- 深度解析:大模型开源的真与假
rs勿忘初心
#AI大模型大模型开源闭源对比开源闭源区别
目录大模型企业开闭源策略各异开源大模型的定义与现状开源内容的局限性通常开放的内容实际未开放的关键内容法律与商业模式的约束开源许可证的重要性大模型的定制许可证及其限制性条款商业公司对开源大模型的策略和目的建立生态系统吸引开发者提升品牌形象保持竞争优势技术创新和改进技术与协助开发的挑战训练和推理过程的资源需求差异微调和衍生模型的技术实现及其局限性开源大模型在协作开发中的局限总结大模型的发展开启了AIG
- AI提示词终极秘籍:用「COT+分步法」让ChatGPT智商暴涨300%
曦紫沐
提示词人工智能提示词
掌握这两个关键词,普通指令也能触发AI的"博士级思考模式"一、为什么你的提示词总像"985学渣"?当别人能用一句话得到媲美资深研究员的分析报告,而你的查询却得到敷衍回答时,很可能是因为缺少两个AI思维激活器:✅COT(ChainofThought):让AI学会像人类一样分步推理✅Step-by-Step:用结构化指令唤醒AI的逻辑思维二、COT:给AI装上"思考导航仪"1.什么是COT?本质:通过
- 哈工大计算机系统lab7——微壳
awhiteknow0
软件构造作业要求计算机系统
实验报告实验(七)题目TinyShell微壳专业计算机类学号**********班级1903003学生李*涵指导教师郑**实验地点G709实验日期2021.6.4计算机科学与技术学院目录第1章实验基本信息...-4-1.1实验目的...-4-1.2实验环境与工具...-4-1.2.1硬件环境...-4-X64CPU;1.80GHz;12GRAM;512GHDSSD;-4-1.2.2软件环境...-
- DeepSeek开源周第二弹:DeepEP如何用RDMA+FP8让MoE模型飞起来?
曦紫沐
大模型deepseek
一、引言:MoE模型的通信瓶颈与DeepEP的诞生在混合专家(MoE)模型训练中,专家间的全对全(All-to-All)通信成为性能瓶颈。传统方案在跨节点传输时带宽利用率不足50%,延迟高达300μs以上。DeepSeek推出的DeepEP作为首个开源EP通信库,通过软硬件协同优化,将节点内通信带宽压榨至158GB/s(接近NVLink极限),跨节点RDMA延迟降至46GB/s,成为大模型训练/推
- 使用内置命令查看笔记本电池健康状态
jay丿
电脑单片机嵌入式硬件
如何使用powercfg/batteryreport命令查看笔记本电池健康状态在Windows系统中,了解笔记本电池的健康状态对于维护电脑性能和预测电池寿命至关重要。Windows10和Windows11系统提供了一个内置命令powercfg/batteryreport,可以生成一份详细的电池使用情况报告,帮助我们评估电池的健康状态。以下是使用此命令的详细教程:一、打开命令提示符快捷键打开:按下键
- 利用DSPy优化LangChain RAG系统的实战指南
scaFHIO
langchainpython
利用DSPy优化LangChainRAG系统的实战指南技术背景介绍DSPy是一个用于大语言模型(LLMs)的出色框架,它引入了一个自动编译器,能够教会模型如何执行你程序中的声明性步骤。具体来说,DSPy编译器会在内部追踪你的程序,然后为大型语言模型(LLMs)创建高质量的提示(或为小型LLMs训练自动微调),以教会它们任务的步骤。感谢OmarKhattab的努力,现在DSPy可以与LangChai
- 使用LangChain与GPT4All模型进行交互
bavDHAUO
langchain交互python
技术背景介绍近年来,开源模型和框架在AI技术领域迅猛发展。GPT4All是一个开源的对话机器人生态系统,旨在为用户提供干净的助手数据,包括代码、故事和对话。这篇文章将介绍如何使用LangChain与GPT4All模型进行交互,以实现智能问答功能。核心原理解析GPT4All是基于大型语言模型(LLMs)的开源项目,通过训练大量干净的数据,能够生成高质量的对话和回答。LangChain是一种用于简化与
- 前言:什么是大模型微调
伯牙碎琴
大模型微调深度学习人工智能机器学习大模型微调训练
一、大模型微调的基础知识1.什么是大模型微调?大模型微调(Fine-tuning)是指在预训练模型的基础上,针对特定的任务或数据集进行进一步训练的过程。预训练模型通常在大规模的通用数据上训练,具备广泛的语言理解和生成能力。通过微调,我们可以让模型更好地适应特定的领域或任务,例如情感分析、问答系统、文本生成等。2.为什么需要微调?适应特定任务:通用模型虽然功能强大,但在特定任务上可能表现不够精准。微
- 游戏语音趋势解析,社交互动有助于营造沉浸式体验
网易数智
IM即时通讯游戏人工智能音视频实时音视频信息与通信语音识别
语音交互的新架构出现2024年标志着对话语音AI取得了突破,出现了结合STT→LLM→TTS模型来聆听、推理和回应对话的协同语音系统。OpenAI的ChatGPT语音模式将语音转语音技术变成了现实,引入了基于音频和文本信息进行端到端预训练的模型,这些模型除了文本标记外,还能原生理解和生成音频。虽然OpenAI通过其RealtimeAPI实现的可能还不是完全端到端的,正如其演示中处理中断的挑战所证明
- H100生成式AI效能跃升指南
智能计算研究中心
其他
内容概要作为NVIDIAHopper架构的旗舰产品,H100GPU通过革命性的硬件设计与计算范式重构,为生成式AI工作负载提供了前所未有的加速能力。本文将从芯片架构创新出发,首先解析第四代TensorCore如何通过FP8精度支持与动态指令调度机制,实现矩阵运算效率的指数级提升;继而探讨显存子系统在带宽扩容与智能缓存分配上的突破,揭示其突破生成式AI内存墙的关键路径。在技术实践层面,文章系统梳理了
- 深度学习模型优化与医疗诊断应用突破
智能计算研究中心
其他
内容概要近年来,深度学习技术的迭代演进正在重塑医疗诊断领域的实践范式。随着PyTorch与TensorFlow等开源框架的持续优化,模型开发效率显著提升,为医疗场景下的复杂数据处理提供了技术基座。当前研究聚焦于迁移学习与模型压缩算法的协同创新,通过复用预训练模型的泛化能力与降低计算负载,有效解决了医疗数据样本稀缺与硬件资源受限的痛点问题。与此同时,自适应学习机制通过动态调整网络参数更新策略,在病理
- ZeRO分布式训练策略
AIGC_ZY
大模型分布式
ZeRO分布式训练策略详解一、核心设计原理ZeRO(ZeroRedundancyOptimizer)是微软提出的分布式训练优化框架,与传统数据并行方法不同,ZeRO通过将模型的参数、梯度和优化器状态分散到多个设备上,从而实现内存和计算资源的高效利用。ZeRO通过三级分片策略消除内存冗余,实现超大规模模型训练。其核心演进路线分为三个阶段:1.1ZeRO-1:优化器状态分片分片对象:优化器参数(如Ad
- 《揭秘机器学习中的交叉验证:模型评估的基石》
人工智能机器学习
在机器学习的复杂领域中,构建一个精准有效的模型是众多从业者的核心目标。然而,模型的性能评估绝非易事,它关乎模型能否在实际应用中发挥作用,而交叉验证则是这一过程中的关键技术,是保障模型可靠性与泛化能力的重要手段。交叉验证的核心意义抵御过拟合风险在机器学习的训练过程中,模型可能会过度适应训练数据的细节和噪声,从而在新数据上表现不佳,这就是过拟合现象。交叉验证通过将数据集划分为多个子集,模型在不同子集上
- 基于Pandas库封装Excel工具类
忆想不到的晖
pythonpandasgithubexcel工具类
引言Excel是一种广泛使用的电子表格软件,它提供了大量的数据处理和计算功能,被广泛应用于数据分析和报告中。在Python中,我们可以使用pandas库来读写和处理Excel文件。但是,为了更方便和快速地操作Excel文件,我们可以封装一个Excel工具类,提供常用的读写操作方法,以提高开发效率。本文将介绍如何使用Python封装Excel操作工具类,并提供相应的例子说明。1、列表转Excel文件
- DeepSeek超强搭档!这8款免费神器让你的效率翻倍
a小胡哦
Deepseekvscodegithub
作为AI领域的效率神器,DeepSeek凭借其强大的智能问答、文件解读和代码生成能力,已成为学习办公的必备工具。但如何让它发挥「1+1>2」的效果?我整理了8款免费软件,搭配DeepSeek让你的效率原地起飞!建议收藏⭐一、办公效率组合拳:告别加班,秒变职场达人WPSOffice推荐理由:免费+全功能办公套件,搭配DeepSeek的文档解析功能,可快速提取合同/报告重点,自动生成摘要。神级用法:用
- 扩散模型基本概念
AndrewHZ
深度学习新浪潮扩散模型计算机视觉流形学习生成式模型深度学习次深度学习人工智能
1.核心思想从最原始的DDPM来讲,扩散模型是用变分估计训练的马尔可夫链,相当于VAE+流模型。与标准化流相比,扩散模型的正向过程为预先定义的加噪过程,负责将图像x∼p(x)x\sim{p(x)}x∼
- 利用GPT开发应用005:Codex、Turbo、ChatGPT、GPT-4
翰墨之道
GPT开发GPT应用专栏GPT-1GPT-3GPT开发CodexTurboChatGPT
文章目录一、GPT-3Codex二、GPT-3.5Turbo二、ChatGPT三、GPT-4一、GPT-3Codex 2022年3月,OpenAI发布了GPT-3Codex的新版本。 这个新模型具有编辑和插入文本的能力。它们是通过截至2021年6月的数据进行训练的,并被描述为比之前版本更强大。到2022年11月底,OpenAI开始将这些模型称为GPT-3.5系列的一部分。 Codex系列模型
- ASFF算法
神笔馬良
Python入门知识深度学习人工智能
1.特征金字塔的缺点:对于单发检测器,在不同尺度上的不一致。2.采用启发式引导的特征选择:大实例通常与上层特征映射相关联,小实例与下层特征映射相关联。3.解决的问题:如果一幅图像同时包含大小目标,则不同层次特征之间的冲突往往占据特征金字塔的主要部分。这种不一致性干扰了训练过程中的梯度计算,降低了特征金字塔的有效性。4.这个问题存在的原因:当一个对象在某一层特征图中被赋值并被视为正值时,其他层特征图
- LTI的频域分析matlab,lti系统的频域分析实验报告.docx
Fred Camille
LTI的频域分析matlab
lti系统的频域分析实验报告实验4LTI系统的频域分析一、实验目的1)加深对LTI系统频率响应的基本概念的掌握和理解。2)学习和掌握LTI系统频率特性的分析方法。二、实验原理与方法1.连续时间系统的频率响应系统的频率响应定义为系统单位冲击响应h(t)的傅里叶变换,即??H(?)????h(?)e?j??d?若LTI连续时间系统的单位冲激响应为h(t),输入信号为x(t),根据系统的时域分析可知系统
- 最全中文对话数据集(不定期更新)
数据猎手小k
人工智能大数据
随着人工智能技术的发展,自然语言处理(NLP)领域中的对话系统逐渐成为研究的热点。为了提升对话系统的性能,需要大量的高质量对话数据来训练和优化模型。然而,中文对话数据相对于英文来说较为稀缺,且质量参差不齐,这限制了中文对话系统的发展。因此,构建大规模、高质量的中文对话数据集成为了一个迫切的需求。一、研究意义1、推动中文NLP发展:大规模高质量的中文对话数据集能够为中文自然语言处理领域的研究提供基础
- 【保姆级视频教程(二)】YOLOv12训练数据集构建:标签格式转换-划分-YAML 配置 避坑指南 | 小白也能轻松玩转目标检测!
一只云卷云舒
YOLOv12保姆级通关教程YOLO目标检测人工智能Ultralytics数据集YOLOv12小白教程
【2025全站首发】YOLOv12训练数据集构建:标签格式转换-划分-YAML配置避坑指南|小白也能轻松玩转目标检测!文章目录1.数据集准备1.1标签格式转换1.2数据集划分1.3yaml配置文件创建2.训练验证1.数据集准备示例数据集下载链接:PKU-Market-PCB数据集1.1标签格式转换cursorprompt请撰写一个py脚本。将@Annotations文件夹下的所有类别的xml格式的
- 远程办公2.0:如何通过技术实现全球化团队协作?
远程办公2.0时代:从“被迫适应”到“主动进化”的未来工作革命——前沿技术与趋势预测全解析引言:一场不可逆的全球工作革命2020年的一场疫情,让全球职场人第一次大规模体验了远程办公的“生存模式”,而五年后的今天,远程办公已从“权宜之计”进化为“战略选择”。根据《2022年未来办公调研报告》,到2025年,全球53%的企业将永久开放远程办公选项。与此同时,技术的爆发式迭代正推动远程办公迈入2.0时代
- DeepSeek全栈接入指南:从零到生产环境的深度实践
量子纠缠BUG
DeepSeek部署AIDeepSeek人工智能深度学习机器学习
第一章:DeepSeek技术体系全景解析1.1认知DeepSeek技术生态DeepSeek作为新一代人工智能技术平台,构建了覆盖算法开发、模型训练、服务部署的全链路技术栈。其核心能力体现在:1.1.1多模态智能引擎自然语言处理:支持文本生成(NLG)、语义理解(NLU)、情感分析等计算机视觉:提供图像分类、目标检测、OCR识别等CV能力语音交互:包含语音识别(ASR)、语音合成(TTS)及声纹识别
- 消费者产品报告2025-在通用人工智能时代重新获得相关性报告300+份集萃解读|附PDF下载
数据挖掘深度学习机器学习算法
原文链接:https://tecdat.cn/?p=40823在全球经济形势复杂多变、技术革新加速的当下,消费品行业正经历深刻变革。本报告汇总解读基于权威数据,深入剖析该行业在2024-2025年的发展态势,为企业提供市场洞察与策略建议,助力其在通用人工智能时代找准方向、重塑竞争优势。本报告汇总洞察基于文末470份消费者行业研究报告的数据,报告合集已分享在交流群,阅读原文进群和500+行业人士共同
- 大语言模型:数据分析报告自动化的未来趋势
theskylife
个人随笔数据分析语言模型数据分析自动化人工智能大语言模型
目录写在开头1.数据分析报告的传统挑战时间消耗技术壁垒错误风险可扩展性问题更新频率限制用户交互和定制化不足整合新技术的挑战2.大语言模型在报告生成中的作用自动化文本生成增强准确性和丰富性实时数据处理能力提高可访问性和用户交互3.一种实现的思路3.1.明确目标与设定任务3.2.数据准备3.3.使用大语言模型生成初步内容3.4.内容整合与优化3.5.数据可视化3.6.报告完善与发布3.7实际应用中的关
- python天气数据分析与处理,用python数据分析天气
2401_84504019
人工智能
本篇文章给大家谈谈python天气预报可视化分析报告,以及基于python的天气预测系统研究,希望对各位有所帮助,不要忘了收藏本站喔。基于大数据重庆市气象数据分析摘要信息化社会内需要与之针对性的信息获取途径,但是途径的扩展基本上为人们所努力的方向,由于站在的角度存在偏差,人们经常能够获得不同类型信息,这也是技术最为难以攻克的课题。针对气象数据等问题,对气象信息进行研究分析,然后开发设计出气象数据分
- 2025,AI变现有哪些机遇与挑战?
Imagination官方博客
人工智能
大模型的能力边界在不断拓宽,主流云端大模型普遍具备了多模态推理能力。技术路线上,也不再局限于算力堆叠,而是探索强化学习、符号推理、类脑计算等新路径。并且,投入更小、更垂直的小模型涌现,为特定领域的应用提供了更高效的解决方案。与此同时,我国大模型领域仍然存在多方面痛点,例如:云端训练成本高、高端算力存在“卡脖子”风险、优质数据匮乏、人才缺口、AI算法开源生态仍需强化、数据安全和隐私问题等等,仍是市场
- 上市公司财务报告数据大全1990-2022年度1387指标变量的详细说明参考
用数据说话用数据决策
动态规划数据结构
Symbol[证券代码]-以证券交易所公布的证券代码为准EndDate[统计截止日期]-YYYY-MM-DD,前四位表示会计报表公布年度StateTypeCode[报表类型]-1=合并会计报表;2=母公司会计报表Area[地区]-1、国内2、国外ApplyTypeCode[申请类型编码]-S5201=已申请;S5202=已获得;S5203=已授权;S5204=截至报告期末累计获得;S5205=截止
- haclon模板匹配
CallZhang210
haclon视觉检测
*打开窗口dev_open_window(0,0,512,512,'black',WindowHandle)*显示图像(用于创建模板的图像)read_image(Image,'D:/训练照片/4.png')dev_display(Image)*在图像上手动绘制ROI,即选择绘制的模板区域draw_rectangle1(WindowHandle,Row1,Column1,Row2,Column2)*
- 自编码器(Autoencoders)
路野yue
机器学习人工智能深度学习
自编码器(Autoencoders):自编码器由编码器和解码器组成,编码器将输入数据压缩为低维表示,解码器将其还原为原始数据。通过训练,自编码器能够学习数据的有效表示,常用于降维和特征提取。相比于独立模型,它的输入输出更灵活,且可以在输入完成后在完成解码。1.基本结构自编码器由两部分组成:编码器(Encoder):将输入数据压缩为低维表示(编码)。解码器(Decoder):从编码中重建原始数据。2
- ios内付费
374016526
ios内付费
近年来写了很多IOS的程序,内付费也用到不少,使用IOS的内付费实现起来比较麻烦,这里我写了一个简单的内付费包,希望对大家有帮助。
具体使用如下:
这里的sender其实就是调用者,这里主要是为了回调使用。
[KuroStoreApi kuroStoreProductId:@"产品ID" storeSender:self storeFinishCallBa
- 20 款优秀的 Linux 终端仿真器
brotherlamp
linuxlinux视频linux资料linux自学linux教程
终端仿真器是一款用其它显示架构重现可视终端的计算机程序。换句话说就是终端仿真器能使哑终端看似像一台连接上了服务器的客户机。终端仿真器允许最终用户用文本用户界面和命令行来访问控制台和应用程序。(LCTT 译注:终端仿真器原意指对大型机-哑终端方式的模拟,不过在当今的 Linux 环境中,常指通过远程或本地方式连接的伪终端,俗称“终端”。)
你能从开源世界中找到大量的终端仿真器,它们
- Solr Deep Paging(solr 深分页)
eksliang
solr深分页solr分页性能问题
转载请出自出处:http://eksliang.iteye.com/blog/2148370
作者:eksliang(ickes) blg:http://eksliang.iteye.com/ 概述
长期以来,我们一直有一个深分页问题。如果直接跳到很靠后的页数,查询速度会比较慢。这是因为Solr的需要为查询从开始遍历所有数据。直到Solr的4.7这个问题一直没有一个很好的解决方案。直到solr
- 数据库面试题
18289753290
面试题 数据库
1.union ,union all
网络搜索出的最佳答案:
union和union all的区别是,union会自动压缩多个结果集合中的重复结果,而union all则将所有的结果全部显示出来,不管是不是重复。
Union:对两个结果集进行并集操作,不包括重复行,同时进行默认规则的排序;
Union All:对两个结果集进行并集操作,包括重复行,不进行排序;
2.索引有哪些分类?作用是
- Android TV屏幕适配
酷的飞上天空
android
先说下现在市面上TV分辨率的大概情况
两种分辨率为主
1.720标清,分辨率为1280x720.
屏幕尺寸以32寸为主,部分电视为42寸
2.1080p全高清,分辨率为1920x1080
屏幕尺寸以42寸为主,此分辨率电视屏幕从32寸到50寸都有
适配遇到问题,已1080p尺寸为例:
分辨率固定不变,屏幕尺寸变化较大。
如:效果图尺寸为1920x1080,如果使用d
- Timer定时器与ActionListener联合应用
永夜-极光
java
功能:在控制台每秒输出一次
代码:
package Main;
import javax.swing.Timer;
import java.awt.event.*;
public class T {
private static int count = 0;
public static void main(String[] args){
- Ubuntu14.04系统Tab键不能自动补全问题解决
随便小屋
Ubuntu 14.04
Unbuntu 14.4安装之后就在终端中使用Tab键不能自动补全,解决办法如下:
1、利用vi编辑器打开/etc/bash.bashrc文件(需要root权限)
sudo vi /etc/bash.bashrc
接下来会提示输入密码
2、找到文件中的下列代码
#enable bash completion in interactive shells
#if
- 学会人际关系三招 轻松走职场
aijuans
职场
要想成功,仅有专业能力是不够的,处理好与老板、同事及下属的人际关系也是门大学问。如何才能在职场如鱼得水、游刃有余呢?在此,教您简单实用的三个窍门。
第一,多汇报
最近,管理学又提出了一个新名词“追随力”。它告诉我们,做下属最关键的就是要多请示汇报,让上司随时了解你的工作进度,有了新想法也要及时建议。不知不觉,你就有了“追随力”,上司会越来越了解和信任你。
第二,勤沟通
团队的力
- 《O2O:移动互联网时代的商业革命》读书笔记
aoyouzi
读书笔记
移动互联网的未来:碎片化内容+碎片化渠道=各式精准、互动的新型社会化营销。
O2O:Online to OffLine 线上线下活动
O2O就是在移动互联网时代,生活消费领域通过线上和线下互动的一种新型商业模式。
手机二维码本质:O2O商务行为从线下现实世界到线上虚拟世界的入口。
线上虚拟世界创造的本意是打破信息鸿沟,让不同地域、不同需求的人
- js实现图片随鼠标滚动的效果
百合不是茶
JavaScript滚动属性的获取图片滚动属性获取页面加载
1,获取样式属性值
top 与顶部的距离
left 与左边的距离
right 与右边的距离
bottom 与下边的距离
zIndex 层叠层次
例子:获取左边的宽度,当css写在body标签中时
<div id="adver" style="position:absolute;top:50px;left:1000p
- ajax同步异步参数async
bijian1013
jqueryAjaxasync
开发项目开发过程中,需要将ajax的返回值赋到全局变量中,然后在该页面其他地方引用,因为ajax异步的原因一直无法成功,需将async:false,使其变成同步的。
格式:
$.ajax({ type: 'POST', ur
- Webx3框架(1)
Bill_chen
eclipsespringmaven框架ibatis
Webx是淘宝开发的一套Web开发框架,Webx3是其第三个升级版本;采用Eclipse的开发环境,现在支持java开发;
采用turbine原型的MVC框架,扩展了Spring容器,利用Maven进行项目的构建管理,灵活的ibatis持久层支持,总的来说,还是一套很不错的Web框架。
Webx3遵循turbine风格,velocity的模板被分为layout/screen/control三部
- 【MongoDB学习笔记五】MongoDB概述
bit1129
mongodb
MongoDB是面向文档的NoSQL数据库,尽量业界还对MongoDB存在一些质疑的声音,比如性能尤其是查询性能、数据一致性的支持没有想象的那么好,但是MongoDB用户群确实已经够多。MongoDB的亮点不在于它的性能,而是它处理非结构化数据的能力以及内置对分布式的支持(复制、分片达到的高可用、高可伸缩),同时它提供的近似于SQL的查询能力,也是在做NoSQL技术选型时,考虑的一个重要因素。Mo
- spring/hibernate/struts2常见异常总结
白糖_
Hibernate
Spring
①ClassNotFoundException: org.aspectj.weaver.reflect.ReflectionWorld$ReflectionWorldException
缺少aspectjweaver.jar,该jar包常用于spring aop中
②java.lang.ClassNotFoundException: org.sprin
- jquery easyui表单重置(reset)扩展思路
bozch
formjquery easyuireset
在jquery easyui表单中 尚未提供表单重置的功能,这就需要自己对其进行扩展。
扩展的时候要考虑的控件有:
combo,combobox,combogrid,combotree,datebox,datetimebox
需要对其添加reset方法,reset方法就是把初始化的值赋值给当前的组件,这就需要在组件的初始化时将值保存下来。
在所有的reset方法添加完毕之后,就需要对fo
- 编程之美-烙饼排序
bylijinnan
编程之美
package beautyOfCoding;
import java.util.Arrays;
/*
*《编程之美》的思路是:搜索+剪枝。有点像是写下棋程序:当前情况下,把所有可能的下一步都做一遍;在这每一遍操作里面,计算出如果按这一步走的话,能不能赢(得出最优结果)。
*《编程之美》上代码有很多错误,且每个变量的含义令人费解。因此我按我的理解写了以下代码:
*/
- Struts1.X 源码分析之ActionForm赋值原理
chenbowen00
struts
struts1在处理请求参数之前,首先会根据配置文件action节点的name属性创建对应的ActionForm。如果配置了name属性,却找不到对应的ActionForm类也不会报错,只是不会处理本次请求的请求参数。
如果找到了对应的ActionForm类,则先判断是否已经存在ActionForm的实例,如果不存在则创建实例,并将其存放在对应的作用域中。作用域由配置文件action节点的s
- [空天防御与经济]在获得充足的外部资源之前,太空投资需有限度
comsci
资源
这里有一个常识性的问题:
地球的资源,人类的资金是有限的,而太空是无限的.....
就算全人类联合起来,要在太空中修建大型空间站,也不一定能够成功,因为资源和资金,技术有客观的限制....
&
- ORACLE临时表—ON COMMIT PRESERVE ROWS
daizj
oracle临时表
ORACLE临时表 转
临时表:像普通表一样,有结构,但是对数据的管理上不一样,临时表存储事务或会话的中间结果集,临时表中保存的数据只对当前
会话可见,所有会话都看不到其他会话的数据,即使其他会话提交了,也看不到。临时表不存在并发行为,因为他们对于当前会话都是独立的。
创建临时表时,ORACLE只创建了表的结构(在数据字典中定义),并没有初始化内存空间,当某一会话使用临时表时,ORALCE会
- 基于Nginx XSendfile+SpringMVC进行文件下载
denger
应用服务器Webnginx网络应用lighttpd
在平常我们实现文件下载通常是通过普通 read-write方式,如下代码所示。
@RequestMapping("/courseware/{id}")
public void download(@PathVariable("id") String courseID, HttpServletResp
- scanf接受char类型的字符
dcj3sjt126com
c
/*
2013年3月11日22:35:54
目的:学习char只接受一个字符
*/
# include <stdio.h>
int main(void)
{
int i;
char ch;
scanf("%d", &i);
printf("i = %d\n", i);
scanf("%
- 学编程的价值
dcj3sjt126com
编程
发一个人会编程, 想想以后可以教儿女, 是多么美好的事啊, 不管儿女将来从事什么样的职业, 教一教, 对他思维的开拓大有帮助
像这位朋友学习:
http://blog.sina.com.cn/s/articlelist_2584320772_0_1.html
VirtualGS教程 (By @林泰前): 几十年的老程序员,资深的
- 二维数组(矩阵)对角线输出
飞天奔月
二维数组
今天在BBS里面看到这样的面试题目,
1,二维数组(N*N),沿对角线方向,从右上角打印到左下角如N=4: 4*4二维数组
{ 1 2 3 4 }
{ 5 6 7 8 }
{ 9 10 11 12 }
{13 14 15 16 }
打印顺序
4
3 8
2 7 12
1 6 11 16
5 10 15
9 14
13
要
- Ehcache(08)——可阻塞的Cache——BlockingCache
234390216
并发ehcacheBlockingCache阻塞
可阻塞的Cache—BlockingCache
在上一节我们提到了显示使用Ehcache锁的问题,其实我们还可以隐式的来使用Ehcache的锁,那就是通过BlockingCache。BlockingCache是Ehcache的一个封装类,可以让我们对Ehcache进行并发操作。其内部的锁机制是使用的net.
- mysqldiff对数据库间进行差异比较
jackyrong
mysqld
mysqldiff该工具是官方mysql-utilities工具集的一个脚本,可以用来对比不同数据库之间的表结构,或者同个数据库间的表结构
如果在windows下,直接下载mysql-utilities安装就可以了,然后运行后,会跑到命令行下:
1) 基本用法
mysqldiff --server1=admin:12345
- spring data jpa 方法中可用的关键字
lawrence.li
javaspring
spring data jpa 支持以方法名进行查询/删除/统计。
查询的关键字为find
删除的关键字为delete/remove (>=1.7.x)
统计的关键字为count (>=1.7.x)
修改需要使用@Modifying注解
@Modifying
@Query("update User u set u.firstna
- Spring的ModelAndView类
nicegege
spring
项目中controller的方法跳转的到ModelAndView类,一直很好奇spring怎么实现的?
/*
* Copyright 2002-2010 the original author or authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* yo
- 搭建 CentOS 6 服务器(13) - rsync、Amanda
rensanning
centos
(一)rsync
Server端
# yum install rsync
# vi /etc/xinetd.d/rsync
service rsync
{
disable = no
flags = IPv6
socket_type = stream
wait
- Learn Nodejs 02
toknowme
nodejs
(1)npm是什么
npm is the package manager for node
官方网站:https://www.npmjs.com/
npm上有很多优秀的nodejs包,来解决常见的一些问题,比如用node-mysql,就可以方便通过nodejs链接到mysql,进行数据库的操作
在开发过程往往会需要用到其他的包,使用npm就可以下载这些包来供程序调用
&nb
- Spring MVC 拦截器
xp9802
spring mvc
Controller层的拦截器继承于HandlerInterceptorAdapter
HandlerInterceptorAdapter.java 1 public abstract class HandlerInterceptorAdapter implements HandlerIntercep