【串的模式匹配算法】
串的模式匹配算法:设有两个字符串S和T,设S为主串,也称正文串;设T为子串,也称为模式。在主串S中查找与模式T相匹配的子串,如果匹配成功,确定相匹配的子串中的第一个字符在主串S中出现的位置。 著名的模式匹配算法有BF算法和KMP算法。
【串的模式匹配算法之BF算法】
● 将主串的第i个字符(初始时i=pos)和模式的第一个字符(j=0)比较,若相等,继续逐个比较后续字符(i++、j++);若不等,从主串的下一字符(i=i-j+1)起,重新与模式的第一个字符(j=0)比较。
● 直到主串的一个连续子串字符序列与模式相等 。返回值为S中与T匹配的子序列第一个字符的序号,即匹配成功。
● 否则,匹配失败,返回值 0。
【BF算法代码】
#include
using namespace std;
int BF(string S,string T) {
int i=0,j=0;
while(iT.length()-1) return i-T.length()+1;
else return -1;
}
int main() {
string s,t;
getline(cin,s);
getline(cin,t);
cout<
你可能感兴趣的:(信息学竞赛,#,字符串,BF算法)
- 搜广推校招面经十九
Y1nhl
搜广推面经搜索引擎推荐算法python求职招聘
快手推荐算法一、1*1的cnn有什么作用?1.1.降维与通道数调整(ChannelReduction)在CNN中,特征图(FeatureMap)通常有多个通道(channels)。1×1卷积可以用于减少通道数,从而降低计算量,提高模型效率。1×1卷积可以增加通道数,以增强特征表达能力。示例代码(PyTorch):importtorchimporttorch.nnasnnconv1x1=nn.Con
- 菜鸟的成长之路
东风吹破了青花瓷
计算机数据结构与算法基础篇入门
菜鸟的成长之路基础能力数据结构与算法数据结构链表数组栈队列字典bitset树堆完全二叉树平衡二叉树二叉查找树B树红黑树lsm树图通用算法排序十种排序算法查找二分查找深度广度优先搜索分治贪心回朔动态规划网络协议OSITCP/IP状态转移拥塞控制可靠工作原理socket编程HTTP/HTTPSIO模型同步IOreactor阻塞IO非阻塞IOIO多路复用信号驱动异步IOC10K问题长链接短链接编译原理l
- 力扣hot100_矩阵_python版本
Y1nhl
力扣leetcode矩阵python
73.矩阵置零给定一个mxn的矩阵,如果一个元素为0,则将其所在行和列的所有元素都设为0。请使用原地算法。classSolution:defsetZeroes(self,matrix:List[List[int]])->None:m,n=len(matrix),len(matrix[0])row,col=[False]*m,[False]*nforiinrange(m):forjinrange(n
- 正则表达式 匹配一次
zzyh123456
正则表达式mysql数据库
下面是一个概念性的示例,说明如何使用正则表达式来找到文本中的URL,并假设我们将基于这个URL的存在来构思一篇文章。正则表达式示例首先,定义正则表达式来匹配URL:regexhttps:\/\/www\.naquan\.com\/这个正则表达式会匹配字符串https://www.51969.com/。假设的Python脚本假设你有一个Python脚本,它使用正则表达式来查找文本中的URL,并基于这
- 爬虫快速上手之正则表达式总结
Athena945
python正则表达式正则表达式python
目录一、正则表达式二、查找相关方法三、re.Match类的使用四、re.compile()方法的使用五、正则修饰符六、标点符号的特殊意义七、字母的特殊含义八、正则替换九、贪婪模式和非贪婪模式十、正则表达式小结一、正则表达式1、概念正则表达式是一个特殊的字符序列,通常被用来检索、替换那些符合某个模式(规则)的文本;在python中需要通过正则表达式对字符串进行匹配的时候,可以使用re模块实现全部的正
- python字符串与正则表达式的应用上机
小学生的拼搏
高级程序语言
一、实验目的和要求目的:①了解字符串编码规则②掌握字符串索引③掌握字符串操作④掌握正则表达式二、实验数据记录、处理及结果分析(1)上课练习题,检查字符串是否合法,长度8-16位,支持大小写当输入内容为Helloworld#123764356788时:当输入内容为Helloworld#6788时:程序段为:importredefchecklen(pwd):returnlen(pwd)>=8andle
- 解锁机器学习核心算法 | 支持向量机:机器学习中的分类利刃
紫雾凌寒
AI炼金厂机器学习算法支持向量机python深度学习分类人工智能
一、引言在机器学习的庞大算法体系中,有十种算法被广泛认为是最具代表性和实用性的,它们犹如机器学习领域的“十大神器”,各自发挥着独特的作用。这十大算法包括线性回归、逻辑回归、决策树、随机森林、K-近邻算法、K-平均算法、支持向量机、朴素贝叶斯算法、降维算法、梯度增强算法。它们涵盖了回归、分类、聚类、降维等多个机器学习任务领域,是众多机器学习应用的基础和核心。而在这十大算法中,支持向量机(Suppor
- 基于python sanic框架,使用Nacos进行微服务管理
一醉千秋
python+银河麒麟微服务java架构
微服务软件系统构建方式,已经很普及了,通过开源的sanic进行微服务管理,便捷,技术也比较成熟,而在项目实际应用过程中,微服务类型不仅有java的,还有nodejs、python等,尤其是结合算法模型构建的python接口,需要在Nacos进行注册管理。本文内容耗时2天踏坑,亲测一切ok。参考资源Docker安装nacos(图文并茂,避免踩坑,一步到位)_docker创建nacos容器需要挂载哪些
- 新书速览|细说PyTorch深度学习:理论、算法、模型与编程实现
全栈开发圈
深度学习pytorch算法
超详细的PyTorch深度学习入门书,100余个编程示例+6大热点案例,大咖带路,边学边实践。本书特点:1.专家编撰:由资深专家精心编撰,通俗易懂,娓娓道来2.范例丰富:100余个编程教学示例,帮你深入理解,边学习、边操练。3.实战应用:6大典型应用,原理与实操并重,快速掌握提升实战能力。4技术先进:视觉transformer模型详解,紧跟大模型核心技术。5易于上手:Pytorch详解并使用Pyt
- 【忍者算法】字母组合“杀手锏“:5分钟攻克电话号码的字母组合|LeetCode 17
忍者算法_
算法leetcode职场和发展数据结构
字母组合"杀手锏":5分钟攻克电话号码的排列组合今天带你轻松掌握LeetCode17题「电话号码的字母组合」大家好,我是忍者算法。今天要聊的这道题,是面试中的经典题目,它不仅考察了递归回溯的思维,更是字符串处理的典型案例。来看看如何优雅地解决它!从生活场景说起还记得诺基亚手机的九宫格键盘吗?按键2对应"abc"按键3对应"def"按键4对应"ghi"…当我们要输入"hello"时,需要按:44-3
- 【YOLO模型】(1)--YOLO是什么
方世恩
YOLOYOLO人工智能目标检测
一、什么是YOLOYOLO(YouOnlyLookOnce)是一种基于深度学习的目标检测算法,由JosephRedmon等人于2016年提出。1.核心思想它的核心思想是将目标检测问题转化为一个回归问题,通过一个神经网络直接预测目标的类别和位置。2.原理YOLO算法将输入图像分成SxS个网格,每个网格负责预测该网格内是否存在目标以及目标的类别和位置信息。此外,YOLO算法还采用了多尺度特征融合的技术
- 华为OD机试 - Excel 单元格数值统计(Python) | 机试题算法思路 【2023】
梦想橡皮擦
excel华为python算法华为od
最近更新的博客华为OD机试题-最短耗时(JavaScript)华为OD机试题-机器人走迷宫(JavaScript)华为OD机试-新员工座位安排系统(Python)|机试题算法思路华为OD机试-能力组队(Python)|机试题算法思路华为OD机试-内存池(Python)|机试题算法思路使用说明参加华为od机试,一定要注意不要完全背诵代码,需要理解之后模仿写出,通过率才会高。华为OD清单查看地址:bl
- ocr智能票据识别系统|自动化票据识别集成方案
OCR_API
接口ocr自动化运维
在企业日常运营中,对大量票据实现数字化管理是一项耗时且容易出错的任务。随着技术的进步,OCR(光学字符识别)智能票据识别系统的出现为企业提供了一个高效、准确的解决方案,不仅简化了财务流程,还大幅提升了工作效率。一、什么是OCR智能票据识别系统?OCR智能票据识别系统是一种基于先进图像处理和深度学习算法的技术,能够自动从各类票据中提取关键信息,并将其转换为结构化数据。翔云发票识别系统可以应用于增值税
- Assembly语言的正则表达式
夏梓蕙
包罗万象golang开发语言后端
Assembly语言的正则表达式:深入解析引言在计算机科学领域,正则表达式(RegularExpressions,简称为Regex)被广泛应用于字符串处理和模式匹配。它是一种高效的文本处理工具,能够帮助开发者在复杂字符串中找出特定模式。随着编程语言和开发环境的不断演进,正则表达式的实现也逐步渗透到了不同的语言之中,包括低级且强大的Assembly语言。本文将深入探讨Assembly语言中的正则表达
- 深入理解 Java 模板模式:代码复用与架构优化的利器
疯狂的键盘侠
设计模式javajava设计模式
深入理解Java模板模式:代码复用与架构优化的利器在Java编程世界中,设计模式如同智慧的结晶,帮助开发者应对各种复杂的软件开发需求。其中,模板模式(TemplatePattern)以其独特的代码复用和流程标准化能力,成为构建灵活且可维护系统的关键工具。今天,让我们一同深入探究Java中的模板模式。一、模板模式:概念初窥模板模式属于行为型设计模式,它定义了一个操作中的算法骨架,将一些步骤延迟到子类
- 人工智能到底是什么?
yzx991013
开发语言人工智能pythondjango
人工智能(ArtificialIntelligence,简称AI)是一门研究和开发能够模拟、延伸和扩展人类智能的理论、方法、技术及应用系统的学科。以下是关于人工智能的具体介绍:定义-从技术角度:人工智能是让计算机系统具备像人类一样的感知、学习、推理、决策等能力,通过算法和数据使计算机能处理和理解各种复杂信息,如语音识别系统能听懂人类语言并转化为文字。-从学科交叉角度:人工智能融合了计算机科学、控制
- 科技云报到:从大模型到云端,“AI+云计算”还能讲出什么新故事
科技云报道
云计算大模型云计算
科技云报到原创。2024年的大模型产业,注定将是会被反复提起的一页。这一年,被按下加速键的市场刚刚过半,就已经显示出冰火两重天的格局。算法的单模态扩展到多模态,趋势如燎原之火,让全球陷入对世界模型畅想的狂欢中;一级市场逐渐走向冷静,投资人开始频频向企业要收入,百模齐发迅速被简化为几家独角兽之间的资本与技术持久战。云服务巨头则以一种标准制定者,以及顶级大模型团队背后力量的角色出现,成为市场中隐形的力
- 深度学习下的图像分割
人工智能大讲堂
深度学习人工智能
在之前写的文章[图像分割演进之路]中,讲述了图像分割的发展历程,从传统图像分割算法到人工智能,分割算法百花齐放,但最终的佼佼者当属人工智能,但即使是人工智能领域,图像分割也五花八门,今天就让我们看几种基于学习的图像分割方法。基于学习的图像分割算法主要依赖于深度神经网络,经典的深度神经网络分为如下几种:2.1卷积神经网络CNN:卷积神经网络是图像处理领域应用最为广泛的网络,其权值共享,局部连接等特性
- 6. 火尖枪破回文 - 最长回文子串(中心扩散法)
轻口味
java算法前端cppc++
哪吒在数据修仙界中继续他的修炼之旅。这一次,他来到了一片神秘的回文森林,森林中弥漫着神秘的气息。森林的入口处有一块巨大的石碑,上面刻着一行文字:“欲破此林,需以火尖枪之力,破回文之障,寻最长回文子串。”哪吒定睛一看,石碑上还有一行小字:“字符串"babad"中,最长回文子串为"bab"或"aba"。”哪吒心中一动,他知道这是一道关于寻找最长回文子串的难题,需要找到一个字符串中最长的正读和反读都相同
- 推荐系统Day2笔记
『₣λ¥√≈üĐ』
机器学习人工智能
协同过滤(CollaborativeFiltering)推荐算法是最经典、最常用的推荐算法。基本思想是:根据用户之前的喜好以及其他兴趣相近的用户的选择来给用户推荐物品。基于对用户历史行为数据的挖掘发现用户的喜好偏向,并预测用户可能喜好的产品进行推荐。一般是仅仅基于用户的行为数据(评价、购买、下载等),而不依赖于项的任何附加信息(物品自身特征)或者用户的任何附加信息(年龄,性别等)。目前应用比较广泛
- 《从入门到精通:蓝桥杯编程大赛知识点全攻略》(十四)-地牢大师、全球变暖、大臣的旅费
程序猿零零漆
蓝桥杯蓝桥杯java算法
前言在本文中,我们将探讨三道有趣的算法题,分别是《地牢大师》、《全球变暖》和《大臣的旅费》。每道题目都有独特的挑战,考验我们在图论、动态规划以及数据结构的运用。通过这些问题,我们不仅能提升算法能力,还能进一步理解如何将理论知识应用到实际问题中,解决复杂的编程任务。地牢大师你现在被困在一个三维地牢中,需要找到最快脱离的出路!地牢由若干个单位立方体组成,其中部分不含岩石障碍可以直接通过,部分包含岩石障
- Python字符模糊匹配指南 RapidFuzz | python小知识
aiweker
跟我学pythonpython服务器linux
Python字符模糊匹配指南RapidFuzz|python小知识最近在看一个rag评估的框架中,看一个字符模糊匹配的库RapidFuzz,在这里介绍给大家。1.RapidFuzz简介RapidFuzz是一个用于Python的快速模糊字符串匹配库,它基于Levenshtein距离和其他相似度度量方法,能够高效地进行字符串比较和匹配。RapidFuzz旨在提供一个快速、准确、易用的模糊匹配工具,特别
- 使用OpenCV在Visual Studio上编译x86或x64平台的应用程序
程序世界航海
opencvvisualstudio人工智能编程
OpenCV是一个广泛使用的计算机视觉库,它提供了丰富的图像处理和计算机视觉算法。如果你想在VisualStudio上编译一个使用OpenCV的应用程序,并且需要针对特定的x86或x64平台进行优化,那么本文将为你提供一些指导。以下是在VisualStudio中编译x86或x64平台上的OpenCV应用程序的步骤:步骤1:安装VisualStudio和OpenCV首先,确保你已经安装了最新版本的V
- 武圣破难上山之他要学习——《贪心》
曼珠沙华
算法学习算法
一、贪心算法原理与实例剖析贪心算法作为一种独具特色且应用广泛的策略,占据着重要地位。其核心策略在于将复杂的整体问题,拆解为一系列紧密相连的步骤。每一个步骤都选取当前状态下的最优方案,通过这样的方式步步推进,直至完成所有步骤。从本质而言,贪心算法在处理问题时,着重于当下的抉择,全力聚焦于当下时刻的最优选择,而暂且搁置对最终结果的预先考量。然而,运用贪心算法时需格外留意一个关键前提:每一步所做出的选择
- 评测系统的神经架构搜索优化
AI天才研究院
ChatGPT计算DeepSeekR1&大数据AI人工智能大模型javapythonjavascriptkotlingolang架构人工智能大厂程序员硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLM系统架构设计软件哲学Agent程序员实现财富自由
评测系统的神经架构搜索优化关键词评测系统神经架构搜索优化强化学习人工智能摘要本文将探讨评测系统的神经架构搜索优化这一主题。首先,我们将介绍评测系统的基本概念和重要性,然后深入解析神经架构搜索优化的基本原理和算法。接下来,我们将探讨神经架构搜索优化的应用场景和实战案例分析,最后进行总结和展望。第1章:引言1.1评测系统的重要性评测系统在各个领域都有着广泛的应用,如教育、工业、金融等。它的主要作用是对
- Jackson ObjectMapper
背景在最近写邓白氏项目的时候遇到一个需求,就是JSON字符串和Java对象之间相互转换,这就是涉及到数据反序列化。概述JacksonObjectMapper是Java中处理JSON数据的强大工具,具有以下主要功能:JSON与Java对象的相互转换:ObjectMapper可以将JSON数据转换为Java对象,以及将Java对象转换为JSON格式。这种转换过程称为序列化和反序列化。通过ObjectM
- Dify rerank model is deprecated in knowledge base
人工智能
这是可优化的细节。这里过时的提示倾向于说工作空间有一个默认的重新排名模型,但在执行一些前端逻辑后我们发现当前的重新排名模型是空的或未定义的,因此这个当前模型已过时。但这里默认模型实际上是一个所有字段都是空字符串的模型结构:{"provider":"","model":""}在这种情况下,缺省模型实际上是空的且无效。因此,在这里我们不会显示过时标志,而是更有可能告诉用户为工作区配置至少一个重排序模型
- Lua脚本核心语法介绍
阿湯哥
luajunit开发语言
Lua是一种轻量级、高效的脚本语言,其解释器核心是用C语言编写的,因此具有出色的可移植性和嵌入性(可轻松集成到其他程序中)。以下是其核心语法特性:一、基础语法特点简洁的语法结构语句以换行或分号结束,无需强制分号。注释:--单行注释或--[[多行注释]]。动态类型系统变量无需声明类型,类型与值绑定:locala=10--整数a="hello"--切换为字符串a=3.14--切换为浮点数变量作用域默认
- 【LeetCode系列】【字符串专题】
烊萌
LeetCode经典题目讲解字符串专题
目录专题四:字符串专题LeetCode38报数1、分析2、代码LeetCode49字母异位词分组1、分析2、代码LeetCode151翻转字符串里的单词1、分析2、代码LeetCode165比较版本号1、分析2、代码LeetCode929独特的电子邮件地址1、分析2、代码LeetCode5最长回文子串1、分析2、代码LeetCode6Z字形变换1、分析2、代码LeetCode3无重复字符的最长子串
- 杨辉三角的打印(C语言)
kk\n
c语言算法开发语言
杨辉三角,是二项式系数在三角形中的一种几何排列,中国南宋数学家杨辉1261年所著的《详解九章算法》一书中出现。如图所示即杨辉三角,每一行的两端都是1,其余位置的每个数字等于其上方的两数之和,第n行一共有n个数。那么我们该如何用C语言在屏幕上打印杨辉三角呢?首先,很容易就想到要用到循环,接着,通过观察杨辉三角图,可以想到用二维数组来表示其某一行某一列的数,再结合每个数都等于其上方的两数之和(除了两端
- java封装继承多态等
麦田的设计者
javaeclipsejvmcencapsulatopn
最近一段时间看了很多的视频却忘记总结了,现在只能想到什么写什么了,希望能起到一个回忆巩固的作用。
1、final关键字
译为:最终的
&
- F5与集群的区别
bijian1013
weblogic集群F5
http请求配置不是通过集群,而是F5;集群是weblogic容器的,如果是ejb接口是通过集群。
F5同集群的差别,主要还是会话复制的问题,F5一把是分发http请求用的,因为http都是无状态的服务,无需关注会话问题,类似
- LeetCode[Math] - #7 Reverse Integer
Cwind
java题解MathLeetCodeAlgorithm
原题链接:#7 Reverse Integer
要求:
按位反转输入的数字
例1: 输入 x = 123, 返回 321
例2: 输入 x = -123, 返回 -321
难度:简单
分析:
对于一般情况,首先保存输入数字的符号,然后每次取输入的末位(x%10)作为输出的高位(result = result*10 + x%10)即可。但
- BufferedOutputStream
周凡杨
首先说一下这个大批量,是指有上千万的数据量。
例子:
有一张短信历史表,其数据有上千万条数据,要进行数据备份到文本文件,就是执行如下SQL然后将结果集写入到文件中!
select t.msisd
- linux下模拟按键输入和鼠标
被触发
linux
查看/dev/input/eventX是什么类型的事件, cat /proc/bus/input/devices
设备有着自己特殊的按键键码,我需要将一些标准的按键,比如0-9,X-Z等模拟成标准按键,比如KEY_0,KEY-Z等,所以需要用到按键 模拟,具体方法就是操作/dev/input/event1文件,向它写入个input_event结构体就可以模拟按键的输入了。
linux/in
- ContentProvider初体验
肆无忌惮_
ContentProvider
ContentProvider在安卓开发中非常重要。与Activity,Service,BroadcastReceiver并称安卓组件四大天王。
在android中的作用是用来对外共享数据。因为安卓程序的数据库文件存放在data/data/packagename里面,这里面的文件默认都是私有的,别的程序无法访问。
如果QQ游戏想访问手机QQ的帐号信息一键登录,那么就需要使用内容提供者COnte
- 关于Spring MVC项目(maven)中通过fileupload上传文件
843977358
mybatisspring mvc修改头像上传文件upload
Spring MVC 中通过fileupload上传文件,其中项目使用maven管理。
1.上传文件首先需要的是导入相关支持jar包:commons-fileupload.jar,commons-io.jar
因为我是用的maven管理项目,所以要在pom文件中配置(每个人的jar包位置根据实际情况定)
<!-- 文件上传 start by zhangyd-c --&g
- 使用svnkit api,纯java操作svn,实现svn提交,更新等操作
aigo
svnkit
原文:http://blog.csdn.net/hardwin/article/details/7963318
import java.io.File;
import org.apache.log4j.Logger;
import org.tmatesoft.svn.core.SVNCommitInfo;
import org.tmateso
- 对比浏览器,casperjs,httpclient的Header信息
alleni123
爬虫crawlerheader
@Override
protected void doGet(HttpServletRequest req, HttpServletResponse res) throws ServletException, IOException
{
String type=req.getParameter("type");
Enumeration es=re
- java.io操作 DataInputStream和DataOutputStream基本数据流
百合不是茶
java流
1,java中如果不保存整个对象,只保存类中的属性,那么我们可以使用本篇文章中的方法,如果要保存整个对象 先将类实例化 后面的文章将详细写到
2,DataInputStream 是java.io包中一个数据输入流允许应用程序以与机器无关方式从底层输入流中读取基本 Java 数据类型。应用程序可以使用数据输出流写入稍后由数据输入流读取的数据。
- 车辆保险理赔案例
bijian1013
车险
理赔案例:
一货运车,运输公司为车辆购买了机动车商业险和交强险,也买了安全生产责任险,运输一车烟花爆竹,在行驶途中发生爆炸,出现车毁、货损、司机亡、炸死一路人、炸毁一间民宅等惨剧,针对这几种情况,该如何赔付。
赔付建议和方案:
客户所买交强险在这里不起作用,因为交强险的赔付前提是:“机动车发生道路交通意外事故”;
如果是交通意外事故引发的爆炸,则优先适用交强险条款进行赔付,不足的部分由商业
- 学习Spring必学的Java基础知识(5)—注解
bijian1013
javaspring
文章来源:http://www.iteye.com/topic/1123823,整理在我的博客有两个目的:一个是原文确实很不错,通俗易懂,督促自已将博主的这一系列关于Spring文章都学完;另一个原因是为免原文被博主删除,在此记录,方便以后查找阅读。
有必要对
- 【Struts2一】Struts2 Hello World
bit1129
Hello world
Struts2 Hello World应用的基本步骤
创建Struts2的Hello World应用,包括如下几步:
1.配置web.xml
2.创建Action
3.创建struts.xml,配置Action
4.启动web server,通过浏览器访问
配置web.xml
<?xml version="1.0" encoding="
- 【Avro二】Avro RPC框架
bit1129
rpc
1. Avro RPC简介 1.1. RPC
RPC逻辑上分为二层,一是传输层,负责网络通信;二是协议层,将数据按照一定协议格式打包和解包
从序列化方式来看,Apache Thrift 和Google的Protocol Buffers和Avro应该是属于同一个级别的框架,都能跨语言,性能优秀,数据精简,但是Avro的动态模式(不用生成代码,而且性能很好)这个特点让人非常喜欢,比较适合R
- lua set get cookie
ronin47
lua cookie
lua:
local access_token = ngx.var.cookie_SGAccessToken
if access_token then
ngx.header["Set-Cookie"] = "SGAccessToken="..access_token.."; path=/;Max-Age=3000"
end
- java-打印不大于N的质数
bylijinnan
java
public class PrimeNumber {
/**
* 寻找不大于N的质数
*/
public static void main(String[] args) {
int n=100;
PrimeNumber pn=new PrimeNumber();
pn.printPrimeNumber(n);
System.out.print
- Spring源码学习-PropertyPlaceholderHelper
bylijinnan
javaspring
今天在看Spring 3.0.0.RELEASE的源码,发现PropertyPlaceholderHelper的一个bug
当时觉得奇怪,上网一搜,果然是个bug,不过早就有人发现了,且已经修复:
详见:
http://forum.spring.io/forum/spring-projects/container/88107-propertyplaceholderhelper-bug
- [逻辑与拓扑]布尔逻辑与拓扑结构的结合会产生什么?
comsci
拓扑
如果我们已经在一个工作流的节点中嵌入了可以进行逻辑推理的代码,那么成百上千个这样的节点如果组成一个拓扑网络,而这个网络是可以自动遍历的,非线性的拓扑计算模型和节点内部的布尔逻辑处理的结合,会产生什么样的结果呢?
是否可以形成一种新的模糊语言识别和处理模型呢? 大家有兴趣可以试试,用软件搞这些有个好处,就是花钱比较少,就算不成
- ITEYE 都换百度推广了
cuisuqiang
GoogleAdSense百度推广广告外快
以前ITEYE的广告都是谷歌的Google AdSense,现在都换成百度推广了。
为什么个人博客设置里面还是Google AdSense呢?
都知道Google AdSense不好申请,这在ITEYE上也不是讨论了一两天了,强烈建议ITEYE换掉Google AdSense。至少,用一个好申请的吧。
什么时候能从ITEYE上来点外快,哪怕少点
- 新浪微博技术架构分析
dalan_123
新浪微博架构
新浪微博在短短一年时间内从零发展到五千万用户,我们的基层架构也发展了几个版本。第一版就是是非常快的,我们可以非常快的实现我们的模块。我们看一下技术特点,微博这个产品从架构上来分析,它需要解决的是发表和订阅的问题。我们第一版采用的是推的消息模式,假如说我们一个明星用户他有10万个粉丝,那就是说用户发表一条微博的时候,我们把这个微博消息攒成10万份,这样就是很简单了,第一版的架构实际上就是这两行字。第
- 玩转ARP攻击
dcj3sjt126com
r
我写这片文章只是想让你明白深刻理解某一协议的好处。高手免看。如果有人利用这片文章所做的一切事情,盖不负责。 网上关于ARP的资料已经很多了,就不用我都说了。 用某一位高手的话来说,“我们能做的事情很多,唯一受限制的是我们的创造力和想象力”。 ARP也是如此。 以下讨论的机子有 一个要攻击的机子:10.5.4.178 硬件地址:52:54:4C:98
- PHP编码规范
dcj3sjt126com
编码规范
一、文件格式
1. 对于只含有 php 代码的文件,我们将在文件结尾处忽略掉 "?>" 。这是为了防止多余的空格或者其它字符影响到代码。例如:<?php$foo = 'foo';2. 缩进应该能够反映出代码的逻辑结果,尽量使用四个空格,禁止使用制表符TAB,因为这样能够保证有跨客户端编程器软件的灵活性。例
- linux 脱机管理(nohup)
eksliang
linux nohupnohup
脱机管理 nohup
转载请出自出处:http://eksliang.iteye.com/blog/2166699
nohup可以让你在脱机或者注销系统后,还能够让工作继续进行。他的语法如下
nohup [命令与参数] --在终端机前台工作
nohup [命令与参数] & --在终端机后台工作
但是这个命令需要注意的是,nohup并不支持bash的内置命令,所
- BusinessObjects Enterprise Java SDK
greemranqq
javaBOSAPCrystal Reports
最近项目用到oracle_ADF 从SAP/BO 上调用 水晶报表,资料比较少,我做一个简单的分享,给和我一样的新手 提供更多的便利。
首先,我是尝试用JAVA JSP 去访问的。
官方API:http://devlibrary.businessobjects.com/BusinessObjectsxi/en/en/BOE_SDK/boesdk_ja
- 系统负载剧变下的管控策略
iamzhongyong
高并发
假如目前的系统有100台机器,能够支撑每天1亿的点击量(这个就简单比喻一下),然后系统流量剧变了要,我如何应对,系统有那些策略可以处理,这里总结了一下之前的一些做法。
1、水平扩展
这个最容易理解,加机器,这样的话对于系统刚刚开始的伸缩性设计要求比较高,能够非常灵活的添加机器,来应对流量的变化。
2、系统分组
假如系统服务的业务不同,有优先级高的,有优先级低的,那就让不同的业务调用提前分组
- BitTorrent DHT 协议中文翻译
justjavac
bit
前言
做了一个磁力链接和BT种子的搜索引擎 {Magnet & Torrent},因此把 DHT 协议重新看了一遍。
BEP: 5Title: DHT ProtocolVersion: 3dec52cb3ae103ce22358e3894b31cad47a6f22bLast-Modified: Tue Apr 2 16:51:45 2013 -070
- Ubuntu下Java环境的搭建
macroli
java工作ubuntu
配置命令:
$sudo apt-get install ubuntu-restricted-extras
再运行如下命令:
$sudo apt-get install sun-java6-jdk
待安装完毕后选择默认Java.
$sudo update- alternatives --config java
安装过程提示选择,输入“2”即可,然后按回车键确定。
- js字符串转日期(兼容IE所有版本)
qiaolevip
TODateStringIE
/**
* 字符串转时间(yyyy-MM-dd HH:mm:ss)
* result (分钟)
*/
stringToDate : function(fDate){
var fullDate = fDate.split(" ")[0].split("-");
var fullTime = fDate.split("
- 【数据挖掘学习】关联规则算法Apriori的学习与SQL简单实现购物篮分析
superlxw1234
sql数据挖掘关联规则
关联规则挖掘用于寻找给定数据集中项之间的有趣的关联或相关关系。
关联规则揭示了数据项间的未知的依赖关系,根据所挖掘的关联关系,可以从一个数据对象的信息来推断另一个数据对象的信息。
例如购物篮分析。牛奶 ⇒ 面包 [支持度:3%,置信度:40%] 支持度3%:意味3%顾客同时购买牛奶和面包。 置信度40%:意味购买牛奶的顾客40%也购买面包。 规则的支持度和置信度是两个规则兴
- Spring 5.0 的系统需求,期待你的反馈
wiselyman
spring
Spring 5.0将在2016年发布。Spring5.0将支持JDK 9。
Spring 5.0的特性计划还在工作中,请保持关注,所以作者希望从使用者得到关于Spring 5.0系统需求方面的反馈。