复习到后期,去做到前面内容的题目时,有一些需要记忆的结论就比较模糊,比如微分方程的特解形式、施密特正交、各种分布的概率密度等等。我便把这些模糊的点都记录下来了,整理在一起,方便随时查阅
基本形式: f ( x ) = ∑ n = 0 ∞ f ( n ) ( x 0 ) n ! ( x − x 0 ) n . f(x)=\sum_{n=0}^\infty \frac{f^{(n)}(x_0)}{n!}(x-x_0)^n. f(x)=n=0∑∞n!f(n)(x0)(x−x0)n. 常见展开式: e x = x n n ! = 1 + x + 1 2 x 2 + ⋯ + 1 n ! x n + ⋯ , − ∞ < x < + ∞ . \pmb{e^x}= \frac{x^n}{n!}=1+x+\frac{1}{2}x^2+\cdots+\frac{1}{n!}x^n+\cdots,-\infty
分数 1 / ( a x + b ) 1/(ax+b) 1/(ax+b) 的 n n n 阶导数: ( 1 a x + b ) ( n ) = ( − 1 ) n a n n ! ( a x + b ) n + 1 \big(\frac{1}{ax+b}\big)^{(n)}=(-1)^n\frac{a^nn!}{(ax+b)^{n+1}} (ax+b1)(n)=(−1)n(ax+b)n+1ann! ( sin x ) ( n ) = sin ( x + n π 2 ) , ( cos x ) ( n ) = cos ( x + n π 2 ) (\sin{x})^{(n)}=\sin{(x+\frac{n\pi}{2})},(\cos{x})^{(n)}=\cos{(x+\frac{n\pi}{2})} (sinx)(n)=sin(x+2nπ),(cosx)(n)=cos(x+2nπ)
首先是在区间 [ 0 , π / 2 ] [0,\pi/2] [0,π/2] 上 sin , cos \sin,\cos sin,cos 可以互换,即 ∫ 0 π / 2 f ( sin x ) d x = ∫ 0 π / 2 f ( cos x ) d x \int_0^{\pi/2}f(\sin x)dx=\int_0^{\pi/2}f(\cos x)dx ∫0π/2f(sinx)dx=∫0π/2f(cosx)dx 特别地,有华里士公式(点火公式): I n = ∫ 0 π / 2 ( sin x ) n d x = ∫ 0 π / 2 ( cos x ) n d x = n − 1 n I n − 2 , I 0 = π 2 , I 1 = 1. I_n=\int_0^{\pi/2}(\sin x)^ndx=\int_0^{\pi/2}(\cos x)^ndx=\frac{n-1}{n}I_{n-2},I_0=\frac{\pi}{2},I_1=1. In=∫0π/2(sinx)ndx=∫0π/2(cosx)ndx=nn−1In−2,I0=2π,I1=1. 可以推广到更大的区间,在 [ 0 , π ] [0,\pi] [0,π] 上,由于 sin x \sin x sinx 均为正,因此直接点火,乘个 2 就行。 ∫ 0 π ( sin x ) n d x = 2 ∫ 0 π / 2 ( sin x ) n d x . \int_0^{\pi}(\sin x)^ndx=2\int_0^{\pi/2}(\sin x)^ndx. ∫0π(sinx)ndx=2∫0π/2(sinx)ndx. cos x \cos x cosx 由于一半区间为负,因此奇数次和偶数次,奇数次为 0 (可以记忆为奇函数对称为 0 ),偶数次同样是乘 2 。 ∫ 0 π ( cos x ) n d x = 2 ∫ 0 π / 2 ( cos x ) n d x \int_0^{\pi}(\cos x)^ndx=2\int_0^{\pi/2}(\cos x)^ndx ∫0π(cosx)ndx=2∫0π/2(cosx)ndx 对于在区间 [ 0 , 2 π ] [0,2\pi] [0,2π] 上, sin , cos \sin,\cos sin,cos 均有正有负,因此奇数次为 0 ,偶数次乘一个 4 。 ∫ 0 2 π ( sin x ) n d x = ∫ 0 2 π ( cos x ) n d x = 4 ∫ 0 π / 2 ( sin x ) n d x . \int_0^{2\pi}(\sin x)^ndx=\int_0^{2\pi}(\cos x)^ndx=4\int_0^{\pi/2}(\sin x)^ndx. ∫02π(sinx)ndx=∫02π(cosx)ndx=4∫0π/2(sinx)ndx.
在 [ 0 , π ] [0,\pi] [0,π] 上可以降到 [ 0 , π / 2 ] [0,\pi/2] [0,π/2] 上;证明方法为拆区间,令 t = x − π / 2 t=x-\pi/2 t=x−π/2 ,把后半部分换掉。 ∫ 0 π f ( sin x ) d x = 2 ∫ 0 π / 2 f ( sin x ) d x , t h e n w e h a v e , ∫ 0 π / 2 f ( sin x ) d x = ∫ π / 2 π f ( sin x ) d x . \int_0^{\pi}f(\sin x)dx=2\int_0^{\pi/2}f(\sin x)dx,then\space we \space have,\int_0^{\pi/2}f(\sin x)dx=\int_{\pi/2}^{\pi}f(\sin x)dx. ∫0πf(sinx)dx=2∫0π/2f(sinx)dx,then we have,∫0π/2f(sinx)dx=∫π/2πf(sinx)dx. 多一个 x x x 可以提到积分外面来,即 ∫ 0 π x f ( sin x ) d x = π 2 ∫ 0 π f ( sin x ) d x = π ∫ 0 π / 2 f ( sin x ) d x . \int_0^{\pi}xf(\sin x)dx=\frac{\pi}{2}\int_0^{\pi}f(\sin x)dx=\pi\int_0^{\pi/2}f(\sin x)dx. ∫0πxf(sinx)dx=2π∫0πf(sinx)dx=π∫0π/2f(sinx)dx. 证明方法为令 t = x − π t=x-\pi t=x−π 。
r r r 表示几何体上一点到原点距离,从原点引一条射线看范围; θ \theta θ 表示 r r r 在 x O y xOy xOy 平面的投影直线与 x x x 轴正向的夹角,范围是 [ 0 , 2 π ] [0,2\pi] [0,2π]; φ \varphi φ 表示和 z z z 轴正向夹角,范围是 [ 0 , π ] [0,\pi] [0,π] ,想象喇叭开花。
变换公式为 { x = r cos θ sin φ y = r sin θ sin φ z = r cos φ , d x d y d z = r 2 sin φ d r d θ d φ . \begin{cases} x=r\cos\theta \sin\varphi\\ y=r\sin \theta \sin\varphi \\ z=r\cos\varphi\end{cases},dxdydz=r^2\sin\varphi \space drd\theta d\varphi. ⎩ ⎨ ⎧x=rcosθsinφy=rsinθsinφz=rcosφ,dxdydz=r2sinφ drdθdφ.
把一组线性无关的向量组转化为一组两两正交且规范的向量组的过程,称为施密特正交化。
设 α 1 , α 2 , ⋯ , α n \pmb{\alpha_1,\alpha_2,\cdots,\alpha_n} α1,α2,⋯,αn 线性无关,其正交化过程为:
(1)正交化 l e t β 1 = α 1 , β 2 = α 2 − ( α 2 , β 1 ) ( β 1 , β 1 ) β 1 β n = α n − ( α n , β 1 ) ( β 1 , β 1 ) β 1 − ( α n , β 2 ) ( β 2 , β 2 ) β 2 − ⋯ − ( α n , β n − 1 ) ( β n − 1 , β n − 1 ) β n − 1 let\space \pmb{\beta_1=\alpha_1,\beta_2=\alpha_2-\frac{(\alpha_2,\beta_1)}{(\beta_1,\beta_1)}\beta_1}\\ \pmb{\beta_n=\alpha_n-\frac{(\alpha_n,\beta_1)}{(\beta_1,\beta_1)}\beta_1-\frac{(\alpha_n,\beta_2)}{(\beta_2,\beta_2)}\beta_2}-\cdots-\pmb{\frac{(\alpha_n,\beta_{n-1})}{(\beta_{n-1},\beta_{n-1})}\beta_{n-1}} let β1=α1,β2=α2−(β1,β1)(α2,β1)β1βn=αn−(β1,β1)(αn,β1)β1−(β2,β2)(αn,β2)β2−⋯−(βn−1,βn−1)(αn,βn−1)βn−1 则向量组 β 1 , β 2 , ⋯ , β n \pmb{\beta_1,\beta_2,\cdots,\beta_n} β1,β2,⋯,βn 两两正交。
(2)规范化。各自除以各自的模即可。
首先是行列式,有以下三个结论:
(1) ∣ A 1 A 2 ⋱ A n ∣ = ∣ A 1 ∣ ⋅ ∣ A 2 ∣ ⋯ ∣ A n ∣ . \begin{vmatrix} \pmb{A_1} & & & \\ & \pmb{A_2} & & \\ & & \ddots & \\ & & & \pmb{A_n}\end{vmatrix}=|\pmb{A_1}|\cdot|\pmb{A_2}|\cdots|\pmb{A_n}|. A1A2⋱An =∣A1∣⋅∣A2∣⋯∣An∣.
(2) ∣ A C O B ∣ = ∣ A O O B ∣ = ∣ A ∣ ⋅ ∣ B ∣ . \begin{vmatrix} \pmb{A} & \pmb{C}\\ \pmb{O}& \pmb{B} \end{vmatrix}=\begin{vmatrix} \pmb{A} & \pmb{O}\\ \pmb{O}& \pmb{B} \end{vmatrix}=|\pmb{A}|\cdot|\pmb{B}|. AOCB = AOOB =∣A∣⋅∣B∣.
(3)设 A , B \pmb{A,B} A,B 分别为 m , n m,n m,n 阶方阵,则有 ∣ O A B O ∣ = ( − 1 ) m n ∣ A ∣ ⋅ ∣ B ∣ . \begin{vmatrix} \pmb{O} & \pmb{A}\\ \pmb{B}& \pmb{O} \end{vmatrix}=(-1)^{mn}|\pmb{A}|\cdot|\pmb{B}|. OBAO =(−1)mn∣A∣⋅∣B∣.
然后是转置的结论: [ A B C D ] T = [ A T C T B T D T ] . \begin{bmatrix} \pmb{A} & \pmb{B}\\ \pmb{C}& \pmb{D} \end{bmatrix}^T=\begin{bmatrix} \pmb{A^T} & \pmb{C^T}\\ \pmb{B^T}& \pmb{D^T} \end{bmatrix}. [ACBD]T=[ATBTCTDT].
接着是逆矩阵的结论: [ A O O B ] − 1 = [ A − 1 O O B − 1 ] , [ O A B O ] − 1 = [ O B − 1 A − 1 O ] . \begin{bmatrix} \pmb{A} & \pmb{O}\\ \pmb{O}& \pmb{B} \end{bmatrix}^{-1}=\begin{bmatrix} \pmb{A^{-1}} & \pmb{O}\\ \pmb{O}& \pmb{B^{-1}} \end{bmatrix},\begin{bmatrix} \pmb{O} & \pmb{A}\\ \pmb{B}& \pmb{O} \end{bmatrix}^{-1}=\begin{bmatrix} \pmb{O} & \pmb{B^{-1}}\\ \pmb{A^{-1}}& \pmb{O} \end{bmatrix}. [AOOB]−1=[A−1OOB−1],[OBAO]−1=[OA−1B−1O].
对可逆矩阵,转置、逆和伴随可以随意交换顺序,即 ( A − 1 ) T = ( A T ) − 1 , ( A ∗ ) − 1 = ( A − 1 ) ∗ , ( A ∗ ) T = ( A T ) ∗ . (\pmb{A}^{-1})^T=(\pmb{A}^{T})^{-1},(\pmb{A}^{*})^{-1}=(\pmb{A}^{-1})^{*},(\pmb{A}^{*})^T=(\pmb{A}^{T})^*. (A−1)T=(AT)−1,(A∗)−1=(A−1)∗,(A∗)T=(AT)∗.
矩阵的秩的定义:
设 A \pmb{A} A 是 m × n m\times n m×n 矩阵,从中任取 r r r 行 r r r 列,元素按照原有次序构成的 r r r 阶行列式,称为矩阵 A \pmb{A} A 的 r r r 阶子式。若 矩阵 A \pmb{A} A 中至少有一个 r r r 阶子式不为零,但所有 r + 1 r+1 r+1 阶子式(可能没有)均为零,称 r r r 为矩阵 A \pmb{A} A 的秩。
向量组秩的定义:
设 α 1 , α 2 , ⋯ , α n \pmb{\alpha_1,\alpha_2,\cdots,\alpha_n} α1,α2,⋯,αn 为一组向量,若其存在 r r r 个向量线性无关,且任意 r + 1 r+1 r+1 个向量(不一定有)一定线性相关,称这 r r r 个线性无关的向量构成的向量组为 α 1 , α 2 , ⋯ , α n \pmb{\alpha_1,\alpha_2,\cdots,\alpha_n} α1,α2,⋯,αn 的极大线性无关组,极大线性无关组所含向量的个数,称为向量组的秩。
矩阵的秩有如下性质: r ( A ) = r ( A T ) = r ( A A T ) = r ( A T A ) . [ r ( A ) + r ( B ) − n ] ≤ r ( A + B ) ≤ r ( A ) + r ( B ) . r ( A B ) ≤ min { r ( A ) , r ( B ) } . i f A B = O , t h e n , r ( A ) + r ( B ) ≤ n . i f ∣ P ∣ , ∣ Q ∣ ≠ 0 , r ( A ) = r ( P A ) = r ( A Q ) = r ( P A Q ) . r ( A ∗ ) = { n r ( A ) = n 1 r ( A ) = n − 1 0 r ( A ) < n − 1 , ( n ≥ 2 ) . l e t A m × n , B m × s , t h e n , max { r ( A ) , r ( A ) } ≤ r ( A ⋮ B ) ≤ r ( A ) + r ( B ) . α , β ≠ 0 , r ( A ) = 1 ⟺ A = α β T . r ( A O O B ) = r ( A ) + r ( A ) . r(\pmb{A})=r(\pmb{A}^T)=r(\pmb{A}\pmb{A}^T)=r(\pmb{A}^T\pmb{A}).\\ [r(\pmb{A})+r(\pmb{B})-n]\leq r(\pmb{A}+\pmb{B})\leq r(\pmb{A})+r(\pmb{B}). \\ r(\pmb{AB})\leq \min\{r(\pmb{A}),r(\pmb{B})\}. \\ if\space \pmb{AB=O},then\space ,r(\pmb{A})+r(\pmb{B})\leq n. \\ if\space |\pmb{P}|,|\pmb{Q}|\ne0,r(\pmb{A})=r(\pmb{PA})=r(\pmb{AQ})=r(\pmb{PAQ}).\\ r(\pmb{A}^*)=\begin{cases} n&r(\pmb{A})=n\\ 1&r(\pmb{A})=n-1\\ 0&r(\pmb{A})
{ 分布 ‾ 分布律或概率密度 ‾ 数学期望 ‾ 方差 ‾ ( 0 − 1 )分布 P { X = k } = p k ( 1 − p ) 1 − k , k = 0 , 1 p p ( 1 − p ) 二项分布 P { X = k } = C n k p k ( 1 − p ) n − k , k = 0 ⋯ n n p n p ( 1 − p ) 泊松分布 P { X = k } = λ k k ! e − λ , k = 0 , 1 , 2 , ⋯ λ λ 正态分布 f ( x ) = 1 2 π σ E X P ( − ( x − μ ) 2 2 σ 2 ) μ σ 2 几何分布 P { X = k } = ( 1 − p ) k − 1 p , k = 1 , 2 , ⋯ 1 / p ( 1 − p ) / p 2 \begin{cases}\underline{分布}&\underline{分布律或概率密度}&\underline{数学期望}&\underline{方差}\\ (0-1)分布&P\{X=k\}=p^k(1-p)^{1-k},k=0,1&p&p(1-p)\\ 二项分布& P\{X=k\}=C_n^kp^k(1-p)^{n-k},k=0\cdots n&np&np(1-p)\\ 泊松分布&P\{X=k\}=\frac{\lambda^k}{k!}e^{-\lambda},k=0,1,2,\cdots&\lambda&\lambda \\ 正态分布 & f(x)=\frac{1}{\sqrt{2\pi}\sigma}E XP(-\frac{(x-\mu)^2}{2\sigma^2})&\mu&\sigma^2\\ 几何分布&P\{X=k\}=(1-p)^{k-1}p,k=1,2,\cdots&1/p&(1-p)/p^2\end{cases} ⎩ ⎨ ⎧分布(0−1)分布二项分布泊松分布正态分布几何分布分布律或概率密度P{X=k}=pk(1−p)1−k,k=0,1P{X=k}=Cnkpk(1−p)n−k,k=0⋯nP{X=k}=k!λke−λ,k=0,1,2,⋯f(x)=2πσ1EXP(−2σ2(x−μ)2)P{X=k}=(1−p)k−1p,k=1,2,⋯数学期望pnpλμ1/p方差p(1−p)np(1−p)λσ2(1−p)/p2 均匀分布: f ( x ) = { 1 / ( b − a ) , a < x < b 0 , e l s e , E ( X ) = a + b 2 , D ( X ) = ( b − a ) 2 12 . f(x)=\begin{cases} 1/(b-a),&a