- 《高等数学》(同济大学·第7版)第七章 微分方程 第四节一阶线性微分方程
没有女朋友的程序员
高等数学
好的,这是将您提供的高等数学教案内容中的LaTeX公式转换为纯文本格式后的版本:同学们好!今天我们学习《高等数学》第七章第四节“一阶线性微分方程”。这是一阶微分方程中最重要、应用最广泛的一类方程,掌握它的解法对后续学习(如微分方程的应用、高阶线性微分方程)至关重要。我会用最通俗的语言,结合大量例子,帮你彻底掌握“一阶线性微分方程”的定义、解法和核心思想。一、一阶线性微分方程的定义:长什么样?1.标
- 蔡高厅老师 - 高等数学-阅读笔记 - 01 - 前言、函数【视频第01、02、03、】
Franklin
数学线性代数
高等数学前言;196学时,每周6课主要内容:上册一元、多元函数数,微分学、积分学、矢量代数、空间解析几何无穷级数、微分方程,多元函数微分学和积分学目的:高等数学3基:1高等数学的基本知识2高度数学的基本理论3高等数学的基本计算方法提高数学素养培养:抽象思维、逻辑推理、辩证的思想方法、空间想象能力、分析问题、解决问题的能力为进一步学习打下必要的学习基础和初等数学不同,研究的不是常量而是变量,变量和变
- 《高等数学》(同济大学·第7版)第九章 多元函数微分法及其应用第四节隐函数的求导公式
没有女朋友的程序员
高等数学
以下是将含LaTeX标记的内容转为纯文本的版本:同学们好!今天我们学习《高等数学》(同济·第7版)第九章第四节隐函数的求导公式。我会用最通俗的语言和具体例子,带你彻底理解这个核心概念。如果中途有疑问,随时提出,我们一步步解决!一、隐函数是什么?为什么需要它?1.显函数vs隐函数显函数:直接写出因变量和自变量的关系,例如:y=f(x)或z=f(x,y)隐函数:因变量和自变量的关系隐含在一个方程中,例
- 高等数学》(同济大学·第7版)第七章 微分方程 第五节可降阶的高阶微分方程
没有女朋友的程序员
高等数学
好的,这是将您提供的高等数学第七章第五节教案内容中的LaTeX公式转换为纯文本格式后的版本:同学们好!今天我们学习《高等数学》第七章第五节“可降阶的高阶微分方程”。高阶微分方程(如二阶、三阶)直接求解困难,但许多方程可以通过“降阶”转化为低阶方程(如一阶方程)来求解。本节重点讲解三类可降阶的高阶微分方程,掌握它们的解法对后续学习至关重要。我会用最通俗的语言,结合大量例子,帮你彻底掌握。一、可降阶高
- 《高等数学》(同济大学·第7版)第九章 多元函数微分法及其应用第三节多元复合函数的求导法则
没有女朋友的程序员
高等数学
以下是将含LaTeX标记的内容转为纯文本的版本:同学们好!今天我们学习《高等数学》(同济·第7版)第九章第三节多元复合函数求导法则。我会用“买菜路线”和“温度变化”两个生活例子,带你彻底理解这个核心概念。如果中途有疑问,随时提出,我们一步步解决!一、从买菜路线说起:为什么需要链式法则?场景:小明从家出发,先骑车到菜市场(路程x公里),再步行到超市(路程y公里)。已知:骑车速度v_x=20km/h,
- 高等数学》(同济大学·第7版)第七章 微分方程 第三节齐次方程
没有女朋友的程序员
高等数学
同学们好!今天我们学习《高等数学》第七章第三节“齐次方程”。这是微分方程中一类重要的可转化方程,掌握它的解法对后续学习(如线性微分方程)有重要意义。我会用最通俗的语言,结合大量例子,帮你彻底掌握“齐次方程”的定义、特点和解法。一、齐次方程的定义:什么是“齐次”?1.齐次方程的两种含义在微积分中,“齐次”有两种常见含义,但这里我们特指一阶微分方程中的齐次方程:若一阶微分方程可以写成以下形式:dydx
- 【机器学习】数学基础——张量(傻瓜篇)
一叶千舟
深度学习【理论】机器学习人工智能
目录前言一、张量的定义1.标量(0维张量)2.向量(1维张量)3.矩阵(2维张量)4.高阶张量(≥3维张量)二、张量的数学表示2.1张量表示法示例三、张量的运算3.1常见张量运算四、张量在深度学习中的应用4.1PyTorch示例:张量在神经网络中的运用五、总结:张量的多维世界延伸阅读前言在机器学习、深度学习以及物理学中,张量是一个至关重要的概念。无论是在人工智能领域的神经网络中,还是在高等数学、物
- 线性代数和c语言先学哪个,线性代数和哪个更有用?
段丞博
线性代数和c语言先学哪个
一、从数学与应用数学这个专业来分析下“线性代数”和“高等数学”这两块的内容,无论哪块知识在“考研究生数学科目中的考试”都会涉汲到的,而且有些专业的考试也包括概率论与数理统计这块知识。线性代数和哪个更有用?1、线性代数内容:行列式、矩阵、向量、线性方程组、特征值和特征向量、二次型。2、高等数学内容:函数·极限·连续、导数与微分、不定积分、定积分及广义积分、中值定理的证明、常微分方程、一元微积分的应用
- ICBDDM2025:大数据与数字化管理前沿峰会
鸭鸭鸭进京赶烤
学术会议大数据图像处理计算机视觉AI编程人工智能机器人考研
在选择大学专业时,可以先从自身兴趣、能力和职业规划出发,初步确定几个感兴趣的领域。然后结合外部环境因素,如专业前景、教育资源和就业情况等,对这些专业进行深入的分析和比较。大数据专业:是一个热门且前沿的学科领域,它涉及到数据的收集、存储、处理、分析和应用等多个方面。课程设置基础课程数学基础:高等数学、线性代数、概率论与数理统计等。这些课程为大数据分析提供了必要的数学工具,例如线性代数在机器学习算法中
- 数学与加密货币:区块链技术的数学基础
AI天才研究院
计算ChatGPTAI人工智能与大数据javapythonjavascriptkotlingolang架构人工智能大厂程序员硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLM系统架构设计软件哲学Agent程序员实现财富自由
《数学与加密货币:区块链技术的数学基础》关键词数学基础加密货币区块链技术密码学分布式账本摘要本文旨在探讨数学在加密货币和区块链技术中的基础性作用。通过逐步分析,我们将深入理解数学概念如何支持加密货币的安全性、去中心化和不可篡改性。文章将涵盖初等数学和高等数学的应用,以及算法原理的讲解,帮助读者了解数学与加密货币的紧密联系。目录大纲背景介绍1.1.引言1.2.加密货币与区块链的基本概念数学基础2.1
- AI大模型从0到1记录学习 大模型技术之数学基础 day26
Gsen2819
算法人工智能大模型人工智能学习算法机器学习目标检测深度学习
高等数学导数导数的概念导数(derivative)是微积分中的一个概念。函数在某一点的导数是指这个函数在这一点附近的变化率(即函数在这一点的切线斜率)。导数的本质是通过极限的概念对函数进行局部的线性逼近。当函数f的自变量在一点x_0上产生一个增量h时,函数输出值的增量∆y与自变量增量∆x的比值在∆x趋于0时的极限如果存在,即为f在x_0处的导数,记作f’(x_0)、df/dx(x_0)或〖df/d
- 【概率论与数理统计】第二章 随机变量及其分布(1)
Arthur古德曼
概率论与数理统计概率论随机变量分布离散型连续型夏明亮
第二章随机变量及其分布第一章种学习了随机现象、随机试验、随机事件等概念,讨论了随机事件的关系、运算以及概率;且只考虑了个别事件下的频率问题。接下来,进一步第需要建立随机试验结果与实数的对应关系,这类似于函数的映射,我们称之为随机变量,以便使用高等数学的方法来研究随机试验。1离散型随机变量1.1随机变量的概念随机变量的数学定义:**定义1:**设EEE为随机试验,Ω\OmegaΩ为其样本空间,若对于
- 两矩阵相乘的秩的性质_浅析数学中的行列式与矩阵
weixin_39851977
两矩阵相乘的秩的性质利用逆矩阵解线性方程组
引言线性代数(高等代数)是进入大学之后学习代数的起点,和数学分析,解析几何并称数学三大基础课。需要注意的是,一般理工科学的是线性代数,数学系学的是高等代数,高等代数相比于线性代数,除了内容上增加了多项式以外,难度和深度也有增加。当然,高等数学和数学分析所学的内容也有所区别,这里就不再赘述。以如今的数学观点来看,线性代数几乎无处不在,它的概念与方法已经渗透到和数学相关的方方面面,这也正是为什么线性代
- 李永乐复习全书高等数学 第二章 一元函数微分学
古月忻
考研数学一高等数学刷题错题记录#考研数学一高等数学复习全书高等数学复习全书考研其他
2.1 导数与微分,导数的计算例2 设g(x)g(x)g(x)在x=0x=0x=0处存在二阶导数,且g(0)=1,g′(0)=2,g′′(0)=1g(0)=1,g'(0)=2,g''(0)=1g(0)=1,g′(0)=2,g′′(0)=1,并设f(x)={g(x)−e2xx,x≠00,x=0,f(x)=\begin{cases}\cfrac{g(x)-e^{2x}}{x},&x\ne0\\0,
- 《高等数学》(同济大学·第7版)第四章第四节有理函数的积分
没有女朋友的程序员
高等数学
一、有理函数积分的基本概念什么是有理函数?有理函数是指两个多项式相除的形式:R(x)=P(x)/Q(x)其中P(x)和Q(x)都是多项式。真分式与假分式真分式:分子次数小于分母次数例如:(x+1)/(x²+2x+3)假分式:分子次数大于等于分母次数例如:(x³+2x)/(x²+1)二、有理函数积分的解题步骤第一步:判断分式类型如果是假分式,先用多项式除法化为多项式与真分式的和。第二步:分母因式分解
- 《高等数学》(同济大学·第7版)第四章第二节换元积分法
没有女朋友的程序员
高等数学
一、换元积分法的基本思想换元积分法就像"搭积木",通过变量替换把复杂积分变成简单积分。主要有两种方法:第一类换元法(凑微分法)核心:把被积函数的一部分和dx凑成新的微分口诀:“看结构,凑微分,换变量,求积分”第二类换元法核心:直接设新的变量替换常用于含根式的积分二、第一类换元法详解我们通过具体例子来理解:例1:计算∫2x·cos(x²)dx解:观察发现x²的导数是2x,正好有2xdx设u=x²,那
- 《高等数学 第7版(同济大学 上册).pdf》资源介绍
孟津葵Gilda
《高等数学第7版(同济大学上册).pdf》资源介绍【下载地址】高等数学第7版同济大学上册.pdf资源介绍本资源提供《高等数学第7版(同济大学上册)》电子书,内容涵盖函数与极限、导数与微分、微分方程等核心章节,适合工科和理科学生系统学习。书中包含详细的理论讲解、丰富实例及习题答案,帮助读者深入理解高等数学知识。章节划分清晰,便于查找和学习。资源仅供学习研究使用,请合理利用,尊重知识产权。项目地址:h
- java实现y = x 函数的积分运算(附带源码)
Katie。
Java实战项目数学建模
1.项目背景详细介绍在高等数学中,积分是对函数进行累积求和的过程。对简单函数y=x的不定积分和定积分具有典型意义:不定积分:∫xdx=x²/2+C,其中C为常数项。定积分:∫₀ᵃxdx=a²/2。随着数值计算的广泛应用,如何在计算机程序中准确、高效地实现积分操作成为基础需求。Java作为通用语言,也需要借助数值方法或解析方法来完成函数积分。虽然y=x的积分具有解析解,但项目中往往需要处理任意函数,
- 高等数学基础(拉格朗日乘子法)
Psycho_MrZhang
人工智能数学基础数学算法
求解优化问题,拉格朗日乘子法是常用的方法之一问题引入已知目标函数f(x,y)=x2+y2f(x,y)=x^2+y^2f(x,y)=x2+y2,在约束条件xy=3xy=3xy=3下,求f(x,y)f(x,y)f(x,y)的最小值解:这是一个典型的约束优化问题,在之前最简单的办法就是通过约束条件将其中的变量进行变换,带入目标函数求出极点将y=3xy=\frac{3}{x}y=x3,带入f(x,y)=x
- 高等数学基础(牛顿/莱布尼茨公式)
Psycho_MrZhang
人工智能数学基础数学算法
牛顿/莱布尼茨公式主要是为定积分的计算提供了高效的方法,其主要含义在于求积分的函数(f(x)f(x)f(x))连续时候总是存在一条积分面积的函数(F(x)F(x)F(x))与之对应,牛顿莱布尼茨公式吧微分和积分联系了起来,提供了这种高效计算积分面积的方法参考视频理解:https://www.bilibili.com/video/BV1qo4y1G7Da/积分上限的函数及其导数设函数f(x)f(x)
- 考研数一公式笔记
代码小白 ac
人工智能
考研数学(一)核心结论与易错点详细笔记第一部分:高等数学一、函数、极限、连续(一)重要结论与公式等价无穷小替换(仅限乘除运算,极限过程为x→0或某特定值导致因子→0):sinx~xtanx~xarcsinx~xarctanx~x1-cosx~(1/2)x²e^x-1~xln(1+x)~x(1+x)^α-1~αxa^x-1~xlna(其中a>0,a≠1)重要极限:lim(sinx/x)=1(当x→0
- 先说爱的人为什么先离开
依旧天真无邪
Diary个人开发
2025年5月19日,15~23℃,贼好的一天,无事发生待办:2024年税务申报《高等数学2》取消考试资格学生名单《物理[2]》取消考试资格名单5月24日、25日监考报名《高等数学2》备课《物理[2]》备课职称申报材料教学技能大赛PPT遇见:无意间点到Google相册里面,看到好多曾经。犹记得当年谷歌相册号称无限存储空间,现在已经只有15GB了。这是我第一喜欢的女孩子,在读硕士期间,一起去过昆明失
- 26考研数学全年备考规划!!!
数学再爱我一次5555
考研学习大数据
参考书:《张宇考研数学基础30讲》、《1000题》、《张宇考研数学强化36讲》、《张宇8➕4预测卷备考工具:考研数学欧几里得小程序学习资源类全面资源覆盖:整合历年真题库、各类数学专辑和选择题库,涵盖高等数学、线性代数、概率论与数理统计等考研数学主要科目,满足用户各阶段复习需求。独家不跳步解析:每一道题目都配有详细到每一步骤的解析,确保用户完全掌握解题逻辑,能清楚了解重点题、难题的解题思路,有助于锻
- 高等数学第七章---微分方程(§7.1-§7.3微分方程概念、一阶微分方程、一阶微分线性方程)
门前云梦
高等数学考研笔记经验分享学习高等数学
§7.1微分方程有关概念例题已知曲线y=f(x)y=f(x)y=f(x)过点(1,2)(1,2)(1,2),且该曲线上任一点处的切线斜率为2x2x2x,求该曲线方程。解:由已知条件可得:曲线的导数关系:y′=2xy'=2xy′=2x(或dydx=2x\frac{dy}{dx}=2xdxdy=2x)(1)(1)(1)曲线过点(1,2)(1,2)(1,2):当x=1x=1x=1时,y=2y=2y=2(
- 硬件工程师的成长路线
可喜~可乐
嵌入式硬件硬件工程fpga开发pcb工艺物联网iot
目录第一阶段:基础知识储备第二阶段:核心技能模拟电路设计数字电路设计嵌入式系统开发系统优化和调试技巧第三阶段:专业化方向消费电子方向工业电子方向汽车电子方向第四阶段:进阶技能项目管理能力硬件可靠性设计产品认证与标准化技术文档管理团队协作与技术管理持续学习与创新第一阶段:基础知识储备在硬件工程领域,扎实的基础知识是一切深入学习的前提。数理基础不仅包括电磁学、高等数学和线性代数,还要掌握复变函数、概率
- 1.1函数、极限、连续
x峰峰
#数学考研数学极限
考研数学《函数、极限、连续》八大核心考点精讲引言函数、极限与连续是高等数学的基石,直接影响积分、微分方程等后续章节。本文从实战角度系统梳理8大核心考点,助你高效备考!考点一:函数的特性1️⃣单调性f′(x)≥0f'(x)\geq0f′(x)≥0(仅在孤点处取等号)⇒f(x)\Rightarrowf(x)⇒f(x)单调递增f′(x)≤0f'(x)\leq0f′(x)≤0(仅在孤点处取等号)⇒f(x)
- 数学:拉马努金如何想出计算圆周率的公式?
belldeep
算法科学家算法数学家
拉马努金(SrinivasaRamanujan)提出的圆周率(π)计算公式,源于他对数学模式的超凡直觉、对无穷级数和模形式的深刻洞察,以及独特的非传统数学思维方式。尽管他的思考过程带有强烈的个人色彩,甚至夹杂着神秘主义色彩,但可以从以下几个方面解析其可能的灵感来源:1.直觉与数学洞察力拉马努金自学成才,缺乏正规的高等数学训练,却对数学符号和级数有着惊人的直觉。他曾表示,许多公式是在梦中或冥想中“看
- 辞九门回忆
依旧天真无邪
Diary个人开发
2025年4月27日,13~30℃,挺好的待办:《高等数学2》期末试卷高数重修电子版材料冶金《物理》期末试卷《物理[2]》期末试卷批阅冶金《物理》作业→→统计平时成绩遇见:遇见一位小姐姐。感受或反思:不主动推动关系,是在等吗?还是在筛选?还是都不合适呢?给自己设定的期限是3个月。超过,可能就告辞啦,没有很多的时间。我会觉得可能需求不一样,没有双向奔赴的动力。而恰好双向奔赴这路才有意义。遇见:何警官
- 高等数学:从入门到精通
Yuner2000
线性代数
《高等数学:从入门到精通》目录第一卷:数学基础与核心工具第1章数学语言与逻辑基础集合论与数理逻辑集合的基本概念与运算(子、并、交、补、幂、笛卡尔积)容斥原理及其应用命题逻辑:联结词(与、或、非、蕴含、等价)、真值表、逻辑等价与逻辑推理量词(一阶逻辑):全称量词与存在量词,自由变量与约束变量证明方法:直接证明、间接证明、反证法、数学归纳法与超限归纳法数系与抽象结构自然数、整数、有理数、实数、复数的公
- latex笔记
houliabc
笔记
latex笔记一、前言1.环境配置2.命令行基础latex语法1.文档类型正文章节目录图片表格列表定理环境页面页码数学公式的输入方式行内公式行间公式上下标分式括号加粗大括号多行公式矩阵和行列式常用数学符号高等数学其它符号特殊符号特殊数字顶部符号(向量)箭头符号集合符号数学运算-关系比较符数学运算-算术操作符希腊字母demoUnicodeLatex&latex-input插件参考TEX绘图demoL
- windows下源码安装golang
616050468
golang安装golang环境windows
系统: 64位win7, 开发环境:sublime text 2, go版本: 1.4.1
1. 安装前准备(gcc, gdb, git)
golang在64位系
- redis批量删除带空格的key
bylijinnan
redis
redis批量删除的通常做法:
redis-cli keys "blacklist*" | xargs redis-cli del
上面的命令在key的前后没有空格时是可以的,但有空格就不行了:
$redis-cli keys "blacklist*"
1) "blacklist:12:
[email protected]
- oracle正则表达式的用法
0624chenhong
oracle正则表达式
方括号表达示
方括号表达式
描述
[[:alnum:]]
字母和数字混合的字符
[[:alpha:]]
字母字符
[[:cntrl:]]
控制字符
[[:digit:]]
数字字符
[[:graph:]]
图像字符
[[:lower:]]
小写字母字符
[[:print:]]
打印字符
[[:punct:]]
标点符号字符
[[:space:]]
- 2048源码(核心算法有,缺少几个anctionbar,以后补上)
不懂事的小屁孩
2048
2048游戏基本上有四部分组成,
1:主activity,包含游戏块的16个方格,上面统计分数的模块
2:底下的gridview,监听上下左右的滑动,进行事件处理,
3:每一个卡片,里面的内容很简单,只有一个text,记录显示的数字
4:Actionbar,是游戏用重新开始,设置等功能(这个在底下可以下载的代码里面还没有实现)
写代码的流程
1:设计游戏的布局,基本是两块,上面是分
- jquery内部链式调用机理
换个号韩国红果果
JavaScriptjquery
只需要在调用该对象合适(比如下列的setStyles)的方法后让该方法返回该对象(通过this 因为一旦一个函数称为一个对象方法的话那么在这个方法内部this(结合下面的setStyles)指向这个对象)
function create(type){
var element=document.createElement(type);
//this=element;
- 你订酒店时的每一次点击 背后都是NoSQL和云计算
蓝儿唯美
NoSQL
全球最大的在线旅游公司Expedia旗下的酒店预订公司,它运营着89个网站,跨越68个国家,三年前开始实验公有云,以求让客户在预订网站上查询假期酒店时得到更快的信息获取体验。
云端本身是用于驱动网站的部分小功能的,如搜索框的自动推荐功能,还能保证处理Hotels.com服务的季节性需求高峰整体储能。
Hotels.com的首席技术官Thierry Bedos上个月在伦敦参加“2015 Clou
- java笔记1
a-john
java
1,面向对象程序设计(Object-oriented Propramming,OOP):java就是一种面向对象程序设计。
2,对象:我们将问题空间中的元素及其在解空间中的表示称为“对象”。简单来说,对象是某个类型的实例。比如狗是一个类型,哈士奇可以是狗的一个实例,也就是对象。
3,面向对象程序设计方式的特性:
3.1 万物皆为对象。
- C语言 sizeof和strlen之间的那些事 C/C++软件开发求职面试题 必备考点(一)
aijuans
C/C++求职面试必备考点
找工作在即,以后决定每天至少写一个知识点,主要是记录,逼迫自己动手、总结加深印象。当然如果能有一言半语让他人收益,后学幸运之至也。如有错误,还希望大家帮忙指出来。感激不尽。
后学保证每个写出来的结果都是自己在电脑上亲自跑过的,咱人笨,以前学的也半吊子。很多时候只能靠运行出来的结果再反过来
- 程序员写代码时就不要管需求了吗?
asia007
程序员不能一味跟需求走
编程也有2年了,刚开始不懂的什么都跟需求走,需求是怎样就用代码实现就行,也不管这个需求是否合理,是否为较好的用户体验。当然刚开始编程都会这样,但是如果有了2年以上的工作经验的程序员只知道一味写代码,而不在写的过程中思考一下这个需求是否合理,那么,我想这个程序员就只能一辈写敲敲代码了。
我的技术不是很好,但是就不代
- Activity的四种启动模式
百合不是茶
android栈模式启动Activity的标准模式启动栈顶模式启动单例模式启动
android界面的操作就是很多个activity之间的切换,启动模式决定启动的activity的生命周期 ;
启动模式xml中配置
<activity android:name=".MainActivity" android:launchMode="standard&quo
- Spring中@Autowired标签与@Resource标签的区别
bijian1013
javaspring@Resource@Autowired@Qualifier
Spring不但支持自己定义的@Autowired注解,还支持由JSR-250规范定义的几个注解,如:@Resource、 @PostConstruct及@PreDestroy。
1. @Autowired @Autowired是Spring 提供的,需导入 Package:org.springframewo
- Changes Between SOAP 1.1 and SOAP 1.2
sunjing
ChangesEnableSOAP 1.1SOAP 1.2
JAX-WS
SOAP Version 1.2 Part 0: Primer (Second Edition)
SOAP Version 1.2 Part 1: Messaging Framework (Second Edition)
SOAP Version 1.2 Part 2: Adjuncts (Second Edition)
Which style of WSDL
- 【Hadoop二】Hadoop常用命令
bit1129
hadoop
以Hadoop运行Hadoop自带的wordcount为例,
hadoop脚本位于/home/hadoop/hadoop-2.5.2/bin/hadoop,需要说明的是,这些命令的使用必须在Hadoop已经运行的情况下才能执行
Hadoop HDFS相关命令
hadoop fs -ls
列出HDFS文件系统的第一级文件和第一级
- java异常处理(初级)
白糖_
javaDAOspring虚拟机Ajax
从学习到现在从事java开发一年多了,个人觉得对java只了解皮毛,很多东西都是用到再去慢慢学习,编程真的是一项艺术,要完成一段好的代码,需要懂得很多。
最近项目经理让我负责一个组件开发,框架都由自己搭建,最让我头疼的是异常处理,我看了一些网上的源码,发现他们对异常的处理不是很重视,研究了很久都没有找到很好的解决方案。后来有幸看到一个200W美元的项目部分源码,通过他们对异常处理的解决方案,我终
- 记录整理-工作问题
braveCS
工作
1)那位同学还是CSV文件默认Excel打开看不到全部结果。以为是没写进去。同学甲说文件应该不分大小。后来log一下原来是有写进去。只是Excel有行数限制。那位同学进步好快啊。
2)今天同学说写文件的时候提示jvm的内存溢出。我马上反应说那就改一下jvm的内存大小。同学说改用分批处理了。果然想问题还是有局限性。改jvm内存大小只能暂时地解决问题,以后要是写更大的文件还是得改内存。想问题要长远啊
- org.apache.tools.zip实现文件的压缩和解压,支持中文
bylijinnan
apache
刚开始用java.util.Zip,发现不支持中文(网上有修改的方法,但比较麻烦)
后改用org.apache.tools.zip
org.apache.tools.zip的使用网上有更简单的例子
下面的程序根据实际需求,实现了压缩指定目录下指定文件的方法
import java.io.BufferedReader;
import java.io.BufferedWrit
- 读书笔记-4
chengxuyuancsdn
读书笔记
1、JSTL 核心标签库标签
2、避免SQL注入
3、字符串逆转方法
4、字符串比较compareTo
5、字符串替换replace
6、分拆字符串
1、JSTL 核心标签库标签共有13个,
学习资料:http://www.cnblogs.com/lihuiyy/archive/2012/02/24/2366806.html
功能上分为4类:
(1)表达式控制标签:out
- [物理与电子]半导体教材的一个小问题
comsci
问题
各种模拟电子和数字电子教材中都有这个词汇-空穴
书中对这个词汇的解释是; 当电子脱离共价键的束缚成为自由电子之后,共价键中就留下一个空位,这个空位叫做空穴
我现在回过头翻大学时候的教材,觉得这个
- Flashback Database --闪回数据库
daizj
oracle闪回数据库
Flashback 技术是以Undo segment中的内容为基础的, 因此受限于UNDO_RETENTON参数。要使用flashback 的特性,必须启用自动撤销管理表空间。
在Oracle 10g中, Flash back家族分为以下成员: Flashback Database, Flashback Drop,Flashback Query(分Flashback Query,Flashbac
- 简单排序:插入排序
dieslrae
插入排序
public void insertSort(int[] array){
int temp;
for(int i=1;i<array.length;i++){
temp = array[i];
for(int k=i-1;k>=0;k--)
- C语言学习六指针小示例、一维数组名含义,定义一个函数输出数组的内容
dcj3sjt126com
c
# include <stdio.h>
int main(void)
{
int * p; //等价于 int *p 也等价于 int* p;
int i = 5;
char ch = 'A';
//p = 5; //error
//p = &ch; //error
//p = ch; //error
p = &i; //
- centos下php redis扩展的安装配置3种方法
dcj3sjt126com
redis
方法一
1.下载php redis扩展包 代码如下 复制代码
#wget http://redis.googlecode.com/files/redis-2.4.4.tar.gz
2 tar -zxvf 解压压缩包,cd /扩展包 (进入扩展包然后 运行phpize 一下是我环境中phpize的目录,/usr/local/php/bin/phpize (一定要
- 线程池(Executors)
shuizhaosi888
线程池
在java类库中,任务执行的主要抽象不是Thread,而是Executor,将任务的提交过程和执行过程解耦
public interface Executor {
void execute(Runnable command);
}
public class RunMain implements Executor{
@Override
pub
- openstack 快速安装笔记
haoningabc
openstack
前提是要配置好yum源
版本icehouse,操作系统redhat6.5
最简化安装,不要cinder和swift
三个节点
172 control节点keystone glance horizon
173 compute节点nova
173 network节点neutron
control
/etc/sysctl.conf
net.ipv4.ip_forward =
- 从c面向对象的实现理解c++的对象(二)
jimmee
C++面向对象虚函数
1. 类就可以看作一个struct,类的方法,可以理解为通过函数指针的方式实现的,类对象分配内存时,只分配成员变量的,函数指针并不需要分配额外的内存保存地址。
2. c++中类的构造函数,就是进行内存分配(malloc),调用构造函数
3. c++中类的析构函数,就时回收内存(free)
4. c++是基于栈和全局数据分配内存的,如果是一个方法内创建的对象,就直接在栈上分配内存了。
专门在
- 如何让那个一个div可以拖动
lingfeng520240
html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml
- 第10章 高级事件(中)
onestopweb
事件
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- 计算两个经纬度之间的距离
roadrunners
计算纬度LBS经度距离
要解决这个问题的时候,到网上查了很多方案,最后计算出来的都与百度计算出来的有出入。下面这个公式计算出来的距离和百度计算出来的距离是一致的。
/**
*
* @param longitudeA
* 经度A点
* @param latitudeA
* 纬度A点
* @param longitudeB
*
- 最具争议的10个Java话题
tomcat_oracle
java
1、Java8已经到来。什么!? Java8 支持lambda。哇哦,RIP Scala! 随着Java8 的发布,出现很多关于新发布的Java8是否有潜力干掉Scala的争论,最终的结论是远远没有那么简单。Java8可能已经在Scala的lambda的包围中突围,但Java并非是函数式编程王位的真正觊觎者。
2、Java 9 即将到来
Oracle早在8月份就发布
- zoj 3826 Hierarchical Notation(模拟)
阿尔萨斯
rar
题目链接:zoj 3826 Hierarchical Notation
题目大意:给定一些结构体,结构体有value值和key值,Q次询问,输出每个key值对应的value值。
解题思路:思路很简单,写个类词法的递归函数,每次将key值映射成一个hash值,用map映射每个key的value起始终止位置,预处理完了查询就很简单了。 这题是最后10分钟出的,因为没有考虑value为{}的情