- 神经网络初始化 (init) 介绍
迷路爸爸180
神经网络人工智能深度学习初始化init
文章目录引言1.初始化的重要性1.1打破对称性1.2控制方差1.3加速收敛与提高泛化能力2.常见的初始化方法及其应用场景2.1Xavier/Glorot初始化2.2He初始化2.3正交初始化2.4其他初始化方法3.如何设置初始化4.基于BERT的文本分类如何进行初始化4.1项目背景4.2模型构建4.3模型训练与评估4.4结果分析结论参考资料引言在深度学习的世界中,构建一个高效且性能优异的神经网络模
- 3.ChatClient&Chat Model简化与AI模型的交互
laopeng301
SpringAI人工智能交互
1.ChatModel对话模型是一种利用人工智能技术,能够生成类似人类对话响应的工具。通过向预训练语言模型(如GPT等)发送提示词或部分对话内容,模型依据自身训练数据及对自然语言模式的理解,生成对话的延续或完整回复,并返回给应用程序。应用程序可以将其呈现给用户或用于进一步处理。SpringAIChatModelAPI设计目标为简单且可移植的接口,用于与各种人工智能模型进行交互,使开发人员能够在不同
- [2847]基于JAVA的蜂蜜销售智慧管理系统的设计与实现
阿鑫学长【毕设工场】
java开发语言毕业设计课程设计
毕业设计(论文)开题报告表姓名学院专业班级题目基于JAVA的蜂蜜销售智慧管理系统的设计与实现指导老师(一)选题的背景和意义在当前信息化高速发展的时代,企业管理方式也在不断更新和进步。其中,企业销售管理是企业运营管理的重要环节,对于企业的持续发展具有重要的影响。传统的销售管理模式已经不能满足现代企业的需求,因此,基于Java的蜂蜜销售智慧管理系统的设计与实现应运而生。首先,从背景上来看,随着信息技术
- 吴恩达系列——微调(Fine-tuning)与生成模型的应用
疯狂小料
aiprompt
微调(Fine-tuning)是指在已有预训练模型的基础上,对模型进行进一步训练,以适应特定任务或需求。在自然语言处理领域,生成模型通过微调可以在特定场景下生成更加准确、一致的输出,同时保护用户的隐私,减少不当信息的泄露。本文将结合生成模型的工作原理和实际应用,解释微调如何提升生成模型的效果,并探讨其在保护隐私方面的优势。1.生成模型与Prompt的作用生成模型,如GPT系列,通常通过接受一个输入
- Python数据分析高频面试题及答案
闲人编程
程序员面试python数据分析面试题核心
目录1.基础知识2.数据处理3.数据可视化4.机器学习模型5.进阶问题6.数据清洗与预处理7.数据转换与操作8.时间序列分析9.高级数据分析技术10.数据降维与特征选择11.模型评估与优化12.数据操作与转换13.数据筛选与分析14.数据可视化与报告15.数据统计与分析16.高级数据处理以下是一些Python数据分析的高频核心面试题及其答案,涵盖了基础知识、数据1.基础知识问1:Python中列表
- 【Python篇】深入机器学习核心:XGBoost 从入门到实战
半截诗
Pythonpython机器学习深度学习分类回归数据分析XGBoost
文章目录XGBoost完整学习指南:从零开始掌握梯度提升1.前言2.什么是XGBoost?2.1梯度提升简介3.安装XGBoost4.数据准备4.1加载数据4.2数据集划分5.XGBoost基础操作5.1转换为DMatrix格式5.2设置参数5.3模型训练5.4预测6.模型评估7.超参数调优7.1常用超参数7.2网格搜索8.XGBoost特征重要性分析9.高级功能扩展9.1模型解释与可解释性9.2
- 【YOLOv8杂草作物目标检测】
stsdddd
YOLO目标检测目标检测YOLO目标检测人工智能
YOLOv8杂草目标检测算法介绍模型和数据集下载算法介绍YOLOv8在禾本科杂草目标检测方面有显著的应用和效果。以下是一些关键信息的总结:农作物幼苗与杂草检测系统:基于YOLOv8深度学习框架,通过2822张图片训练了一个目标检测模型,用于检测田间的农作物幼苗与杂草对象。该系统支持图片、视频以及摄像头进行目标检测,并能保存检测结果。系统界面可实时显示目标位置、目标总数、置信度、用时等信息。YOLO
- 我学会了独立
tailwind-css
讲述自己学会独立的过程。有一次,爸爸妈妈出差了,我只好自己照顾自己。一开始,我手忙脚乱,不会做饭、不会洗衣服。但在不断尝试和摸索中,我慢慢学会了煮简单的饭菜,学会了洗衣服、打扫房间。通过这次经历,我不仅学会了独立生活,还体会到了父母的辛苦,也变得更加自信和坚强。
- 华为OD机试C卷-- 跳格子3(Java & JS & Python & C)
飞码创造者
华为OD机试题库华为odc语言javajavascriptpython
获取题库不需要订阅专栏,可直接私信我进入CSDN领军人物top1博主的华为OD交流圈观看完整题库、最新面试实况、考试报告等内容以及大佬一对一答疑。题目描述小明和朋友们一起玩跳格子游戏,每个格子上有特定的分数score=[1,-1,-6,7,-17,7],从起点score[0]开始,每次最大的步长为k,请你返回小明跳到终点score[n-1]时,能得到的最大得分。输入描述第一行输入总的格子数量n第二
- 我学会了独立
tailwind-css
讲述自己学会独立的过程。有一次,爸爸妈妈出差了,我只好自己照顾自己。一开始,我手忙脚乱,不会做饭、不会洗衣服。但在不断尝试和摸索中,我慢慢学会了煮简单的饭菜,学会了洗衣服、打扫房间。通过这次经历,我不仅学会了独立生活,还体会到了父母的辛苦,也变得更加自信和坚强。
- 我学会了独立
tailwind-css
讲述自己学会独立的过程。有一次,爸爸妈妈出差了,我只好自己照顾自己。一开始,我手忙脚乱,不会做饭、不会洗衣服。但在不断尝试和摸索中,我慢慢学会了煮简单的饭菜,学会了洗衣服、打扫房间。通过这次经历,我不仅学会了独立生活,还体会到了父母的辛苦,也变得更加自信和坚强。
- NVIDIA Hopper解说
白总Server
redis数据库缓存rustmongodb大数据数据仓库
NVIDIAHopper架构是NVIDIA推出的面向高性能计算(HPC)和人工智能(AI)的最新一代GPU架构。它代表了NVIDIA在加速计算领域的最新进展,旨在为AI训练和推理、HPC应用提供前所未有的性能提升。NVIDIAHopper架构和基于该架构的GPU产品H100的详细信息:NVIDIAHopper架构技术特点:第四代TensorCore:Hopper架构引入了第四代TensorCore
- LLMs,即大型语言模型
maopig
AI语言模型人工智能自然语言处理
LLMs,即大型语言模型,是一类基于深度学习的人工智能模型,它们通过海量的数据和大量的计算资源进行训练,可以理解和生成自然语言。LLMs的核心架构是Transformer,其关键在于自注意力机制,使得模型能够同时对输入的所有位置进行“关注”,从而更好地捕捉长距离的语义依赖关系。LLMs在众多领域都有广泛的应用,如自然语言理解(NLU),语言生成,以及语音识别和合成等。例如,它们能够理解人类的语言
- 第79期 | GPTSecurity周报
云起无垠
GPTSecurityAIGCgpt
GPTSecurity是一个涵盖了前沿学术研究和实践经验分享的社区,集成了生成预训练Transformer(GPT)、人工智能生成内容(AIGC)以及大语言模型(LLM)等安全领域应用的知识。在这里,您可以找到关于GPT/AIGC/LLM最新的研究论文、博客文章、实用的工具和预设指令(Prompts)。现为了更好地知悉近一周的贡献内容,现总结如下。SecurityPapers1.TrojanWhi
- 第60期 | GPTSecurity周报
云起无垠
GPTSecurity人工智能语言模型网络安全
GPTSecurity是一个涵盖了前沿学术研究和实践经验分享的社区,集成了生成预训练Transformer(GPT)、人工智能生成内容(AIGC)以及大语言模型(LLM)等安全领域应用的知识。在这里,您可以找到关于GPT/AIGC/LLM最新的研究论文、博客文章、实用的工具和预设指令(Prompts)。现为了更好地知悉近一周的贡献内容,现总结如下。SecurityPapers1.映射你的模型:评估
- 【LLM】大语言模型(LLMs)
林九生
人工智能语言模型人工智能自然语言处理
大型语言模型(LLMs)1.什么是大型语言模型?大型语言模型(LargeLanguageModel,LLM)是基于深度学习的自然语言处理模型,能够理解和生成自然语言文本。它们通过在大规模文本数据上进行训练,学习语言的语法、语义和各种语言特征,从而可以执行诸如文本生成、翻译、总结、问答等多种语言任务。以下是大型语言模型的定义和基本原理:1.1定义大型语言模型是由大量参数组成的神经网络,这些参数通过在
- 全新 Hopper 架构的Transformer 引擎有什么特点?
扫地的小何尚
人工智能
Transformer引擎是全新Hopper架构的一部分,将显著提升AI性能和功能,并助力在几天或几小时内训练大型模型。Transformer模型是当今广泛使用的语言模型(例如asBERT和GPT-3)的支柱。Transformer模型最初针对自然语言处理用例而开发,但因其通用性,现在逐步应用于计算机视觉、药物研发等领域。与此同时,模型大小不断呈指数级增长,现在已达到数万亿个参数。由于计算量巨大,
- 大语言模型(LLMs)入门教程(非常详细)从零基础入门到精通,看完这一篇就够了
大模型零基础教程
语言模型人工智能自然语言处理大模型
大语言模型(LLMs)作为人工智能(AI)领域的一项突破性发展,已经改变了自然语言处理(NLP)和机器学习(ML)应用的面貌。这些模型,包括OpenAI的GPT-4o和Google的gemini系列等,已经展现出了在理解和生成类人文本方面的令人印象深刻的能力,使它们成为各行各业的宝贵工具。如下这份指南将涵盖LLMs的基础知识、训练过程、用例和未来趋势……一.WhatareLargeLanguage
- 《多模态语言模型:一个开放探索的技术新领域》
XianxinMao
语言模型人工智能算法
核心主题多模态语言模型的特点仍处于探索和定义阶段没有固定的标准任务和评估方法研究方向高度开放技术路径主要存在两种方法:后期融合(LateFusion)从语言模型backbone开始添加图像编码器效果稳定,成本可控早期融合(EarlyFusion)从多模态数据集预训练效果尚不明显需要更大规模计算资源开放和透明的重要性促进知识累积和技术迭代降低技术准入门槛避免技术垄断便于安全性审计主要挑战技术层面数据
- 1.4走向不同:GPT 与 BERT 的选择——两大NLP模型的深度解析
少林码僧
AI大模型应用实战专栏自然语言处理gptbert
走向不同:GPT与BERT的选择——两大NLP模型的深度解析在自然语言处理(NLP)领域,GPT(GenerativePretrainedTransformer)和BERT(BidirectionalEncoderRepresentationsfromTransformers)无疑是最具代表性和影响力的两个模型。它们都基于Transformer架构,但在设计理念、任务应用和训练方式等方面存在显著差
- 1.8 GPT-4:开创人工智能的新纪元
少林码僧
AI大模型应用实战专栏人工智能
GPT-4:开创人工智能的新纪元自从OpenAI推出GPT-4以来,人工智能领域经历了显著的突破。作为“生成预训练转换器”家族中的最新成员,GPT-4不仅在功能上进行了提升,更在语言处理能力、理解深度以及适应性方面带来了全新的变革。本篇文章将深入探讨GPT-4的特点、创新以及它如何定义未来人工智能技术的发展。GPT-4的技术亮点1.规模与深度的进一步提升GPT-4的规模比前代模型更大,训练数据量和
- 第83期 | GPTSecurity周报
云起无垠
GPTSecurity人工智能网络安全
GPTSecurity是一个涵盖了前沿学术研究和实践经验分享的社区,集成了生成预训练Transformer(GPT)、人工智能生成内容(AIGC)以及大语言模型(LLM)等安全领域应用的知识。在这里,您可以找到关于GPT/AIGC/LLM最新的研究论文、博客文章、实用的工具和预设指令(Prompts)。现为了更好地知悉近一周的贡献内容,现总结如下。SecurityPapers1.混乱中建立秩序:人
- 使用神经网络拟合6项参数
Andrew_Xzw
神经网络人工智能深度学习开发语言机器学习python
使用神经网络拟合6项参数1.数据预处理1.1添加参数解析1.2数据预处理逻辑1.3数据归一化及划分1.4数据标签处理逻辑1.5数据转torch2.定义model2.1CNN_LSTM2.2Transformer3.定义train脚本3.1loss和optimizer3.2train3.3predict1.数据预处理1.1添加参数解析为了方便管理模型和训练等参数,统一用参数解析。defparse_a
- 华为OD机试C卷-- 机器人走迷宫(Java & JS & Python)
飞码创造者
华为OD机试题库华为odc语言机器人javascriptpythonjava
获取题库不需要订阅专栏,可直接私信我进入CSDN领军人物top1博主的华为OD交流圈观看完整题库、最新面试实况、考试报告等内容以及大佬一对一答疑。题目描述1.房间由XY的方格组成,例如下图为6*4的大小。每一个方格以坐标(x,y)描述。2.机器人固定从方格(0,0)出发,只能向东或者向北前进。出口固定为房间的最东北角,如下图的方格(5,3)。用例保证机器人可以从入口走到出口。3.房间有些方格是墙壁
- Spread.NET 18.0 支持.NET9.0 Crack
sdk大全
Spread.NETSpread.NET
Spread.NET全球销量第一的C#.NET电子表格,包含500多个Excel函数在C#.NET中提供真正类似Excel的电子表格体验,且不依赖Excel。创建财务、预算/预测、科学、工程、医疗保健、保险、教育、制造和许多其他类似的业务应用程序。使用全面的API创建企业电子表格、高级网格、仪表板、报告和数据输入表单递送类似Excel的电子表格经验,快速利用强大的高速计算引擎完成最复杂的计算导入和
- 我爱读书
antd
分享自己对读书的热爱。读书能让我走进一个个奇妙的世界,与古今中外的名人对话。读《西游记》,我仿佛跟随唐僧师徒四人历经九九八十一难,去往西天取经;读《海底两万里》,又如同潜入神秘的海底世界,探索未知的奥秘。读书还能让我学到知识,开阔视野,让我在知识的海洋里畅游,感受学习的乐趣。
- 目前主流游戏引擎的分析报告
游戏开发88
cocoscreatorunity游戏引擎
前言游戏引擎之争就像编程语言之争一样,在游戏开发圈永远是一个火爆的话题,目前市面上主流的一些游戏引擎,我们来给他们做一些比较,了解他们的历史,特点,为了严谨,备注一下写这个文章的时间编写时间是2021年4月20日。目前国内主流在用的游戏引擎有,Unity,Cocos,Laya,UE4,白鹭,接下来我们一起来分析这些引擎的特点。1:国民3D引擎UnityUnity,使用C#或Lua语言开发。国民3D
- 3DUnet实现3D医学影像的有效分割
Andrew_Xzw
python深度学习githubopencv计算机视觉分割
最近涉及到了3D医学影像的分割,网络上相关的实现比较少,因此进行实现记录。3DUnet实现3D医学影像的有效分割1.配置代码环境2.配置数据集以及模型文件3.训练4.预测1.配置代码环境这里介绍一个很好的开源项目,git为:https://github.com/ellisdg/3DUnetCNN.git。安装环境为:nibabel>=4.0.1numpy>=1.23.0#torch>=1.12.0
- Python编程与在线医疗平台数据挖掘与数据应用交互性研究
Allen_LVyingbo
数智化医院2025python数据挖掘
一、引言1.1研究背景与意义在互联网技术飞速发展的当下,在线医疗平台如雨后春笋般涌现,为人们的就医方式带来了重大变革。这些平台打破了传统医疗服务在时间和空间上的限制,使患者能够更加便捷地获取医疗资源。据相关报告显示,中国基于互联网的医疗保健行业已进入新的发展阶段,2023年中国在线医疗服务增长显著,高质量医院和在线医疗平台取得了长足进步,在线医疗的用户规模也在持续扩大,其中在线咨询服务的用户占比较
- 基于生成式人工智能的网联自动驾驶:通感融合决策技术
罗伯特之技术屋
行业信息处理技术与政策研究专栏人工智能自动驾驶机器学习
【摘要】探讨了生成式人工智能在网联自动驾驶技术中的潜在价值。现有研究主要侧重于传统感知决策和车联网技术,但却忽视了生成式人工智能在推动自动驾驶方面的重要作用。首先讨论了生成式人工智能技术如何提高自动驾驶决策、训练、感知和导航等模块的性能,接着探讨了其在融合了语义通信、通感一体和新型空口技术的下一代车联网中的角色,然后提出了基于人工智能代理的网联自动驾驶模型,最后强调生成式人工智能是实现车辆高级别自
- ios内付费
374016526
ios内付费
近年来写了很多IOS的程序,内付费也用到不少,使用IOS的内付费实现起来比较麻烦,这里我写了一个简单的内付费包,希望对大家有帮助。
具体使用如下:
这里的sender其实就是调用者,这里主要是为了回调使用。
[KuroStoreApi kuroStoreProductId:@"产品ID" storeSender:self storeFinishCallBa
- 20 款优秀的 Linux 终端仿真器
brotherlamp
linuxlinux视频linux资料linux自学linux教程
终端仿真器是一款用其它显示架构重现可视终端的计算机程序。换句话说就是终端仿真器能使哑终端看似像一台连接上了服务器的客户机。终端仿真器允许最终用户用文本用户界面和命令行来访问控制台和应用程序。(LCTT 译注:终端仿真器原意指对大型机-哑终端方式的模拟,不过在当今的 Linux 环境中,常指通过远程或本地方式连接的伪终端,俗称“终端”。)
你能从开源世界中找到大量的终端仿真器,它们
- Solr Deep Paging(solr 深分页)
eksliang
solr深分页solr分页性能问题
转载请出自出处:http://eksliang.iteye.com/blog/2148370
作者:eksliang(ickes) blg:http://eksliang.iteye.com/ 概述
长期以来,我们一直有一个深分页问题。如果直接跳到很靠后的页数,查询速度会比较慢。这是因为Solr的需要为查询从开始遍历所有数据。直到Solr的4.7这个问题一直没有一个很好的解决方案。直到solr
- 数据库面试题
18289753290
面试题 数据库
1.union ,union all
网络搜索出的最佳答案:
union和union all的区别是,union会自动压缩多个结果集合中的重复结果,而union all则将所有的结果全部显示出来,不管是不是重复。
Union:对两个结果集进行并集操作,不包括重复行,同时进行默认规则的排序;
Union All:对两个结果集进行并集操作,包括重复行,不进行排序;
2.索引有哪些分类?作用是
- Android TV屏幕适配
酷的飞上天空
android
先说下现在市面上TV分辨率的大概情况
两种分辨率为主
1.720标清,分辨率为1280x720.
屏幕尺寸以32寸为主,部分电视为42寸
2.1080p全高清,分辨率为1920x1080
屏幕尺寸以42寸为主,此分辨率电视屏幕从32寸到50寸都有
适配遇到问题,已1080p尺寸为例:
分辨率固定不变,屏幕尺寸变化较大。
如:效果图尺寸为1920x1080,如果使用d
- Timer定时器与ActionListener联合应用
永夜-极光
java
功能:在控制台每秒输出一次
代码:
package Main;
import javax.swing.Timer;
import java.awt.event.*;
public class T {
private static int count = 0;
public static void main(String[] args){
- Ubuntu14.04系统Tab键不能自动补全问题解决
随便小屋
Ubuntu 14.04
Unbuntu 14.4安装之后就在终端中使用Tab键不能自动补全,解决办法如下:
1、利用vi编辑器打开/etc/bash.bashrc文件(需要root权限)
sudo vi /etc/bash.bashrc
接下来会提示输入密码
2、找到文件中的下列代码
#enable bash completion in interactive shells
#if
- 学会人际关系三招 轻松走职场
aijuans
职场
要想成功,仅有专业能力是不够的,处理好与老板、同事及下属的人际关系也是门大学问。如何才能在职场如鱼得水、游刃有余呢?在此,教您简单实用的三个窍门。
第一,多汇报
最近,管理学又提出了一个新名词“追随力”。它告诉我们,做下属最关键的就是要多请示汇报,让上司随时了解你的工作进度,有了新想法也要及时建议。不知不觉,你就有了“追随力”,上司会越来越了解和信任你。
第二,勤沟通
团队的力
- 《O2O:移动互联网时代的商业革命》读书笔记
aoyouzi
读书笔记
移动互联网的未来:碎片化内容+碎片化渠道=各式精准、互动的新型社会化营销。
O2O:Online to OffLine 线上线下活动
O2O就是在移动互联网时代,生活消费领域通过线上和线下互动的一种新型商业模式。
手机二维码本质:O2O商务行为从线下现实世界到线上虚拟世界的入口。
线上虚拟世界创造的本意是打破信息鸿沟,让不同地域、不同需求的人
- js实现图片随鼠标滚动的效果
百合不是茶
JavaScript滚动属性的获取图片滚动属性获取页面加载
1,获取样式属性值
top 与顶部的距离
left 与左边的距离
right 与右边的距离
bottom 与下边的距离
zIndex 层叠层次
例子:获取左边的宽度,当css写在body标签中时
<div id="adver" style="position:absolute;top:50px;left:1000p
- ajax同步异步参数async
bijian1013
jqueryAjaxasync
开发项目开发过程中,需要将ajax的返回值赋到全局变量中,然后在该页面其他地方引用,因为ajax异步的原因一直无法成功,需将async:false,使其变成同步的。
格式:
$.ajax({ type: 'POST', ur
- Webx3框架(1)
Bill_chen
eclipsespringmaven框架ibatis
Webx是淘宝开发的一套Web开发框架,Webx3是其第三个升级版本;采用Eclipse的开发环境,现在支持java开发;
采用turbine原型的MVC框架,扩展了Spring容器,利用Maven进行项目的构建管理,灵活的ibatis持久层支持,总的来说,还是一套很不错的Web框架。
Webx3遵循turbine风格,velocity的模板被分为layout/screen/control三部
- 【MongoDB学习笔记五】MongoDB概述
bit1129
mongodb
MongoDB是面向文档的NoSQL数据库,尽量业界还对MongoDB存在一些质疑的声音,比如性能尤其是查询性能、数据一致性的支持没有想象的那么好,但是MongoDB用户群确实已经够多。MongoDB的亮点不在于它的性能,而是它处理非结构化数据的能力以及内置对分布式的支持(复制、分片达到的高可用、高可伸缩),同时它提供的近似于SQL的查询能力,也是在做NoSQL技术选型时,考虑的一个重要因素。Mo
- spring/hibernate/struts2常见异常总结
白糖_
Hibernate
Spring
①ClassNotFoundException: org.aspectj.weaver.reflect.ReflectionWorld$ReflectionWorldException
缺少aspectjweaver.jar,该jar包常用于spring aop中
②java.lang.ClassNotFoundException: org.sprin
- jquery easyui表单重置(reset)扩展思路
bozch
formjquery easyuireset
在jquery easyui表单中 尚未提供表单重置的功能,这就需要自己对其进行扩展。
扩展的时候要考虑的控件有:
combo,combobox,combogrid,combotree,datebox,datetimebox
需要对其添加reset方法,reset方法就是把初始化的值赋值给当前的组件,这就需要在组件的初始化时将值保存下来。
在所有的reset方法添加完毕之后,就需要对fo
- 编程之美-烙饼排序
bylijinnan
编程之美
package beautyOfCoding;
import java.util.Arrays;
/*
*《编程之美》的思路是:搜索+剪枝。有点像是写下棋程序:当前情况下,把所有可能的下一步都做一遍;在这每一遍操作里面,计算出如果按这一步走的话,能不能赢(得出最优结果)。
*《编程之美》上代码有很多错误,且每个变量的含义令人费解。因此我按我的理解写了以下代码:
*/
- Struts1.X 源码分析之ActionForm赋值原理
chenbowen00
struts
struts1在处理请求参数之前,首先会根据配置文件action节点的name属性创建对应的ActionForm。如果配置了name属性,却找不到对应的ActionForm类也不会报错,只是不会处理本次请求的请求参数。
如果找到了对应的ActionForm类,则先判断是否已经存在ActionForm的实例,如果不存在则创建实例,并将其存放在对应的作用域中。作用域由配置文件action节点的s
- [空天防御与经济]在获得充足的外部资源之前,太空投资需有限度
comsci
资源
这里有一个常识性的问题:
地球的资源,人类的资金是有限的,而太空是无限的.....
就算全人类联合起来,要在太空中修建大型空间站,也不一定能够成功,因为资源和资金,技术有客观的限制....
&
- ORACLE临时表—ON COMMIT PRESERVE ROWS
daizj
oracle临时表
ORACLE临时表 转
临时表:像普通表一样,有结构,但是对数据的管理上不一样,临时表存储事务或会话的中间结果集,临时表中保存的数据只对当前
会话可见,所有会话都看不到其他会话的数据,即使其他会话提交了,也看不到。临时表不存在并发行为,因为他们对于当前会话都是独立的。
创建临时表时,ORACLE只创建了表的结构(在数据字典中定义),并没有初始化内存空间,当某一会话使用临时表时,ORALCE会
- 基于Nginx XSendfile+SpringMVC进行文件下载
denger
应用服务器Webnginx网络应用lighttpd
在平常我们实现文件下载通常是通过普通 read-write方式,如下代码所示。
@RequestMapping("/courseware/{id}")
public void download(@PathVariable("id") String courseID, HttpServletResp
- scanf接受char类型的字符
dcj3sjt126com
c
/*
2013年3月11日22:35:54
目的:学习char只接受一个字符
*/
# include <stdio.h>
int main(void)
{
int i;
char ch;
scanf("%d", &i);
printf("i = %d\n", i);
scanf("%
- 学编程的价值
dcj3sjt126com
编程
发一个人会编程, 想想以后可以教儿女, 是多么美好的事啊, 不管儿女将来从事什么样的职业, 教一教, 对他思维的开拓大有帮助
像这位朋友学习:
http://blog.sina.com.cn/s/articlelist_2584320772_0_1.html
VirtualGS教程 (By @林泰前): 几十年的老程序员,资深的
- 二维数组(矩阵)对角线输出
飞天奔月
二维数组
今天在BBS里面看到这样的面试题目,
1,二维数组(N*N),沿对角线方向,从右上角打印到左下角如N=4: 4*4二维数组
{ 1 2 3 4 }
{ 5 6 7 8 }
{ 9 10 11 12 }
{13 14 15 16 }
打印顺序
4
3 8
2 7 12
1 6 11 16
5 10 15
9 14
13
要
- Ehcache(08)——可阻塞的Cache——BlockingCache
234390216
并发ehcacheBlockingCache阻塞
可阻塞的Cache—BlockingCache
在上一节我们提到了显示使用Ehcache锁的问题,其实我们还可以隐式的来使用Ehcache的锁,那就是通过BlockingCache。BlockingCache是Ehcache的一个封装类,可以让我们对Ehcache进行并发操作。其内部的锁机制是使用的net.
- mysqldiff对数据库间进行差异比较
jackyrong
mysqld
mysqldiff该工具是官方mysql-utilities工具集的一个脚本,可以用来对比不同数据库之间的表结构,或者同个数据库间的表结构
如果在windows下,直接下载mysql-utilities安装就可以了,然后运行后,会跑到命令行下:
1) 基本用法
mysqldiff --server1=admin:12345
- spring data jpa 方法中可用的关键字
lawrence.li
javaspring
spring data jpa 支持以方法名进行查询/删除/统计。
查询的关键字为find
删除的关键字为delete/remove (>=1.7.x)
统计的关键字为count (>=1.7.x)
修改需要使用@Modifying注解
@Modifying
@Query("update User u set u.firstna
- Spring的ModelAndView类
nicegege
spring
项目中controller的方法跳转的到ModelAndView类,一直很好奇spring怎么实现的?
/*
* Copyright 2002-2010 the original author or authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* yo
- 搭建 CentOS 6 服务器(13) - rsync、Amanda
rensanning
centos
(一)rsync
Server端
# yum install rsync
# vi /etc/xinetd.d/rsync
service rsync
{
disable = no
flags = IPv6
socket_type = stream
wait
- Learn Nodejs 02
toknowme
nodejs
(1)npm是什么
npm is the package manager for node
官方网站:https://www.npmjs.com/
npm上有很多优秀的nodejs包,来解决常见的一些问题,比如用node-mysql,就可以方便通过nodejs链接到mysql,进行数据库的操作
在开发过程往往会需要用到其他的包,使用npm就可以下载这些包来供程序调用
&nb
- Spring MVC 拦截器
xp9802
spring mvc
Controller层的拦截器继承于HandlerInterceptorAdapter
HandlerInterceptorAdapter.java 1 public abstract class HandlerInterceptorAdapter implements HandlerIntercep