怎么用python代码查看可用的gpu,然后指定可用的gpu运行

查看gpu

import torch

# 检查CUDA是否可用
if torch.cuda.is_available():
    # 获取GPU设备数量
    device_count = torch.cuda.device_count()

    # 列出可用的GPU设备
    for i in range(device_count):
        print(f"GPU {i}: {torch.cuda.get_device_name(i)}")
else:
    print("CUDA is not available. No GPU devices found.")

输出结果
怎么用python代码查看可用的gpu,然后指定可用的gpu运行_第1张图片

设置指定gpu运行

指定上面输出的5号卡

if torch.cuda.is_available():
    # 指定要使用的GPU设备编号
    device = torch.device("cuda:5")
    print(f"Using GPU {device} - {torch.cuda.get_device_name(device)}")
else:
    print("CUDA is not available. No GPU devices found.")

查看gpu的内存情况等

import subprocess

# 执行nvidia-smi命令以获取GPU信息
nvidia_smi_output = subprocess.check_output("nvidia-smi", shell=True).decode()

# 切分输出为每个GPU的信息
gpu_info = nvidia_smi_output.strip().split('\n\n')

# 遍历每个GPU的信息
for i, info in enumerate(gpu_info):
    print(f"GPU {i}:")
    print(info)

你可能感兴趣的:(学习笔记,python,深度学习,pytorch)