李宏毅2023机器学习作业 HW01 解析和代码分享

ML2023Spring - HW01 相关信息:
课程主页
课程视频
Kaggle link
Sample code
HW01 视频 可以在做作业之前看一部分,我摸索完才发现视频有讲 Data Feature
HW01 PDF
个人完整代码分享: Github | GitCode | Gitee
P.S. 即便 kaggle 上的时间已经截止,你仍然可以在上面提交和查看分数。但需要注意的是:在 kaggle 截止日期前你应该选择两个结果进行最后的Private评分。
每年的数据集size和feature并不完全相同,但基本一致,过去的代码仍可用于新一年的 Homework

文章目录

  • 任务目标(回归)
  • 性能指标(Metric)
  • 数据解析
    • 数据下载
  • Sample code 主体部分解析
    • Some Utility Functions
    • Dataset
    • Neural Network Model
    • Feature Selection
    • Training Loop
  • Baselines

任务目标(回归)

  • COVID-19 daily cases prediction: COVID-19 每天的病例预测
  • 训练/测试数据大小:3009/997(每一年的homework 可能不同)

性能指标(Metric)

  • 均方误差 Mean Squared Error (MSE)

数据解析

  • covid_train.txt: 训练数据
  • covid_test.txt: 测试数据

数据大体分为三个部分:id, states: 病例对应的地区, 以及其他数据

  • id: sample 对应的序号。
  • states: 对 sample 来说该项为 one-hot vector。从整个数据集上来看,每个地区的 sample 数量是均匀的,可以使用pd.read_csv('./covid_train.csv').iloc[:,1:34].sum()来查看,地区 sample 数量为 88/89。
  • 其他数据: 这一部分最终应用在助教所给的 sample code 中的 select_feat。
    • Covid-like illness (5) 新冠症状
      • cli, ili …
    • Behavier indicators (5) 行为表现
      • wearing_mask、travel_outside_state … 是否戴口罩,出去旅游 …
    • Belief indicators (2) 是否相信某种行为对防疫有效
      • belief_mask_effective, belief_distancing_effective. 相信戴口罩有效,相信保持距离有效。
    • Mental indicator (2) 心理表现
      • worried_catch_covid, worried_finance. 担心得到covid,担心经济状况
    • Environmental indicators (3) 环境表现
      • other_masked_public, other_distanced_public … 周围的人是否大部分戴口罩,周围的人是否大部分保持距离 …
    • Tested Positive Cases (1) 检测阳性病例,该项为模型的预测目标
      • tested_positive (this is what we want to predict) 单位为百分比,指有多少比例的人

数据下载

To use the Kaggle API, sign up for a Kaggle account at https://www.kaggle.com. Then go to the ‘Account’ tab of your user profile (https://www.kaggle.com//account) and select ‘Create API Token’. This will trigger the download of kaggle.json, a file containing your API credentials. Place this file in the location ~/.kaggle/kaggle.json (on Windows in the location C:\Users\\.kaggle\kaggle.json - you can check the exact location, sans drive, with echo %HOMEPATH%). You can define a shell environment variable KAGGLE_CONFIG_DIR to change this location to $KAGGLE_CONFIG_DIR/kaggle.json (on Windows it will be %KAGGLE_CONFIG_DIR%\kaggle.json).

-- Official Kaggle API

gdown 的链接总是挂,可以考虑使用 kaggleapi,流程非常简单,替换为你自己的用户名,https://www.kaggle.com//account,然后点击 Create New API Token,将下载下来的文件放去应该放的位置:

  • Mac 和 Linux 放在 ~/.kaggle
  • Windows 放在 C:\Users\\.kaggle
pip install kaggle
# 你需要先在 Kaggle -> Account -> Create New API Token 中下载 kaggle.json
# mv kaggle.json ~/.kaggle/kaggle.json
kaggle competitions download -c ml2023spring-hw1
unzip ml2023spring-hw1

Sample code 主体部分解析

Some Utility Functions

def same_seed(seed): 
    '''Fixes random number generator seeds for reproducibility.'''
    # 使用确定的卷积算法 (A bool that, if True, causes cuDNN to only use deterministic convolution algorithms.)
    torch.backends.cudnn.deterministic = True	
    
    # 不对多个卷积算法进行基准测试和选择最优 (A bool that, if True, causes cuDNN to benchmark multiple convolution algorithms and select the fastest.)
    torch.backends.cudnn.benchmark = False	
    
    # 设置随机数种子
    np.random.seed(seed)
    torch.manual_seed(seed)
    if torch.cuda.is_available():
        torch.cuda.manual_seed_all(seed)

def train_valid_split(data_set, valid_ratio, seed):
    '''Split provided training data into training set and validation set'''
    valid_set_size = int(valid_ratio * len(data_set)) 
    train_set_size = len(data_set) - valid_set_size
    train_set, valid_set = random_split(data_set, [train_set_size, valid_set_size], generator=torch.Generator().manual_seed(seed))
    return np.array(train_set), np.array(valid_set)

def predict(test_loader, model, device):
	# 用于评估模型(验证/测试)
    model.eval() # Set your model to evaluation mode.
    preds = []
    for x in tqdm(test_loader):
    	# device (int, optional): if specified, all parameters will be copied to that device)     	                  
        x = x.to(device)	# 将数据 copy 到 device
        with torch.no_grad():	# 禁用梯度计算,以减少消耗                   
            pred = model(x)                     
            preds.append(pred.detach().cpu())   # detach() 创建一个不在计算图中的新张量,值相同
    preds = torch.cat(preds, dim=0).numpy()  # 连接 preds 
    return preds

Dataset

class COVID19Dataset(Dataset):
    '''
    x: Features.
    y: Targets, if none, do prediction.
    '''
    def __init__(self, x, y=None):
        if y is None:
            self.y = y
        else:
            self.y = torch.FloatTensor(y)
        self.x = torch.FloatTensor(x)

	'''meth:`__getitem__`, supporting fetching a data sample for a given key.'''
    def __getitem__(self, idx):	# 自定义 dataset 的 idx 对应的 sample
        if self.y is None:
            return self.x[idx]
        else:
            return self.x[idx], self.y[idx]

    def __len__(self):
        return len(self.x)

__getitem__()实际应用于 dataloader 中,详细可见下图(图源自 PyTorch Tutorial PDF)

李宏毅2023机器学习作业 HW01 解析和代码分享_第1张图片

Neural Network Model

这部分我做了简单的修改,以便于后续调参

class My_Model(nn.Module):
    def __init__(self, input_dim):
        super(My_Model, self).__init__()
        # TODO: modify model's structure in hyper-parameter: 'config', be aware of dimensions.
        self.layers = nn.Sequential(
            nn.Linear(input_dim, config['layer'][0]),
            nn.ReLU(),
            nn.Linear(config['layer'][0], config['layer'][1]),
            nn.ReLU(),
            nn.Linear(config['layer'][1], 1)
        )

    def forward(self, x):
        x = self.layers(x)
        x = x.squeeze(1) # (B, 1) -> (B)
        return x

Feature Selection

这部分可以使用 sklearn.feature_selection.SelectKBest 来进行特征选择。
具体代码如下(你可能需要传入 config):

from sklearn.feature_selection import SelectKBest, f_regression

k = config['k']	# 所要选择的特征数量
selector = SelectKBest(score_func=f_regression, k=k)
result = selector.fit(train_data[:, :-1], train_data[:,-1])
idx = np.argsort(result.scores_)[::-1]
feat_idx = list(np.sort(idx[:k]))

Training Loop

def trainer(train_loader, valid_loader, model, config, device):
    criterion = nn.MSELoss(reduction='mean') # Define your loss function, do not modify this.

    # Define your optimization algorithm. 
    # TODO: Please check https://pytorch.org/docs/stable/optim.html to get more available algorithms.
    # TODO: L2 regularization (optimizer(weight decay...) or implement by your self).
    optimizer = torch.optim.SGD(model.parameters(), lr=config['learning_rate'], momentum=config['momentum']) 	# 设置 optimizer 为SGD
    writer = SummaryWriter() # Writer of tensoboard.

    if not os.path.isdir('./models'):
        os.mkdir('./models') # Create directory of saving models.

    n_epochs, best_loss, step, early_stop_count = config['n_epochs'], math.inf, 0, 0

    for epoch in range(n_epochs):
        model.train() # Set your model to train mode.
        loss_record = []	# 初始化空列表,用于记录训练误差

        # tqdm is a package to visualize your training progress.
        train_pbar = tqdm(train_loader, position=0, leave=True)	# 让训练进度显示出来,可以去除这一行,然后将下面的 train_pbar 改成 train_loader(目的是尽量减少 jupyter notebook 的打印,因为如果这段代码在 kaggle 执行,在一定的输出后会报错: IOPub message rate exceeded...)

        for x, y in train_pbar:
            optimizer.zero_grad()               # Set gradient to zero.
            x, y = x.to(device), y.to(device)   # Move your data to device. 
            pred = model(x)	# 等价于 model.forward(x)             
            loss = criterion(pred, y)	# 计算 pred 和 y 的均方误差
            loss.backward()                     # Compute gradient(backpropagation).
            optimizer.step()                    # Update parameters.
            step += 1
            loss_record.append(loss.detach().item())
            
            # Display current epoch number and loss on tqdm progress bar.
            train_pbar.set_description(f'Epoch [{epoch+1}/{n_epochs}]')
            train_pbar.set_postfix({'loss': loss.detach().item()})

        mean_train_loss = sum(loss_record)/len(loss_record)
        writer.add_scalar('Loss/train', mean_train_loss, step)

        model.eval() # Set your model to evaluation mode.
        loss_record = []	# 初始化空列表,用于记录验证误差
        for x, y in valid_loader:
            x, y = x.to(device), y.to(device)
            with torch.no_grad():
                pred = model(x)
                loss = criterion(pred, y)

            loss_record.append(loss.item())
            
        mean_valid_loss = sum(loss_record)/len(loss_record)
        print(f'Epoch [{epoch+1}/{n_epochs}]: Train loss: {mean_train_loss:.4f}, Valid loss: {mean_valid_loss:.4f}')
        # writer.add_scalar('Loss/valid', mean_valid_loss, step)

        if mean_valid_loss < best_loss:
            best_loss = mean_valid_loss
            torch.save(model.state_dict(), config['save_path']) # Save your best model
            print('Saving model with loss {:.3f}...'.format(best_loss))
            early_stop_count = 0
        else: 
            early_stop_count += 1

        if early_stop_count >= config['early_stop']:
            print('\nModel is not improving, so we halt the training session.')
            return

Baselines

根据作业 PDF 中的提示:

  • Simple Baseline (1.96993)
    • 运行所给的 sample code。
  • Medium Baseline (1.15678)
    • 特征选择,简单手动的选择你认为关联性较大的特征。
  • Strong Baseline (0.92619)
    • 尝试不同的优化器(如:Adam)。
    • 应用 L2 正则化(SGD/Adam … 优化器参数中的 weight_decay)
  • Boss Baseline (0.81456)
    • 尝试更好的特征选择,可以使用 sklearn.feature_selection.SelectKBest。
    • 尝试不同的模型架构(调整 my_module.layers)
    • 调整其他超参数

个人完整代码分享: GitHub | GitCode | Gitee

参考链接:

  1. PyTorch: What is the difference between tensor.cuda() and tensor.to(torch.device(“cuda:0”))?
  2. PyTorch Tutorial PDF

你可能感兴趣的:(李宏毅机器学习Homework,机器学习,机器学习,深度学习)