方差 标准差_总体、样本、总体方差、样本方差、抽样方差和标准误

本短文介绍了总体、样本、总体方差、样本方差、抽样方差和标准误等概念以及它们之间的一些关系。因为一些外文材料的翻译不善以及老师课堂教学中的不重视,我身边仍有许多人将它们混淆。

本短文的参考资料主要包括Angrist和Pischke的《Mastering `metrics》以及Wooldridge的《Introductory Econometrics (Fifth edition)》。

1 总体方差和样本方差

总体和样本

首先提一下“总体(population)”“样本(sample)”两个概念。总体包含我们研究的目标群体中所有的个体的数据,比如所有2008年的海归科学家的年龄;样本仅包含总体中一部分个体的数据,假设2008年的海归科学家总共10万人,我们费了大劲找到了1万人,这1万人的年龄就是刚才那个总体的一个样本。当然,总体和样本是相对的概念,如果某人研究时觉得1万个数据还是太多不好搞,从中随机抽了100个数据,这时候那1万个数据就成了总体了。

虽说样本和总体是相对的概念,但在大多数情况下,我们都会谦虚地认为我们手里的数据只是一个样本,是通过对总体进行抽样而获得的,或者说我们的研究问题总是使得直接研究总体是不可行的。人们把关于总体的统计量叫做“总体XX(population xxx)”,把关于样本的统计量叫做“样本XX(sample xxx)”

我们用Y来表示刚才提到的2008年的海归科学家的年龄这个随机变量(random variable)。注意,“随机变量”得名是因为它取的值们由随机试验产生,并不直接因为它自己是随机的,这里面有细微的差别。

总体方差与样本方差

这里我们区分两种方差,“总体方差(population variance)”

“样本方差(sample variance)”
。简单来说,总体方差
就是对整个总体运用方差计算方法得到的结果:

你可能感兴趣的:(方差,标准差)