李永乐复习全书线性代数 第二章 矩阵

目录

  • 例题二
    • 例4
      • (2)设 A \bm{A} A 3 3 3阶矩阵,若对任意的 x = [ x 1 , x 2 , x 3 ] T \bm{x}=[x_1,x_2,x_3]^\mathrm{T} x=[x1,x2,x3]T都有 x T A x = 0 \bm{x}^\mathrm{T}\bm{Ax}=0 xTAx=0,证明 A \bm{A} A是反对称矩阵。
    • 例5  已知 A , B \bm{A,B} A,B都是 n n n阶矩阵,且 A B = A + B \bm{AB}=\bm{A}+\bm{B} AB=A+B,证明 A B = B A \bm{AB}=\bm{BA} AB=BA
    • 例8  已知 A = [ 2 − 1 5 0 2 3 0 0 2 ] \bm{A}=\begin{bmatrix}2&-1&5\\0&2&3\\0&0&2\end{bmatrix} A=200120532,则 A n = \bm{A}^n= An=______。
    • 例13  设 A = [ 0 0 0 1 3 0 0 0 − 1 2 1 1 1 0 0 0 1 1 0 0 0 0 1 0 0 ] \bm{A}=\begin{bmatrix}0&0&0&1&3\\0&0&0&-1&2\\1&1&1&0&0\\0&1&1&0&0\\0&0&1&0&0\end{bmatrix} A=0010000110001111100032000,则 A \bm{A} A的伴随矩阵 A ∗ = \bm{A}^*= A=______。
    • 例21  设 A \bm{A} A n n n阶非奇异矩阵, α \bm{\alpha} α n n n维列向量, b b b是常数,记分块矩阵 P = [ E O − α T A ∗ ∣ A ∣ ] , Q = [ A α α T b ] \bm{P}=\begin{bmatrix}\bm{E}&\bm{O}\\-\bm{\alpha}^\mathrm{T}\bm{A}^*&|\bm{A}|\end{bmatrix},\bm{Q}=\begin{bmatrix}\bm{A}&\bm{\alpha}\\\bm{\alpha}^\mathrm{T}&b\end{bmatrix} P=[EαTAOA],Q=[AαTαb]
      • (2)证明: Q \bm{Q} Q可逆的充要条件是 α T A − 1 α ≠ b \bm{\alpha}^\mathrm{T}\bm{A}^{-1}\bm{\alpha}\ne b αTA1α=b
    • 例36  设 A \bm{A} A m × n m\times n m×n矩阵, B \bm{B} B n × s n\times s n×s矩阵,证明秩 r ( A B ) ⩽ min ⁡ { r ( A ) , r ( B ) } r(\bm{AB})\leqslant\min\{r(\bm{A}),r(\bm{B})\} r(AB)min{r(A),r(B)}
  • 写在最后

例题二

例4

(2)设 A \bm{A} A 3 3 3阶矩阵,若对任意的 x = [ x 1 , x 2 , x 3 ] T \bm{x}=[x_1,x_2,x_3]^\mathrm{T} x=[x1,x2,x3]T都有 x T A x = 0 \bm{x}^\mathrm{T}\bm{Ax}=0 xTAx=0,证明 A \bm{A} A是反对称矩阵。

  设 A = [ a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 ] \bm{A}=\begin{bmatrix}a_{11}&a_{12}&a_{13}\\a_{21}&a_{22}&a_{23}\\a_{31}&a_{32}&a_{33}\end{bmatrix} A=a11a21a31a12a22a32a13a23a33,因已知对任意的 x = [ x 1 , x 2 , x 3 ] T \bm{x}=[x_1,x_2,x_3]^\mathrm{T} x=[x1,x2,x3]T,均有 x T A x = 0 \bm{x}^\mathrm{T}\bm{Ax}=0 xTAx=0。故取 x = [ 1 , 0 , 0 ] T \bm{x}=[1,0,0]^\mathrm{T} x=[1,0,0]T,有 x T A x = a 11 = 0 \bm{x}^\mathrm{T}\bm{Ax}=a_{11}=0 xTAx=a11=0
  同理,取 x = [ 0 , 1 , 0 ] T \bm{x}=[0,1,0]^\mathrm{T} x=[0,1,0]T时得 a 22 = 0 a_{22}=0 a22=0,取 x = [ 0 , 0 , 1 ] T \bm{x}=[0,0,1]^\mathrm{T} x=[0,0,1]T时得 a 33 = 0 a_{33}=0 a33=0
  取 x = [ 1 , 1 , 0 ] T \bm{x}=[1,1,0]^\mathrm{T} x=[1,1,0]T,有 x T A x = a 12 + a 21 = 0 \bm{x}^\mathrm{T}\bm{Ax}=a_{12}+a_{21}=0 xTAx=a12+a21=0,知 a 12 = − a 21 a_{12}=-a_{21} a12=a21;取 x = [ 1 , 0 , 1 ] T \bm{x}=[1,0,1]^\mathrm{T} x=[1,0,1]T,可得 a 13 = − a 31 a_{13}=-a_{31} a13=a31;再取 x = [ 0 , 1 , 1 ] T \bm{x}=[0,1,1]^\mathrm{T} x=[0,1,1]T,又得 a 23 = − a 32 a_{23}=-a_{32} a23=a32,所以 A \bm{A} A是反对称矩阵。(这道题主要利用了反对称矩阵的定义求解

例5  已知 A , B \bm{A,B} A,B都是 n n n阶矩阵,且 A B = A + B \bm{AB}=\bm{A}+\bm{B} AB=A+B,证明 A B = B A \bm{AB}=\bm{BA} AB=BA

  由 A B = A + B \bm{AB}=\bm{A}+\bm{B} AB=A+B,得 A B − A − B + E = E \bm{AB}-\bm{A}-\bm{B}+\bm{E}=\bm{E} ABAB+E=E,即 ( A − E ) ( B − E ) = E (\bm{A}-\bm{E})(\bm{B}-\bm{E})=\bm{E} (AE)(BE)=E。那么, A − E \bm{A}-\bm{E} AE可逆,且 ( A − E ) − 1 = B − E (\bm{A}-\bm{E})^{-1}=\bm{B}-\bm{E} (AE)1=BE。于是, ( A − E ) ( B − E ) = ( B − E ) ( A − E ) (\bm{A}-\bm{E})(\bm{B}-\bm{E})=(\bm{B}-\bm{E})(\bm{A}-\bm{E}) (AE)(BE)=(BE)(AE),即 A B − A − B + E = B A − A − B + E \bm{AB}-\bm{A}-\bm{B}+\bm{E}=\bm{BA}-\bm{A}-\bm{B}+\bm{E} ABAB+E=BAAB+E。所以 A B = B A \bm{AB}=\bm{BA} AB=BA。(这道题主要利用了等式变换求解

例8  已知 A = [ 2 − 1 5 0 2 3 0 0 2 ] \bm{A}=\begin{bmatrix}2&-1&5\\0&2&3\\0&0&2\end{bmatrix} A=200120532,则 A n = \bm{A}^n= An=______。

  由于 A = [ 2 0 0 0 2 0 0 0 2 ] + [ 0 − 1 5 0 0 3 0 0 0 ] = 2 E + B \bm{A}=\begin{bmatrix}2&0&0\\0&2&0\\0&0&2\end{bmatrix}+\begin{bmatrix}0&-1&5\\0&0&3\\0&0&0\end{bmatrix}=2\bm{E}+\bm{B} A=200020002+000100530=2E+B,又 B 2 = [ 0 − 1 5 0 0 3 0 0 0 ] [ 0 − 1 5 0 0 3 0 0 0 ] = [ 0 0 − 3 0 0 0 0 0 0 ] , B 3 = B 4 = ⋯ = O \bm{B}^2=\begin{bmatrix}0&-1&5\\0&0&3\\0&0&0\end{bmatrix}\begin{bmatrix}0&-1&5\\0&0&3\\0&0&0\end{bmatrix}=\begin{bmatrix}0&0&-3\\0&0&0\\0&0&0\end{bmatrix},\bm{B}^3=\bm{B}^4=\cdots=\bm{O} B2=000100530000100530=000000300,B3=B4==O,所以
A n = ( 2 E + B ) n = ( 2 E ) n + n ( 2 E ) n − 1 B + 1 2 n ( n − 1 ) ( 2 E ) n − 2 B 2 = [ 2 n 0 0 0 2 n 0 0 0 2 n ] + n ⋅ 2 n − 1 [ 0 − 1 5 0 0 3 0 0 0 ] + 1 2 n ( n − 1 ) ⋅ 2 n − 2 [ 0 0 − 3 0 0 0 0 0 0 ] = [ 2 n − n ⋅ 2 n − 1 5 n ⋅ 2 n − 1 − 3 n ( n − 1 ) 2 n − 3 0 2 n 3 n ⋅ 2 n − 1 0 0 2 n ] . \begin{aligned} \bm{A}^n&=(2\bm{E}+\bm{B})^n=(2\bm{E})^n+n(2\bm{E})^{n-1}\bm{B}+\cfrac{1}{2}n(n-1)(2\bm{E})^{n-2}\bm{B}^2\\ &=\begin{bmatrix}2^n&0&0\\0&2^n&0\\0&0&2^n\end{bmatrix}+n\cdot2^{n-1}\begin{bmatrix}0&-1&5\\0&0&3\\0&0&0\end{bmatrix}+\cfrac{1}{2}n(n-1)\cdot2^{n-2}\begin{bmatrix}0&0&-3\\0&0&0\\0&0&0\end{bmatrix}\\ &=\begin{bmatrix}2^n&-n\cdot2^{n-1}&5n\cdot2^{n-1}-3n(n-1)2^{n-3}\\0&2^n&3n\cdot2^{n-1}\\0&0&2^n\end{bmatrix}. \end{aligned} An=(2E+B)n=(2E)n+n(2E)n1B+21n(n1)(2E)n2B2=2n0002n0002n+n2n1000100530+21n(n1)2n2000000300=2n00n2n12n05n2n13n(n1)2n33n2n12n.
这道题主要利用了拆分矩阵求解

例13  设 A = [ 0 0 0 1 3 0 0 0 − 1 2 1 1 1 0 0 0 1 1 0 0 0 0 1 0 0 ] \bm{A}=\begin{bmatrix}0&0&0&1&3\\0&0&0&-1&2\\1&1&1&0&0\\0&1&1&0&0\\0&0&1&0&0\end{bmatrix} A=0010000110001111100032000,则 A \bm{A} A的伴随矩阵 A ∗ = \bm{A}^*= A=______。

  由拉普拉斯展开式,知 ∣ A ∣ = ( − 1 ) 2 × 3 ∣ 1 3 − 1 2 ∣ ⋅ ∣ 1 1 1 0 1 1 0 0 1 ∣ = 5 |\bm{A}|=(-1)^{2\times3}\begin{vmatrix}1&3\\-1&2\end{vmatrix}\cdot\begin{vmatrix}1&1&1\\0&1&1\\0&0&1\end{vmatrix}=5 A=(1)2×31132100110111=5。矩阵 A \bm{A} A可逆。由 [ O B C O ] − 1 = [ O C − 1 B − 1 O ] \begin{bmatrix}\bm{O}&\bm{B}\\\bm{C}&\bm{O}\end{bmatrix}^{-1}=\begin{bmatrix}\bm{O}&\bm{C}^{-1}\\\bm{B}^{-1}&\bm{O}\end{bmatrix} [OCBO]1=[OB1C1O] A − 1 = [ 0 0 1 − 1 0 0 0 0 1 − 1 0 0 0 0 1 2 5 − 3 5 0 0 0 1 5 1 5 0 0 0 ] \bm{A}^{-1}=\begin{bmatrix}0&0&1&-1&0\\0&0&0&1&-1\\0&0&0&0&1\\\cfrac{2}{5}&-\cfrac{3}{5}&0&0&0\\\cfrac{1}{5}&\cfrac{1}{5}&0&0&0\end{bmatrix} A1=00052510005351100001100001100,故 A ∗ = ∣ A ∣ A − 1 = [ 0 0 5 − 5 0 0 0 0 5 − 5 0 0 0 0 5 2 − 3 0 0 0 1 1 0 0 0 ] \bm{A}^*=|\bm{A}|\bm{A}^{-1}=\begin{bmatrix}0&0&5&-5&0\\0&0&0&5&-5\\0&0&0&0&5\\2&-3&0&0&0\\1&1&0&0&0\end{bmatrix} A=AA1=0002100031500005500005500。(这道题主要利用了分块矩阵的性质求解

例21  设 A \bm{A} A n n n阶非奇异矩阵, α \bm{\alpha} α n n n维列向量, b b b是常数,记分块矩阵 P = [ E O − α T A ∗ ∣ A ∣ ] , Q = [ A α α T b ] \bm{P}=\begin{bmatrix}\bm{E}&\bm{O}\\-\bm{\alpha}^\mathrm{T}\bm{A}^*&|\bm{A}|\end{bmatrix},\bm{Q}=\begin{bmatrix}\bm{A}&\bm{\alpha}\\\bm{\alpha}^\mathrm{T}&b\end{bmatrix} P=[EαTAOA],Q=[AαTαb]

(2)证明: Q \bm{Q} Q可逆的充要条件是 α T A − 1 α ≠ b \bm{\alpha}^\mathrm{T}\bm{A}^{-1}\bm{\alpha}\ne b αTA1α=b

  由于 ∣ A ∣ ( b − α T A − 1 α ) |\bm{A}|(b-\bm{\alpha}^\mathrm{T}\bm{A}^{-1}\bm{\alpha}) A(bαTA1α)是一个数,对行列式 ∣ P Q ∣ |\bm{PQ}| PQ按第 n + 1 n+1 n+1行展开,得 ∣ P Q ∣ = [ A α O ∣ A ∣ ( b − α T A − 1 α ) ] |\bm{PQ}|=\begin{bmatrix}\bm{A}&\bm{\alpha}\\\bm{O}&|\bm{A}|(b-\bm{\alpha}^\mathrm{T}\bm{A}^{-1}\bm{\alpha})\end{bmatrix} PQ=[AOαA(bαTA1α)]。同理, ∣ A ∣ |\bm{A}| A是一个数,对行列式 ∣ P ∣ |\bm{P}| P按第 n + 1 n+1 n+1行展开,得 P = [ E O − α T A ∗ ∣ A ∣ ] = ∣ A ∣ ∣ E ∣ \bm{P}=\begin{bmatrix}\bm{E}&\bm{O}\\-\bm{\alpha}^\mathrm{T}\bm{A}^*&|\bm{A}|\end{bmatrix}=|\bm{A}||\bm{E}| P=[EαTAOA]=AE。因为 ∣ P Q ∣ = ∣ P ∣ ∣ Q ∣ |\bm{PQ}|=|\bm{P}||\bm{Q}| PQ=PQ ∣ A ∣ 2 ( b − α T A − 1 α ) = ∣ A ∣ ∣ Q ∣ |\bm{A}|^2(b-\bm{\alpha}^\mathrm{T}\bm{A}^{-1}\bm{\alpha})=|\bm{A}||\bm{Q}| A2(bαTA1α)=AQ
  由于 A \bm{A} A可逆, ∣ A ∣ ≠ 0 |\bm{A}|\ne0 A=0,有 ∣ Q ∣ = ∣ A ∣ ( b − α T A − 1 α ) |\bm{Q}|=|\bm{A}|(b-\bm{\alpha}^\mathrm{T}\bm{A}^{-1}\bm{\alpha}) Q=A(bαTA1α),所以 Q \bm{Q} Q可逆 ⇔ ∣ Q ∣ ≠ 0 ⇔ b − α T A − 1 α ≠ 0 ⇔ α T A − 1 α ≠ b \Leftrightarrow|\bm{Q}|\ne0\Leftrightarrow b-\bm{\alpha}^\mathrm{T}\bm{A}^{-1}\bm{\alpha}\ne0\Leftrightarrow\bm{\alpha}^\mathrm{T}\bm{A}^{-1}\bm{\alpha}\ne b Q=0bαTA1α=0αTA1α=b。(这道题主要利用了矩阵乘法求解

例36  设 A \bm{A} A m × n m\times n m×n矩阵, B \bm{B} B n × s n\times s n×s矩阵,证明秩 r ( A B ) ⩽ min ⁡ { r ( A ) , r ( B ) } r(\bm{AB})\leqslant\min\{r(\bm{A}),r(\bm{B})\} r(AB)min{r(A),r(B)}

  对于齐次方程 ( I ) A B x = 0 (I)\bm{ABx}=\bm{0} (I)ABx=0 ( I I ) B x = 0 (II)\bm{Bx}=\bm{0} (II)Bx=0,若 α \bm{\alpha} α是方程组 ( I I ) (II) (II)的任一个解,则由 ( A B ) α = A ( B α ) = A 0 = 0 (\bm{AB})\bm{\alpha}=\bm{A}(\bm{B\alpha})=\bm{A0}=\bm{0} (AB)α=A(Bα)=A0=0,知 α \bm{\alpha} α是方程组 ( I ) (I) (I)的解。因此方程组 ( I I ) (II) (II)的解集是方程组 ( I ) (I) (I)的解集合的子集合。
  又因 ( I ) (I) (I)的解向量的秩为 s − r ( A B ) s-r(\bm{AB}) sr(AB) ( I I ) (II) (II)的解向量的秩为 s − r ( B ) s-r(\bm{B}) sr(B),故有 s − r ( A B ) ⩾ s − r ( A B ) s-r(\bm{AB})\geqslant s-r(\bm{AB}) sr(AB)sr(AB),即 r ( A B ) ⩽ r ( B ) r(\bm{AB})\leqslant r(\bm{B}) r(AB)r(B)
  另一方面, r ( A B ) = r ( ( A B ) T ) = r ( B T A T ) ⩽ r ( A T ) = r ( A ) r(\bm{AB})=r((\bm{AB})^\mathrm{T})=r(\bm{B}^\mathrm{T}\bm{A}^\mathrm{T})\leqslant r(\bm{A}^\mathrm{T})=r(\bm{A}) r(AB)=r((AB)T)=r(BTAT)r(AT)=r(A)。(这道题主要利用了线性方程组的性质求解

写在最后

  如果觉得文章不错就点个赞吧。另外,如果有不同的观点,欢迎留言或私信。
   欢迎非商业转载,转载请注明出处。

你可能感兴趣的:(考研数学一线性代数刷题错题记录,#,考研数学一线性代数复习全书,线性代数,复习全书,考研,其他)