现的单调队列就是 对窗口里面的数进行排序,如果排序的话,那和优先级队列又有什么区别了呢。
class MyQueue {
Deque<Integer> deque = new LinkedList<>();
//弹出元素时,比较当前要弹出的数值是否等于队列出口的数值,如果相等则弹出
//同时判断队列当前是否为空
void poll(int val) {
if (!deque.isEmpty() && val == deque.peek()) {
deque.poll();
}
}
//添加元素时,如果要添加的元素大于入口处的元素,就将入口元素弹出
//保证队列元素单调递减
//比如此时队列元素3,1,2将要入队,比1大,所以1弹出,此时队列:3,2
void add(int val) {
while (!deque.isEmpty() && val > deque.getLast()) {
deque.removeLast();
}
deque.add(val);
}
//队列队顶元素始终为最大值
int peek() {
return deque.peek();
}
}
class Solution {
public int[] maxSlidingWindow(int[] nums, int k) {
if (nums.length == 1) {
return nums;
}
int len = nums.length - k + 1;
//存放结果元素的数组
int[] res = new int[len];
int num = 0;
//自定义队列
MyQueue myQueue = new MyQueue();
//先将前k的元素放入队列
for (int i = 0; i < k; i++) {
myQueue.add(nums[i]);
}
res[num++] = myQueue.peek();
for (int i = k; i < nums.length; i++) {
//滑动窗口移除最前面的元素,移除是判断该元素是否放入队列
myQueue.poll(nums[i - k]);
//滑动窗口加入最后面的元素
myQueue.add(nums[i]);
//记录对应的最大值
res[num++] = myQueue.peek();
}
return res;
}
}
要统计元素出现频率
对频率排序
找出前K个高频元素
首先统计元素出现的频率,这一类的问题可以使用map来进行统计。
然后是对频率进行排序,这里我们可以使用一种 容器适配器就是优先级队列。
什么是优先级队列呢?
其实就是一个披着队列外衣的堆,因为优先级队列对外接口只是从队头取元素,从队尾添加元素,再无其他取元素的方式,看起来就是一个队列。
而且优先级队列内部元素是自动依照元素的权值排列。那么它是如何有序排列的呢?
缺省情况下priority_queue利用max-heap(大顶堆)完成对元素的排序,这个大顶堆是以vector为表现形式的complete binary tree(完全二叉树)。
什么是堆呢?
堆是一棵完全二叉树,树中每个结点的值都不小于(或不大于)其左右孩子的值。 如果父亲结点是大于等于左右孩子就是大顶堆,小于等于左右孩子就是小顶堆。
所以大家经常说的大顶堆(堆头是最大元素),小顶堆(堆头是最小元素),如果懒得自己实现的话,就直接用priority_queue(优先级队列)就可以了,底层实现都是一样的,从小到大排就是小顶堆,从大到小排就是大顶堆。
本题我们就要使用优先级队列来对部分频率进行排序。
为什么不用快排呢, 使用快排要将map转换为vector的结构,然后对整个数组进行排序, 而这种场景下,我们其实只需要维护k个有序的序列就可以了,所以使用优先级队列是最优的。
此时要思考一下,是使用小顶堆呢,还是大顶堆?
有的同学一想,题目要求前 K 个高频元素,那么果断用大顶堆啊。
那么问题来了,定义一个大小为k的大顶堆,在每次移动更新大顶堆的时候,每次弹出都把最大的元素弹出去了,那么怎么保留下来前K个高频元素呢。
而且使用大顶堆就要把所有元素都进行排序,那能不能只排序k个元素呢?
所以我们要用小顶堆,因为要统计最大前k个元素,只有小顶堆每次将最小的元素弹出,最后小顶堆里积累的才是前k个最大元素。
寻找前k个最大元素流程如图所示:(图中的频率只有三个,所以正好构成一个大小为3的小顶堆,如果频率更多一些,则用这个小顶堆进行扫描)
class Solution {
public int[] topKFrequent(int[] nums, int k) {
int[] result = new int[k];
HashMap<Integer, Integer> map = new HashMap<>();
for (int num : nums) {
map.put(num, map.getOrDefault(num, 0) + 1);
}
Set<Map.Entry<Integer, Integer>> entries = map.entrySet();
// 根据map的value值,构建于一个大顶堆(o1 - o2: 小顶堆, o2 - o1 : 大顶堆)
PriorityQueue<Map.Entry<Integer, Integer>> queue = new PriorityQueue<>((o1, o2) -> o2.getValue() - o1.getValue());
for (Map.Entry<Integer, Integer> entry : entries) {
queue.offer(entry);
}
for (int i = k - 1; i >= 0; i--) {
result[i] = queue.poll().getKey();
}
return result;
}
}