一致性hash负载均衡

Hash算法的问题

今天看下一致性hash,常见的负载均衡可能使用过hash,比如nginx中,如果使用session最简单就是通过hash,比如根据用户的请求ip进行hash,让不同用户的请求打到同一台服务器,这样状态处理起来最简单,对于session来说,如果现在重新上线了一台服务器,导致了所有请求hash之后的得到的服务器地址变了,也就是session可能全部丢失了,即使用户对应的服务器并没有重启,但是因为服务器数量发生了变化,导致分配到的服务器有所改变,这就是hash带来的问题。

一致性hash的使用场景

那么一致性hash就是解决hash的这些问题诞生的,一致性hash常见的落地场景可以想象下redis的数据,redis是设计了16384的hash槽,每个数据来的根据key做hash,然后分配到固定的hash槽,redis需要集群分片的时候不具体区分每一个key,是去分hash槽,然后新增节点的之后只需要分配给其一些hash槽,然后转移对应的数据过去即可,删除节点的时候也是,只需要把这个节点的数据分配给其他节点即可,没涉及到的数据不会有影响。

一致性hash概念

所以一致性hash的定义也就是,我先分配很多的hash节点,然后我每一个实际的提供服务的节点,负责一部分的hash节点,hash节点是固定的(比实际节点大很多),然后上下线节点只需要调整实际节点负责的节点数量即可。
实际大家说的hash环的问题,就是说,我的很多虚拟节点(hash节点)组成的环,然后让实际的提供服务的节点尽量均匀的落到hash节点上,后续的请求或者说数据,按照hash之后也落到虚拟hash节点上,这个节点可能并没有实际的服务节点,他就可以向后遍历找到对应提供服务的节点,也就代表着一个实际提供服务的节点负责他前面的所有虚拟节点,直到遇到上一个实际服务的节点。

一致性hash需要处理的问题

这样可能存在的问题就是实际服务提供者的hash结果倾斜怎么办,也就是所有节点都落到一片去了,这样前面的节点就需要负责绝大部分的请求,还是要想办法让其尽量均匀,也就是要给每个实际节点,可以多种hash算法,生成多个节点,让其尽可能均匀的分布到环上,让请求均匀分配到节点上
来看下dubbo怎么具体实现的这个问题,关键代码如下:

        ConsistentHashSelector(List<Invoker<T>> invokers, String methodName, int identityHashCode) {
            // treeMap方便向上取
            this.virtualInvokers = new TreeMap<Long, Invoker<T>>();
            this.identityHashCode = identityHashCode;
            URL url = invokers.get(0).getUrl();
            // 虚拟节点数量?默认160,这里是一个服务虚拟出来的节点
            this.replicaNumber = url.getMethodParameter(methodName, HASH_NODES, 160);
            String[] index = COMMA_SPLIT_PATTERN.split(url.getMethodParameter(methodName, HASH_ARGUMENTS, "0"));
            argumentIndex = new int[index.length];
            for (int i = 0; i < index.length; i++) {
                argumentIndex[i] = Integer.parseInt(index[i]);
            }
            for (Invoker<T> invoker : invokers) {
                String address = invoker.getUrl().getAddress();
                for (int i = 0; i < replicaNumber / 4; i++) {
                    // 这里也就是一个服务默认先虚拟160个节点
                    byte[] digest = Bytes.getMD5(address + i);
                    for (int h = 0; h < 4; h++) {
                        // 分别4位,4位的进行运算,也就是放四个值,每个invoker,使用不同位数得到的hash值
                        long m = hash(digest, h);
                        virtualInvokers.put(m, invoker);
                    }
                }
            }
        }
    	// hash算法,对其每一位进行处理,想要均匀
        private long hash(byte[] digest, int number) {
            return (((long) (digest[3 + number * 4] & 0xFF) << 24)
                    | ((long) (digest[2 + number * 4] & 0xFF) << 16)
                    | ((long) (digest[1 + number * 4] & 0xFF) << 8)
                    | (digest[number * 4] & 0xFF))
                    & 0xFFFFFFFFL;
        }
    	// 具体的选择算法,也就是hash结果选择,关键结构逻辑参考构造方法
        public Invoker<T> select(Invocation invocation) {
            byte[] digest = Bytes.getMD5(RpcUtils.getMethodName(invocation));
            return selectForKey(hash(digest, 0));
        }
    	// 具体的选择方法
        private Invoker<T> selectForKey(long hash) {
            // 向上取,TreeMap的方法
            Map.Entry<Long, Invoker<T>> entry = virtualInvokers.ceilingEntry(hash);
            if (entry == null) {
                // 没取到的取第一个,也就是造成一个环的概念,数据落到最后一个节点后面
                entry = virtualInvokers.firstEntry();
            }
            return entry.getValue();
        }

总结

可以看到dubbo为了处理数据倾斜的问题,默认虚拟160个节点,然后根据地址加上对应的值,然后又采用每一位数字的hash算法进行散列,得到的值,采用的数据结构就是TreeMap,是一个可排序的Map,可以直接向上取,ceilingEntry,数据过来之后hash得到值,然后取对应的节点,TreeMap兼具一定的查找性能能

你可能感兴趣的:(JAVA,哈希算法,负载均衡,算法,一致性hash,hash)