- 《BERT基础教程:Transformer大模型实战》读书笔记
johnny233
读书笔记人工智能
概念BERT,BidirectionalEncoderRepresentationsfromTransformers,多Transformer的双向编码器表示法。RNN,recurrentneuralnetwork,循环神经网络。LSTM,longshort-termmemory,长短期记忆网络。NLI,Naturallanguageinference,自然语言推理。知识蒸馏(knowledged
- 英伟达如何通过剪枝和蒸馏技术让Llama 3.1模型“瘦身“?
蒜鸭
人工智能算法机器学习
英伟达如何通过剪枝和蒸馏技术让Llama3.1模型"瘦身"?大家好,我是蒜鸭。今天我们来聊聊英伟达最近在大语言模型优化方面的一项有趣研究。随着Meta发布Llama3.1系列模型,如何在保持模型性能的同时缩小其体积成为了业界关注的焦点。英伟达研究团队通过结构化权重剪枝和知识蒸馏技术,成功将Llama3.18B模型压缩为4B参数的小型语言模型,并取得了不俗的效果。让我们一起来深入探讨这项技术的原理和
- 【机器学习】机器学习与大模型在人工智能领域的融合应用与性能优化新探索
E绵绵
Everything人工智能机器学习大模型pythonAIGC应用科技
文章目录引言机器学习与大模型的基本概念机器学习概述监督学习无监督学习强化学习大模型概述GPT-3BERTResNetTransformer机器学习与大模型的融合应用自然语言处理文本生成文本分类机器翻译图像识别自动驾驶医学影像分析语音识别智能助手语音转文字大模型性能优化的新探索模型压缩权重剪枝量化知识蒸馏分布式训练数据并行模型并行异步训练高效推理模型裁剪缓存机制专用硬件未来展望跨领域应用智能化系统人
- 【论文阅读】GLiRA: Black-Box Membership Inference Attack via Knowledge Distillation
Bosenya12
模型窃取科研学习论文阅读知识蒸馏成员推理攻击黑盒
摘要While(虽然)DeepNeuralNetworks(DNNs)havedemonstratedremarkableperformanceintasksrelatedtoperception(感知)andcontrol(控制),therearestillseveralunresolvedconcerns(未解决的问题)regardingtheprivacyoftheirtrainingdat
- Transformer视频理解学习的笔记
LinlyZhai
transformer学习笔记
今天复习了Transformer,ViT,学了SwinTransformer,还有观看了B站视频理解沐神系列串讲视频上(24.2.26未看完,明天接着看)这里面更多论文见:https://github.com/mli/paper-reading/B站视频理解沐神系列串讲视频下(明天接着看)上面这张图中的知识蒸馏,可以回头看一下上面这个github网址论文:VideoTransformers:ASu
- 大模型量化技术原理-LLM.int8()、GPTQ
吃果冻不吐果冻皮
动手学大模型人工智能
近年来,随着Transformer、MOE架构的提出,使得深度学习模型轻松突破上万亿规模参数,从而导致模型变得越来越大,因此,我们需要一些大模型压缩技术来降低模型部署的成本,并提升模型的推理性能。模型压缩主要分为如下几类:剪枝(Pruning)知识蒸馏(KnowledgeDistillation)量化之前也写过一些文章涉及大模型量化相关的内容。基于LLaMA-7B/Bloomz-7B1-mt复现开
- 知识蒸馏实战代码教学一(原理部分)
业余小程序猿
深度学习机器学习人工智能知识蒸馏
一、知识蒸馏的来源知识蒸馏(KnowledgeDistillation)源自于一篇由Hinton等人于2015年提出的论文《DistillingtheKnowledgeinaNeuralNetwork》。这个方法旨在将一个大型、复杂的模型的知识(通常称为教师模型)转移到一个小型、简化的模型(通常称为学生模型)中。通过这种方式,学生模型可以获得与教师模型相似的性能,同时具有更小的模型体积和计算资源需
- 知识蒸馏实战代码教学二(代码实战部分)
业余小程序猿
深度学习人工智能机器学习知识蒸馏
一、上章原理回顾具体过程:(1)首先我们要先训练出较大模型既teacher模型。(在图中没有出现)(2)再对teacher模型进行蒸馏,此时我们已经有一个训练好的teacher模型,所以我们能很容易知道teacher模型输入特征x之后,预测出来的结果teacher_preds标签。(3)此时,求到老师预测结果之后,我们需要求解学生在训练过程中的每一次结果student_preds标签。(4)先求h
- 超好用!——知识蒸馏中即插即用的对抗性调度器以及调整向量Vector
时光诺言
机器学习人工智能深度学习python
一.前言本设计思路来源于论文《DynamicData-FreeKnowledgeDistillationbyEasy-to-HardLearningStrategy》。1.1原理总体架构图如下。在常规的知识蒸馏中,一般不会考虑知识的难度先后,按照我们人类的思维,肯定是先学习容易的再学习难一点的知识(总不能小学就学高数吧哈哈)。一个模型的理想状态也应该如此。在本论文的设计图中,可以看到Generat
- 【论文解读】Document-Level Relation Extraction with Adaptive Focal Loss and Knowledge Distillation
Queen_sy
深度学习人工智能
目录1Introduction1Docre任务比句子级任务更具挑战性:2现有的Docre方法:3现有的Docre方法存在三个局限性2Methodology1使用轴向注意力模块作为特征提取器:2第二,提出适应性焦距损失3第三用知识蒸馏相关知识类别不平衡问题长尾类分布交叉熵损失和二元交叉熵损失二元交叉熵损失定义为知识蒸馏全文翻译https://baijiahao.baidu.com/s?id=1737
- 知识蒸馏之Knowledge Distillation: A Survey
Diros1g
知识蒸馏
InternationalJournalofComputerVision2021JianpingGou1·BaoshengYu1·StephenJ.Maybank2·DachengTao11UBTECHSydneyAICentre,SchoolofComputerScience,FacultyofEngineering,TheUniversityofSydney,Darlington,NSW200
- 知识蒸馏综述---代码整理
qq_41920323
模型部署python知识蒸馏
本文尽可能简单解释蒸馏用到的策略,并提供了实现源码。1、KD:KnowledgeDistillation链接:https://arxiv.org/pdf/1503.02531.pd3f发表:NIPS14最经典的,也是明确提出知识蒸馏概念的工作,通过使用带温度的softmax函数来软化教师网络的逻辑层输出作为学生网络的监督信息,使用KLdivergence来衡量学生网络与教师网络的差异,具体流程如下
- 基于敏锐背景响应和自蒸馏学习的弱监督时序动作定位 SODA: WTAL Based on Astute Background Response and Self-Distillation Learni
六个核桃Lu
视频动作定位人工智能图像处理视觉检测学习python
“SODA:WeaklySupervisedTemporalActionLocalizationBasedonAstuteBackgroundResponseandSelf-DistillationLearning”提出了一种创新方法来解决弱监督时间动作定位中过度定位、联合定位和欠定位的挑战。作者介绍了两种主要策略:敏锐的背景响应和自我蒸馏学习。这些策略旨在分别有效抑制背景响应并增强模型发现完整动
- En-Compactness:Self-Distillation Embedding&Contrastive Generation forGeneralized Zero-Shot Learning
computer_vision_chen
人工智能
1.引言基于大量标记数据的图像分类任务[6,16,23]由于深度学习的进步取得了巨大的进展[13,21,55]。然而,深度模型对数据的强烈依赖性使其在某些类别缺乏或甚至没有标记数据的情况下表现不佳[47]。零样本学习(ZSL)[24,35]被提出来解决这一数据缺失问题,通过识别来自未见过类别的对象。首先,它们在已见过的类别上学习分类模型,这些类别提供了训练样本,然后使用类别级别的语义描述符[10,
- 知识蒸馏(paper翻译)
蓝羽飞鸟
DeepLearning人工智能深度学习
paper:DistillingtheKnowledgeinaNeuralNetwork摘要:提高几乎所有机器学习算法性能的一个非常简单的方法是在相同的数据上训练许多不同的模型,然后对它们的预测进行平均[3]。不幸的是,使用整个模型集合进行预测非常麻烦,并且计算成本可能太高,无法部署到大量用户,尤其是在单个模型是大型神经网络的情况下。Caruana和他的合作者[1]已经证明,可以将集成中的知识压缩
- 第二十九周:文献阅读笔记(ResMLP)+ pytorch学习(Resnet代码实现)
@默然
笔记pytorch学习人工智能python深度学习机器学习
第二十九周:文献阅读笔记(ResMLP)摘要Abstract1.ResMLP1.1文献摘要1.2文献引言1.3ResMLP方法1.3.1整体流程1.3.2残差多感知机层1.4实验1.4.1数据集1.4.2超参数设置1.4.3主要结果1.4.4监督设置1.4.5自监督设置1.4.5知识蒸馏设置1.5ResMLP的创新点2.pytorch学习(ResNet代码实现)2.1数据集2.2文件结构2.3下载
- vit细粒度图像分类(三)TRS-DeiT 学习笔记
无妄无望
学习笔记人工智能深度学习分类神经网络
1.摘要细粒度图像分类任务由于自身存在的细微的类间差别和巨大的类内差别使其极具挑战性,为了更好地学习细粒度图像的潜在特征,该算法将知识蒸馏引入到细粒度图像分类任务中,提出基于知识蒸馏与目标区域选取的细粒度图像分类方法(TRS-DeiT),能使其兼具CNN模型和Transformer模型的各自优点。此外,TRS-DeiT的新型目标区域选取模块能够获取最具区分性的区域;为了区分任务中的易混淆类,引入对
- 【Image captioning】论文阅读七—Efficient Image Captioning for Edge Devices_AAAI2023
安静到无声
手把手实现Imagecaptioning论文阅读
中文标题:面向边缘设备的高效图像描述(EfficientImageCaptioningforEdgeDevices)文章目录1.引言2.相关工作3.方法3.1ModelArchitecture(模型结构)3.2ModelTraining(模型训练)3.3KnowledgeDistillation(知识蒸馏)4.实验4.1数据集和评价指标4.2实施细节:4.3消融实验
- 和GPT讨论知识蒸馏的基本概念
Mighty_Crane
gpt人工智能
User帮我解释一下知识蒸馏、教师学生网络、逆向蒸馏等概念ChatGPT知识蒸馏(KnowledgeDistillation)是一种模型压缩技术。在这个过程中,一个大型、复杂的模型(通常称为“教师”模型)被用来训练一个更小、更简单的模型(称为“学生”模型)。学生模型不仅学习从数据到输出的映射,还学习模仿教师模型的行为,这通常能提高其性能。逆向蒸馏(ReverseDistillation)是其中的一
- Knowledge Distillation (1) 模块替换之bert-of-theseus-上篇
小蛋子
更好的阅读体验请跳转至KnowledgeDistillation(1)模块替换之bert-of-theseus-上篇如果忒修斯的船上的木头被逐渐替换,直到所有的木头都不是原来的木头,那这艘船还是原来的那艘船吗?-普鲁塔克最近遇到一个需要对算法加速的场景,了解到了一个比较简洁实用的方法:Bert-of-theseus,了解了原理后参考代码实验后,验证了其有效性,所以总结一下。模型压缩模型在设计之初都
- 【阅读笔记】 EgoDistill: Egocentric Head Motion Distillation for Efficient Video Understanding
逸步行天下
第一视角多模态笔记人工智能计算机视觉深度学习图像处理transformergru
⚔️【阅读笔记】EgoDistill:EgocentricHeadMotionDistillationforEfficientVideoUnderstanding题目可翻译为——EgoDistill:第一视角头部运动蒸馏,实现高效的视频理解声明:本博客内容用于自我学习使用,笔记内容与想法均来源于原始论文以及先验知识体系。论文地址/论文项目页面目录解决问题关键思路摘要介绍相关工作方法实验结论和未来畅
- Knowledge Distilling,知识蒸馏
FeynmanMa
Distillingtheknowledgeinaneuralnetwork1.Motivationknowledge_distilling_title.jpg论文作者比较大名鼎鼎了。Motivation一部分来自模型压缩[2],一部分源自作者认为大部分机器学习采用ensemble方法或者学习一个很大的模型来取得比较好的结果,但会给实际应用预测带来很大的压力,而且实际上模型之间也是有信息冗余的。希
- 3DCNN-Based Knowledge Distillation Framework for Human Activity Recognition
盖盖的博客
论文阅读cnn人工智能神经网络知识蒸馏
A3DCNN-BasedKnowledgeDistillationFrameworkforHumanActivityRecognitionAbstract:1.Introduction2.TheProposedSpatio-TemporalKnowledgeDistillationFramework2.1.ProposedTeacher-Student3DCNNArchitectures2.2.O
- AI芯片:神经网络研发加速器、神经网络压缩简化、通用芯片 CPU 加速、专用芯片 GPU 加速
Debroon
#深度学习人工智能神经网络深度学习
AI芯片:神经网络研发加速器、神经网络压缩简化、通用芯片CPU加速、专用芯片GPU加速神经网络研发加速器神经网络编译器各自实现的神经网络编译器神经网络加速与压缩(算法层面)知识蒸馏低秩分解轻量化网络剪枝量化通用芯片CPU加速x86加速arm加速卷积优化神经网络加速库专用芯片GPU加速dsp加速faga加速npu加速K210人工智能微控制器神经网络加速库:Vulkan图形计算神经网络研发加速器神经网
- 《FITNETS: HINTS FOR THIN DEEP NETS》论文整理
LionelZhao
知识蒸馏论文阅读人工智能神经网络深度学习
目录零、前言一、Fitnet的目的及适用范围1、目的:2、适用范围:3、背景及创新点:二、Hint-BasedTraining思想1、hint层与guided层:2、核心思想:三、Fitnet训练过程及效果1、FItnet训练过程可以分为三个阶段:2、需要注意的问题:3、具体流程:4、损失函数:(1)预训练阶段:(2)知识蒸馏阶段:5、训练效果:四、Q&A1、小模型模仿大模型中间层的输出featu
- YOLO蒸馏原理篇之---MGD、CWD蒸馏
qq_41920323
模型部署MGDCWD特征蒸馏
一、MGD蒸馏论文地址:https://arxiv.org/abs/2205.01529论文翻译:https://mp.weixin.qq.com/s/FSvo3ns2maTpiTTWsE91kQ1.1摘要知识蒸馏已成功应用于各种任务。当前的蒸馏算法通常通过模仿教师的输出来提高学生的表现。本文表明,教师还可以通过指导学生的特征恢复来提高学生的表征能力。从这个角度来看,我们提出了掩蔽生成蒸馏(MGD
- 深度学习模型压缩方法:知识蒸馏方法总结
qq_41920323
模型部署深度学习人工智能
本文将介绍深度学习模型压缩方法中的知识蒸馏,内容从知识蒸馏简介、知识的种类、蒸馏机制、师生网络结构、蒸馏算法以及蒸馏方法等六部部分展开。一、知识蒸馏简介知识蒸馏是指用教师模型来指导学生模型训练,通过蒸馏的方式让学生模型学习到教师模型的知识。在模型压缩中,教师模型是一个提前训练好的复杂模型,而学生模型则是一个规模较小的模型。如下图所示,由训练好的教师模型,在相同的数据下,通过将教师网络对该样本的预测
- 使用知识蒸馏提升模型推理性能
之乎者也·
AI(人工智能)内容分享NLP(自然语言处理)内容分享深度学习人工智能
目录知识蒸馏介绍LogitsTemperature理论介绍实验代码实验结果知识蒸馏介绍首先,我们先简单地了解下知识蒸馏概念[2]。通常,大模型可能是一个复杂的网络或多个网络的组合,表现出优越的效果和泛化能力。而小模型由于其较小的规模,其表达能力可能受到限制。为了提高小模型的效果,我们可以借助大模型所学习到的知识来指导小模型的训练。这样,小模型在参数数量明显减少的情况下,也能够达到与大模型相似的效果
- Channel-wise Knowledge Distillation for Dense Prediction
EdgeAI
地址:https://arxiv.org/pdf/2011.13256.pdf发布:ICCV2021代码:https://git.io/Distiller编辑:牛涛将中间特征作为知识传授给学生网络已经被验证有效,但是直接对齐可能会强制学生网络模拟教师,相当于加上了十分苛刻的约束,可能会导致次优解。在分割任务中,特征图的不同通道侧重于关注图像的不同区域(比如前景和背景),因此对特征图做通道蒸馏,具体
- 深度学习中的知识蒸馏
Algorithm_Engineer_
人工智能深度学习人工智能
一.概念知识蒸馏(KnowledgeDistillation)是一种深度学习中的模型压缩技术,旨在通过从一个教师模型(teachermodel)向一个学生模型(studentmodel)传递知识来减小模型的规模,同时保持性能。这个过程涉及到从教师模型的软标签(softlabels)或者特征中提取知识,然后用这些知识来训练一个更小的学生模型。简单了解一些知识蒸馏的一般步骤和关键概念:教师模型(Tea
- linux系统服务器下jsp传参数乱码
3213213333332132
javajsplinuxwindowsxml
在一次解决乱码问题中, 发现jsp在windows下用js原生的方法进行编码没有问题,但是到了linux下就有问题, escape,encodeURI,encodeURIComponent等都解决不了问题
但是我想了下既然原生的方法不行,我用el标签的方式对中文参数进行加密解密总该可以吧。于是用了java的java.net.URLDecoder,结果还是乱码,最后在绝望之际,用了下面的方法解决了
- Spring 注解区别以及应用
BlueSkator
spring
1. @Autowired
@Autowired是根据类型进行自动装配的。如果当Spring上下文中存在不止一个UserDao类型的bean,或者不存在UserDao类型的bean,会抛出 BeanCreationException异常,这时可以通过在该属性上再加一个@Qualifier注解来声明唯一的id解决问题。
2. @Qualifier
当spring中存在至少一个匹
- printf和sprintf的应用
dcj3sjt126com
PHPsprintfprintf
<?php
printf('b: %b <br>c: %c <br>d: %d <bf>f: %f', 80,80, 80, 80);
echo '<br />';
printf('%0.2f <br>%+d <br>%0.2f <br>', 8, 8, 1235.456);
printf('th
- config.getInitParameter
171815164
parameter
web.xml
<servlet>
<servlet-name>servlet1</servlet-name>
<jsp-file>/index.jsp</jsp-file>
<init-param>
<param-name>str</param-name>
- Ant标签详解--基础操作
g21121
ant
Ant的一些核心概念:
build.xml:构建文件是以XML 文件来描述的,默认构建文件名为build.xml。 project:每个构建文
- [简单]代码片段_数据合并
53873039oycg
代码
合并规则:删除家长phone为空的记录,若一个家长对应多个孩子,保留一条家长记录,家长id修改为phone,对应关系也要修改。
代码如下:
- java 通信技术
云端月影
Java 远程通信技术
在分布式服务框架中,一个最基础的问题就是远程服务是怎么通讯的,在Java领域中有很多可实现远程通讯的技术,例如:RMI、MINA、ESB、Burlap、Hessian、SOAP、EJB和JMS等,这些名词之间到底是些什么关系呢,它们背后到底是基于什么原理实现的呢,了解这些是实现分布式服务框架的基础知识,而如果在性能上有高的要求的话,那深入了解这些技术背后的机制就是必须的了,在这篇blog中我们将来
- string与StringBuilder 性能差距到底有多大
aijuans
之前也看过一些对string与StringBuilder的性能分析,总感觉这个应该对整体性能不会产生多大的影响,所以就一直没有关注这块!
由于学程序初期最先接触的string拼接,所以就一直没改变过自己的习惯!
- 今天碰到 java.util.ConcurrentModificationException 异常
antonyup_2006
java多线程工作IBM
今天改bug,其中有个实现是要对map进行循环,然后有删除操作,代码如下:
Iterator<ListItem> iter = ItemMap.keySet.iterator();
while(iter.hasNext()){
ListItem it = iter.next();
//...一些逻辑操作
ItemMap.remove(it);
}
结果运行报Con
- PL/SQL的类型和JDBC操作数据库
百合不是茶
PL/SQL表标量类型游标PL/SQL记录
PL/SQL的标量类型:
字符,数字,时间,布尔,%type五中类型的
--标量:数据库中预定义类型的变量
--定义一个变长字符串
v_ename varchar2(10);
--定义一个小数,范围 -9999.99~9999.99
v_sal number(6,2);
--定义一个小数并给一个初始值为5.4 :=是pl/sql的赋值号
- Mockito:一个强大的用于 Java 开发的模拟测试框架实例
bijian1013
mockito单元测试
Mockito框架:
Mockito是一个基于MIT协议的开源java测试框架。 Mockito区别于其他模拟框架的地方主要是允许开发者在没有建立“预期”时验证被测系统的行为。对于mock对象的一个评价是测试系统的测
- 精通Oracle10编程SQL(10)处理例外
bijian1013
oracle数据库plsql
/*
*处理例外
*/
--例外简介
--处理例外-传递例外
declare
v_ename emp.ename%TYPE;
begin
SELECT ename INTO v_ename FROM emp
where empno=&no;
dbms_output.put_line('雇员名:'||v_ename);
exceptio
- 【Java】Java执行远程机器上Linux命令
bit1129
linux命令
Java使用ethz通过ssh2执行远程机器Linux上命令,
封装定义Linux机器的环境信息
package com.tom;
import java.io.File;
public class Env {
private String hostaddr; //Linux机器的IP地址
private Integer po
- java通信之Socket通信基础
白糖_
javasocket网络协议
正处于网络环境下的两个程序,它们之间通过一个交互的连接来实现数据通信。每一个连接的通信端叫做一个Socket。一个完整的Socket通信程序应该包含以下几个步骤:
①创建Socket;
②打开连接到Socket的输入输出流;
④按照一定的协议对Socket进行读写操作;
④关闭Socket。
Socket通信分两部分:服务器端和客户端。服务器端必须优先启动,然后等待soc
- angular.bind
boyitech
AngularJSangular.bindAngularJS APIbind
angular.bind 描述: 上下文,函数以及参数动态绑定,返回值为绑定之后的函数. 其中args是可选的动态参数,self在fn中使用this调用。 使用方法: angular.bind(se
- java-13个坏人和13个好人站成一圈,数到7就从圈里面踢出一个来,要求把所有坏人都给踢出来,所有好人都留在圈里。请找出初始时坏人站的位置。
bylijinnan
java
import java.util.ArrayList;
import java.util.List;
public class KickOutBadGuys {
/**
* 题目:13个坏人和13个好人站成一圈,数到7就从圈里面踢出一个来,要求把所有坏人都给踢出来,所有好人都留在圈里。请找出初始时坏人站的位置。
* Maybe you can find out
- Redis.conf配置文件及相关项说明(自查备用)
Kai_Ge
redis
Redis.conf配置文件及相关项说明
# Redis configuration file example
# Note on units: when memory size is needed, it is possible to specifiy
# it in the usual form of 1k 5GB 4M and so forth:
#
- [强人工智能]实现大规模拓扑分析是实现强人工智能的前奏
comsci
人工智能
真不好意思,各位朋友...博客再次更新...
节点数量太少,网络的分析和处理能力肯定不足,在面对机器人控制的需求方面,显得力不从心....
但是,节点数太多,对拓扑数据处理的要求又很高,设计目标也很高,实现起来难度颇大...
- 记录一些常用的函数
dai_lm
java
public static String convertInputStreamToString(InputStream is) {
StringBuilder result = new StringBuilder();
if (is != null)
try {
InputStreamReader inputReader = new InputStreamRead
- Hadoop中小规模集群的并行计算缺陷
datamachine
mapreducehadoop并行计算
注:写这篇文章的初衷是因为Hadoop炒得有点太热,很多用户现有数据规模并不适用于Hadoop,但迫于扩容压力和去IOE(Hadoop的廉价扩展的确非常有吸引力)而尝试。尝试永远是件正确的事儿,但有时候不用太突进,可以调优或调需求,发挥现有系统的最大效用为上策。
-----------------------------------------------------------------
- 小学4年级英语单词背诵第二课
dcj3sjt126com
englishword
egg 蛋
twenty 二十
any 任何
well 健康的,好
twelve 十二
farm 农场
every 每一个
back 向后,回
fast 快速的
whose 谁的
much 许多
flower 花
watch 手表
very 非常,很
sport 运动
Chinese 中国的
- 自己实践了github的webhooks, linux上面的权限需要注意
dcj3sjt126com
githubwebhook
环境, 阿里云服务器
1. 本地创建项目, push到github服务器上面
2. 生成www用户的密钥
sudo -u www ssh-keygen -t rsa -C "
[email protected]"
3. 将密钥添加到github帐号的SSH_KEYS里面
3. 用www用户执行克隆, 源使
- Java冒泡排序
蕃薯耀
冒泡排序Java冒泡排序Java排序
冒泡排序
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2015年6月23日 10:40:14 星期二
http://fanshuyao.iteye.com/
- Excle读取数据转换为实体List【基于apache-poi】
hanqunfeng
apache
1.依赖apache-poi
2.支持xls和xlsx
3.支持按属性名称绑定数据值
4.支持从指定行、列开始读取
5.支持同时读取多个sheet
6.具体使用方式参见org.cpframework.utils.excelreader.CP_ExcelReaderUtilTest.java
比如:
Str
- 3个处于草稿阶段的Javascript API介绍
jackyrong
JavaScript
原文:
http://www.sitepoint.com/3-new-javascript-apis-may-want-follow/?utm_source=html5weekly&utm_medium=email
本文中,介绍3个仍然处于草稿阶段,但应该值得关注的Javascript API.
1) Web Alarm API
&
- 6个创建Web应用程序的高效PHP框架
lampcy
Web框架PHP
以下是创建Web应用程序的PHP框架,有coder bay网站整理推荐:
1. CakePHP
CakePHP是一个PHP快速开发框架,它提供了一个用于开发、维护和部署应用程序的可扩展体系。CakePHP使用了众所周知的设计模式,如MVC和ORM,降低了开发成本,并减少了开发人员写代码的工作量。
2. CodeIgniter
CodeIgniter是一个非常小且功能强大的PHP框架,适合需
- 评"救市后中国股市新乱象泛起"谣言
nannan408
首先来看百度百家一位易姓作者的新闻:
三个多星期来股市持续暴跌,跌得投资者及上市公司都处于极度的恐慌和焦虑中,都要寻找自保及规避风险的方式。面对股市之危机,政府突然进入市场救市,希望以此来重建市场信心,以此来扭转股市持续暴跌的预期。而政府进入市场后,由于市场运作方式发生了巨大变化,投资者及上市公司为了自保及为了应对这种变化,中国股市新的乱象也自然产生。
首先,中国股市这两天
- 页面全屏遮罩的实现 方式
Rainbow702
htmlcss遮罩mask
之前做了一个页面,在点击了某个按钮之后,要求页面出现一个全屏遮罩,一开始使用了position:absolute来实现的。当时因为画面大小是固定的,不可以resize的,所以,没有发现问题。
最近用了同样的做法做了一个遮罩,但是画面是可以进行resize的,所以就发现了一个问题,当画面被reisze到浏览器出现了滚动条的时候,就发现,用absolute 的做法是有问题的。后来改成fixed定位就
- 关于angularjs的点滴
tntxia
AngularJS
angular是一个新兴的JS框架,和以往的框架不同的事,Angularjs更注重于js的建模,管理,同时也提供大量的组件帮助用户组建商业化程序,是一种值得研究的JS框架。
Angularjs使我们可以使用MVC的模式来写JS。Angularjs现在由谷歌来维护。
这里我们来简单的探讨一下它的应用。
首先使用Angularjs我
- Nutz--->>反复新建ioc容器的后果
xiaoxiao1992428
DAOmvcIOCnutz
问题:
public class DaoZ {
public static Dao dao() { // 每当需要使用dao的时候就取一次
Ioc ioc = new NutIoc(new JsonLoader("dao.js"));
return ioc.get(