微分方程是描述系统的状态随时间和空间演化的数学工具。物理中许多涉及变力的运动学、动力学问题,如空气的阻力为速度函数的落体运动等问题,很多可以用微分方程求解。微分方程在化学、工程学、经济学和人口统计等领域也有广泛应用。
具体来说,微分方程是指含有未知函数及其导数的关系式。
以上内容看看就算了,看多了就吓跑了。
微分方程的数学建模其实并不复杂,基本过程就是分析题目属于哪一类问题、可以选择什么微分方程模型,然后如何使用现有的微分方程模型建模。
在数学、力学、物理、化学等各个学科领域的课程中,针对该学科的各种问题都会建立适当的数学模型。在中学课程中,各学科的数学模型主要是线性或非线性方程,而在大学物理和各专业的课程中,越来越多地出现用微分方程描述的数学模型。
数学建模中的微分方程问题,通常还是这些专业课程中相对简单的模型,专业课程的教材在介绍一个模型时,往往都做了非常详细的讲解。只要搞清楚问题的类型、选择好数学模型,建模和求解并不是很难,而且在撰写论文时对问题背景、使用范围、假设条件、求解过程有大量现成的内容可以复制参考。
小白之所以害怕,一是看到微分方程就心里发怵,二是缺乏专业背景,不知道从哪里查资料、不能判断问题的类型、不知道选择什么模型、不善于从题目内容得出模型参数,也不知道如何编程求解。所以,老师说,一看这就是××问题,显然就可以用××模型。小白说,我们还是换 B题吧。
本系列将会从简单的微分方程模型入手,重点介绍微分方程数值解法的编程实现,并通过分析问题、建立模型的案例帮助小白树立信心和动力。
希望你在学习本系列之后,会发现微分方程模型是数学建模中最容易的题型:模型找教材,建模找例题,求解有例程,讨论有套路,论文够档次。
在学习专业课程时,经常会推导和求解微分方程的解析解,小白对微分方程模型的恐惧就是从高等数学“微分方程”开始,经过专业课的不断强化而形成的。实际上,只有很少的微分方程可以解析求解,大多数的微分方程只能采用数值方法进行求解。
微分方程的数值求解是先把时间和空间离散化,然后将微分化为差分,建立递推关系,然后反复进行迭代计算,得到任意时间和空间的值。
如果你还是觉得头晕目眩,我们可以说的更简单一些。建模就是把专业课教材上的公式抄下来,求解就是把公式的参数输入到 Python 函数中。
我们先说求解。求解常微分方程的基本方法,有欧拉法、龙格库塔法等,可以详见各种教材,撰写数模竞赛论文时还是可以抄几段的。本文沿用“编程方案”的概念,不涉及这些算法的具体内容,只探讨如何使用 Python 的工具包、库函数,零基础求解微分方程模型。
我们的选择是 Python 常用工具包三剑客:Scipy、Numpy 和 Matplotlib:
顺便说一句,还有一个 Python 符号运算工具包 SymPy,以解析方式求解积分、微分方程,也就是说给出的结果是微分方程的解析解表达式。很牛,但只能求解有解析解的微分方程,所以,你知道就可以了。
给定初始条件的一阶常微分方程(组)的标准形式是:
⎧⎩⎨dydt=f(y,t)y(t0)=y0{dydt=f(y,t)y(t0)=y0
式中的 y 在常微分方程中是标量,在常微分方程组中是数组向量。
SciPy 提供了两种方式求解常微分方程:基于 odeint
函数的 API 比较简单易学,基于 ode
类的面向对象的 API 更加灵活。
**scipy.integrate.odeint() **是求解微分方程的具体方法,通过数值积分来求解常微分方程组。在 odeint
函数内部使用 FORTRAN 库 odepack 中的 lsoda,可以求解一阶刚性系统和非刚性系统的初值问题。官网介绍详见: scipy.integrate.odeint — SciPy v1.6.3 Reference Guide 。
scipy.integrate.odeint(func, y0, t, args=(), Dfun=None, col_deriv=0, full_output=0, ml=None, mu=None, rtol=None, atol=None, tcrit=None, h0=0.0, hmax=0.0, hmin=0.0, ixpr=0, mxstep=0, mxhnil=0, mxordn=12, mxords=5, printmessg=0, tfirst=False)
odeint 的主要参数:
求解标准形式的微分方程(组)主要使用前三个参数:
其它参数简介如下:
args: 向导数函数 func 传递参数。当导数函数 f(y,t,p1,p2,..)f(y,t,p1,p2,..) 包括可变参数 p1,p2.. 时,通过 args =(p1,p2,..) 可以将参数p1,p2.. 传递给导数函数 func。argus 的用法参见 2.4 中的实例2。
Dfun: func 的雅可比矩阵,行优先。如果 Dfun 未给出,则算法自动推导。
col_deriv: 自动推导 Dfun的方式。
printmessg: 布尔值。控制是否打印收敛信息。
其它参数用于控制求解算法的参数,一般情况可以忽略。
odeint 的主要返回值:
⎧⎩⎨dydt=sin(t2)y(−10)=1{dydt=sin(t2)y(−10)=1
以该题为例讲解 scipy.integrate.odeint() 求解常微分方程初值问题的步骤:
导入 scipy、numpy、matplotlib 包;
定义导数函数 f(y,t)=sin(t2)f(y,t)=sin(t2) ;
定义初值 y0y0 和 yy 的定义区间 [t0, t][t0, t];
调用 odeint() 求 yy 在定义区间 [t0, t][t0, t] 的数值解。
# 1. 求解微分方程初值问题(scipy.integrate.odeint)
from scipy.integrate import odeint # 导入 scipy.integrate 模块
import numpy as np
import matplotlib.pyplot as plt
def dy_dt(y, t): # 定义函数 f(y,t)
return np.sin(t**2)
y0 = [1] # y0 = 1 也可以
t = np.arange(-10,10,0.01) # (start,stop,step)
y = odeint(dy_dt, y0, t) # 求解微分方程初值问题
# 绘图
plt.plot(t, y)
plt.title("scipy.integrate.odeint")
plt.show()
洛伦兹(Lorenz)混沌吸引子的轨迹可以由如下的 3个微分方程描述:
⎧⎩⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪dxdt=σ(y−x)dydt=x(ρ−z)−ydzdt=xy−βz{dxdt=σ(y−x)dydt=x(ρ−z)−ydzdt=xy−βz
洛伦兹方程将大气流体运动的强度 x 与水平和垂直方向的温度变化 y 和 z 联系起来,进行大气对流系统的模拟,现已广泛应用于天气预报、空气污染和全球气候变化的研究。参数 σσ 称为普兰特数,ρρ 是规范化的瑞利数,ββ 和几何形状相关。洛伦兹方程是非线性微分方程组,无法求出解析解,只能使用数值方法求解。
以该题为例讲解 scipy.integrate.odeint() 求解常微分方程初值问题的步骤:
导入 scipy、numpy、matplotlib 包;
定义导数函数 lorenz(W, t, p, r, b)
注意 odeint() 函数中定义导数函数的标准形式是 f(y,t)f(y,t) ,对于微分方程组 y 表示向量。
为避免混淆,我们记为 W=[x,y,z]W=[x,y,z],函数 lorenz(W,t) 定义导数函数 f(W,t)f(W,t) 。
用 p,r,b 分别表示方程中的参数 σ、ρ、βσ、ρ、β,则对导数定义函数编程如下:
# 导数函数,求 W=[x,y,z] 点的导数 dW/dt
def lorenz(W,t,p,r,b):
x, y, z = W # W=[x,y,z]
dx_dt = p*(y-x) # dx/dt = p*(y-x), p: sigma
dy_dt = x*(r-z) - y # dy/dt = x*(r-z)-y, r:rho
dz_dt = x*y - b*z # dz/dt = x*y - b*z, b;beta
return np.array([dx_dt,dy_dt,dz_dt])
定义初值 W0W0 和 WW 的定义区间 [t0, t][t0, t];
调用 odeint() 求 WW 在定义区间 [t0, t][t0, t] 的数值解。
注意例程中通过 args=paras 或 args = (10.0,28.0,3.0) 将参数 (p,r,b) 传递给导数函数 lorenz(W,t,p,r,b)。参数 (p,r,b) 当然也可以不作为函数参数传递,而是在导数函数 lorenz() 中直接设置。但例程的参数传递方法,使导数函数结构清晰、更为通用。另外,对于可变参数问题,使用这种参数传递方式就非常方便。
# 2. 求解微分方程组初值问题(scipy.integrate.odeint)
from scipy.integrate import odeint # 导入 scipy.integrate 模块
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
# 导数函数, 求 W=[x,y,z] 点的导数 dW/dt
def lorenz(W,t,p,r,b): # by youcans
x, y, z = W # W=[x,y,z]
dx_dt = p*(y-x) # dx/dt = p*(y-x), p: sigma
dy_dt = x*(r-z) - y # dy/dt = x*(r-z)-y, r:rho
dz_dt = x*y - b*z # dz/dt = x*y - b*z, b;beta
return np.array([dx_dt,dy_dt,dz_dt])
t = np.arange(0, 30, 0.01) # 创建时间点 (start,stop,step)
paras = (10.0, 28.0, 3.0) # 设置 Lorenz 方程中的参数 (p,r,b)
# 调用ode对lorenz进行求解, 用两个不同的初始值 W1、W2 分别求解
W1 = (0.0, 1.00, 0.0) # 定义初值为 W1
track1 = odeint(lorenz, W1, t, args=(10.0, 28.0, 3.0)) # args 设置导数函数的参数
W2 = (0.0, 1.01, 0.0) # 定义初值为 W2
track2 = odeint(lorenz, W2, t, args=paras) # 通过 paras 传递导数函数的参数
# 绘图
fig = plt.figure()
ax = Axes3D(fig)
ax.plot(track1[:,0], track1[:,1], track1[:,2], color='magenta') # 绘制轨迹 1
ax.plot(track2[:,0], track2[:,1], track2[:,2], color='deepskyblue') # 绘制轨迹 2
ax.set_title("Lorenz attractor by scipy.integrate.odeint")
plt.show()
高阶常微分方程,必须做变量替换,化为一阶微分方程组,再用 odeint 求数值解。
零输入响应的 RLC 振荡电路可以由如下的二阶微分方程描述:
⎧⎩⎨⎪⎪⎪⎪⎪⎪d2udt2+RL∗dudt+1LC∗u=0u(0)=U0u′(0)=0{d2udt2+RL∗dudt+1LC∗u=0u(0)=U0u′(0)=0
令 $ \alpha = R/2L、、\omega_0^2=1/LC$,在零输入响应 us=0us=0 时上式可以写成:
⎧⎩⎨⎪⎪⎪⎪⎪⎪d2udt2+2αdudt+ω20u=0u(0)=U0u′(0)=0{d2udt2+2αdudt+ω02u=0u(0)=U0u′(0)=0
对二阶微分方程问题,引入变量 v=du/dtv=du/dt,通过变量替换就把原方程化为如下的微分方程组:
⎧⎩⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪dudt=vdvdt=−2αv−ω20uu(0)=U0v(0)=0{dudt=vdvdt=−2αv−ω02uu(0)=U0v(0)=0
这样就可以用上节求解微分方程组的方法来求解高阶微分方程问题。
以RLC 振荡电路为例讲解 scipy.integrate.odeint() 求解高阶常微分方程初值问题的步骤:
导入 scipy、numpy、matplotlib 包;
定义导数函数 deriv(Y, t, a, w)
注意 odeint() 函数中定义导数函数的标准形式是 f(y,t)f(y,t) ,本问题中 y 表示向量,记为 Y=[u,v]Y=[u,v]
导数定义函数 deriv(Y, t, a, w) 编程如下,其中 a, w 分别表示方程中的参数 α、ωα、ω:
# 导数函数,求 Y=[u,v] 点的导数 dY/dt
def deriv(Y, t, a, w):
u, v = Y # Y=[u,v]
dY_dt = [v, -2*a*v-w*w*u]
return dY_dt
定义初值 Y0=[u0,v0]Y0=[u0,v0] 和 YY 的定义区间 [t0, t][t0, t];
调用 odeint() 求 Y=[u,v]Y=[u,v] 在定义区间 [t0, t][t0, t] 的数值解。
例程中通过 args=paras 将参数 (a,w) 传递给导数函数 deriv(Y, t, a, w) 。本例要考察不同参数对结果的影响,这种参数传递方法使用非常方便。
# 3. 求解二阶微分方程初值问题(scipy.integrate.odeint)
# Second ODE by scipy.integrate.odeint
from scipy.integrate import odeint # 导入 scipy.integrate 模块
import numpy as np
import matplotlib.pyplot as plt
# 导数函数,求 Y=[u,v] 点的导数 dY/dt
def deriv(Y, t, a, w):
u, v = Y # Y=[u,v]
dY_dt = [v, -2*a*v-w*w*u]
return dY_dt
t = np.arange(0, 20, 0.01) # 创建时间点 (start,stop,step)
# 设置导数函数中的参数 (a, w)
paras1 = (1, 0.6) # 过阻尼:a^2 - w^2 > 0
paras2 = (1, 1) # 临界阻尼:a^2 - w^2 = 0
paras3 = (0.3, 1) # 欠阻尼:a^2 - w^2 < 0
# 调用ode对进行求解, 用两个不同的初始值 W1、W2 分别求解
Y0 = (1.0, 0.0) # 定义初值为 Y0=[u0,v0]
Y1 = odeint(deriv, Y0, t, args=paras1) # args 设置导数函数的参数
Y2 = odeint(deriv, Y0, t, args=paras2) # args 设置导数函数的参数
Y3 = odeint(deriv, Y0, t, args=paras3) # args 设置导数函数的参数
# W2 = (0.0, 1.01, 0.0) # 定义初值为 W2
# track2 = odeint(lorenz, W2, t, args=paras) # 通过 paras 传递导数函数的参数
# 绘图
plt.plot(t, Y1[:, 0], 'r-', label='u1(t)')
plt.plot(t, Y2[:, 0], 'b-', label='u2(t)')
plt.plot(t, Y3[:, 0], 'g-', label='u3(t)')
plt.plot(t, Y1[:, 1], 'r:', label='v1(t)')
plt.plot(t, Y2[:, 1], 'b:', label='v2(t)')
plt.plot(t, Y3[:, 1], 'g:', label='v3(t)')
plt.axis([0, 20, -0.8, 1.2])
plt.legend(loc='best')
plt.title("Second ODE by scipy.integrate.odeint")
plt.show()
结果讨论:
RLC串联电路是典型的二阶系统,在零输入条件下根据 αα 与 ωω 的关系,电路的输出响应存在四种情况:
例程中所选择的 3 组参数分别对应过阻尼、临界阻尼和欠阻尼的条件,微分方程的数值结果很好地体现了不同情况的相应曲线。
【本节完】