- LeetCode每日一题5月20日 LeetCode1371. 每个元音包含偶数次的最长子字符串
青日五月
LeetCode刷题记录字符串leetcode动态规划
问题描述:给你一个字符串s,请你返回满足以下条件的最长子字符串的长度:每个元音字母,即'a','e','i','o','u',在子字符串中都恰好出现了偶数次。来源:力扣(LeetCode)链接:https://leetcode-cn.com/problems/find-the-longest-substring-containing-vowels-in-even-counts示例1:输入:s="e
- C/C++教程 第十四章 —— MFC控件详解
余识-
C/C++实战入门到精通mfcc++c语言
注意本系列文章已升级、转移至我的自建站点中,本章原文为:MFC控件详解目录注意一、前言二、项目建立三、Comboxbox四、ListBox五、GroupBox六、Picturecontrol七、ScrollBar八、SpinControl九、ProgressControl十、hotkey十一、ListControl十二、TreeControl十三、TabControl一、前言通过前面两章的学习,现
- 【阅读总结】AlphaFold3 unedited version 通读 + 服务器使用总结
Lasgalena
论文阅读软件使用论文阅读服务器
省流:AlphaFold3能做什么:预测蛋白质、DNA、RNA与允许的配体/离子/共价修饰的复合物结构为什么要用AlphaFold3:有强大的泛化性和准确率,除了RNA结构略差于AIchemy_RNA2外,预测精度高于现有方法(包括Vina和RosettaFold-All-Atom)AlphaFold3怎么用:代码不开源,网站https://alphafoldserver.com/需注册使用,每日
- 神经网络|(三)线性回归基础知识
西猫雷婶
神经网络线性回归机器学习
【1】引言前序学习进程中,已经对简单神经元的工作模式有所了解,这种二元分类的工作机制,进一步使用sigmoid()函数进行了平滑表达。相关学习链接为:神经网络|(一)加权平均法,感知机和神经元-CSDN博客神经网络|(二)sigmoid神经元函数-CSDN博客实际上,上述表达模型的一个基本原则是:元素和对应的权重,线性相乘后再和阈值开关作对比,元素的综合影响在本质上是一个线性函数,类似于y=wx+
- 两数相加【力扣:中等难度】
牛哄哄的柯南
代码面试经典案例leetcode链表算法
title:两数相加【力扣:中等难度】tags:LeetCode题目给你两个非空的链表,表示两个非负的整数。它们每位数字都是按照逆序的方式存储的,并且每个节点只能存储一位数字。请你将两个数相加,并以相同形式返回一个表示和的链表。你可以假设除了数字0之外,这两个数都不会以0开头。示例1:输入:l1=[2,4,3],l2=[5,6,4]输出:[7,0,8]解释:342+465=807.示例2:输入:l
- 基于Python的豆瓣电影爬虫数据分析可视化设计与实现
计算机软件程序设计
Python爬虫Python程序设计数据分析python爬虫
【1】系统介绍1.研究背景随着互联网的快速发展,电影产业已经成为全球文化产业的重要组成部分。观众对电影的需求和兴趣日益增长,而在线电影平台如豆瓣电影(DoubanMovie)成为了用户获取电影信息、发表评论和评分的主要渠道之一。豆瓣电影不仅提供了丰富的电影资料,还拥有庞大的用户群体,这些用户生成的内容(UGC)为电影市场分析提供了宝贵的数据资源。然而,尽管豆瓣电影平台提供了大量的公开数据,但这些数
- Python实现itemCF协同过滤推荐算法并计算召回率、准确率、F1分数和覆盖率
计算机软件程序设计
机器学习python推荐算法开发语言
一个完整的Python实现,包括ItemCF协同过滤算法的实现以及召回率、准确率、F1分数和覆盖率等评估指标的计算。将使用Pandas进行数据处理,Scikit-learn进行相似度计算,并编写函数来生成推荐列表和评估模型性能。1.数据准备首先,需要准备数据。假设有一个用户-物品评分矩阵(可以是显式评分或隐式反馈),表示用户对不同酒店的喜好程度。这里可以使用Pandas来处理数据。importpa
- 情感分析常见算法与模型及实现步骤
计算机软件程序设计
知识科普算法情感分析机器学习
【1】常见算法与模型情感分析(SentimentAnalysis)是一种自然语言处理(NLP)技术,用于识别和提取文本中的主观信息,如情绪、态度和意见。常见的算法和模型包括以下几种:传统机器学习方法朴素贝叶斯(NaiveBayes)基于贝叶斯定理,假设特征之间相互独立。计算简单,适用于大规模数据集。常用于文本分类任务。支持向量机(SVM)通过寻找最优超平面来划分不同的类别。在高维空间中表现良好,适
- 基于深度学习的舆论分析与检测系统应用与研究
计算机软件程序设计
机器学习深度学习人工智能舆论检测
【1】系统介绍研究背景随着互联网技术的迅猛发展和社会媒体平台的普及,信息传播的速度和范围达到了前所未有的水平。这一变化不仅极大地丰富了人们的社交生活,也为社会科学研究提供了新的视角和工具。舆论分析作为社会科学研究的一个重要分支,其目的是通过收集和分析网络上的公众意见和情感倾向,来了解人们对特定事件或话题的看法和态度。近年来,基于深度学习的自然语言处理技术取得了显著进步,这为提高舆论分析的准确性和效
- 关于CSS中毛玻璃和滤镜使用总结
计算机软件程序设计
知识科普css
【1】毛玻璃毛玻璃效果(也称为磨砂玻璃效果)可以通过CSS的backdrop-filter属性来实现。这个属性允许你在背景上应用各种滤镜效果,从而创建出类似磨砂玻璃的效果。这种效果通常用于创建半透明背景下的模糊效果,使得背景图像或颜色变得柔和,同时保持前景内容的清晰可见。示例代码HTML结构CSS毛玻璃效果毛玻璃效果这是一个使用CSS创建的毛玻璃效果。CSS样式body,html{height:1
- 自然语言处理(NLP)-总览图学习
汤姆和佩琦
NLP自然语言处理学习人工智能
文章目录自然语言处理(NLP)-总览图学习1.一张总览图的学习1.语音学(Phonology)2.形态学(Morphology)3.句法学(Syntax)4.语义学(Semantics)5.推理(Reasoning)小结自然语言处理(NLP)-总览图学习转自《Python自然语言处理第二版》1.一张总览图的学习这张图片展示了一个自然语言处理的流程模型,涵盖了从语音分析到应用推理和执行的多个阶段,每
- Flink (十二) :Table API & SQL (一) 概览
Leven199527
Flinkflinksql大数据
ApacheFlink有两种关系型API来做流批统一处理:TableAPI和SQL。TableAPI是用于Scala和Java语言的查询API,它可以用一种非常直观的方式来组合使用选取、过滤、join等关系型算子。FlinkSQL是基于ApacheCalcite来实现的标准SQL。无论输入是连续的(流式)还是有界的(批处理),在两个接口中指定的查询都具有相同的语义,并指定相同的结果。TableAP
- 深度学习利用数据加载、预处理和增强数据提高模型的性能
weixin_30777913
人工智能深度学习
深度学习数据预处理是一个关键步骤,旨在提高模型的性能和准确性。通过数据加载、预处理和增强,可以显著提高深度学习模型的性能和准确性。在实际应用中,需要根据具体的数据和任务来选择合适的预处理和增强技术。以下将详细论述并举例说明如何加载、预处理和增强数据。一、数据加载在深度学习中,数据加载是第一步。这通常涉及到从各种数据源(如CSV文件、数据库、图像文件夹等)中读取数据。以DeepLearning4J(
- mha mysql 两台机器_MySQL主从复制(8)MHA实现主从高可用
日签君AIUX
mhamysql两台机器
一、MHA介绍1、MHA的作用MHA是实现MySQL高可用的一种成熟解决方案,可以在主从故障时自动完成主从切换,切换速度在30-60秒,并且可以最大程度的去保持数据一致性。MHA由管理节点(Manager)和数据节点(Node)组成,一套MHAManager可以管理多套MySQL集群。当Manager发现MySQLMaster出现故障时自动将一个拥有最新数据的Slave提升为Master,并让另外
- LeetCode HOT-100 分类总结
悬浮海
#LeetCodeHOT100leetcode算法HOT-100分类总结
文章目录二分搜索排序滑动窗口哈希表位运算前缀和双指针图二叉树回溯贪心:动态规划:背包问题:单调栈(辅助栈):并查集LRU缓存小技巧二分搜索【NO.4】LeetCodeHOT100—4.寻找两个正序数组的中位数【NO.17】LeetCodeHOT100—33.搜索旋转排序数组【NO.18】LeetCodeHOT100—34.在排序数组中查找元素的第一个和最后一个位置排序排序方法,如果可以确定数值的范
- 系统架构设计基础:概念与原则
Evaporator Core
系统架构设计师Python开发经验数据库系统设计师系统架构
系统架构设计基础:概念与原则引言系统架构设计是软件开发过程中至关重要的一环,它决定了系统的整体结构、组件之间的关系以及系统的可扩展性、可维护性和性能。系统架构设计师不仅需要具备扎实的技术功底,还需要对业务需求有深刻的理解,能够在复杂的需求中找到平衡点,设计出既满足当前需求又具备良好扩展性的系统架构。本文将深入探讨系统架构设计的基础概念与原则,帮助读者建立起系统架构设计的理论基础。第一章:系统架构设
- Python Web应用开发进阶:集成数据库与SQLAlchemy
Evaporator Core
Python开发经验python前端数据库
引言在上一篇《PythonWeb应用开发入门:从零搭建一个简单的Web应用》中,我们学习了如何使用Flask框架搭建一个简单的Web应用。然而,大多数Web应用都需要与数据库进行交互,以存储和检索数据。本文将深入探讨如何在Flask应用中集成数据库,并使用SQLAlchemy进行数据操作。一、数据库选择与安装1.1选择数据库在PythonWeb开发中,常用的数据库有SQLite、MySQL、Pos
- C++——内存管理
kiiila
C++c++
目录1.c++内存分布2.c语言中动态内存管理3.c++动态内存管理4.operatornew和operatordelete函数5.new和delete的实现原理6.定位new表达式(了解)7.malloc/free和new/delete的区别8.什么是内存泄漏,内存泄漏的危害1.c++内存分布内核空间用户代码不能读写栈向下增长内存映射段文件映射、动态库、匿名映射堆向上增长数据段或静态区全局数据、
- 读论文 Situated Instruction Following
MhZhou0412
人工智能深度学习python
研究背景:在传统的指令跟随范式中,代理独自在一个空房子里行动,导致语言使用既简单又人为“完整”。与此相反,我们提出了情境指令跟随(SIF),该方法拥抱真实世界通信中固有的不完全和模糊性,具有人的物理存在。情境指令的意义通过人类的过去行动和预期未来行为自然展开。在我们的设置中,指令具有以下特征:(1)模糊不清,(2)具有时间演变的意图,(3)可以通过代理的动态行动更精确地解释。SIF中的任务包括两个
- Java力扣题解:169 多数元素——投票法
早起之王
leetcodeleetcode
题目给定一个大小为n的数组,找到其中的多数元素。多数元素是指在数组中出现次数大于⌊n/2⌋的元素。你可以假设数组是非空的,并且给定的数组总是存在多数元素。来源:力扣(LeetCode)链接:https://leetcode-cn.com/problems/majority-element著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。分析这里的投票法,是以第一个元素为基准数,票
- LeetCode 3090.每个字符最多出现两次的最长子字符串
爱笑的coder
算法刷题-滑动窗口leetcode算法职场和发展
题目:给你一个字符串s,请找出满足每个字符最多出现两次的最长子字符串,并返回该子字符串的最大长度。思路:用一个数组代替hashset记录字符出现次数代码:classSolution{publicintmaximumLengthSubstring(Strings){char[]ch=s.toCharArray();intans=0;int[]record=newint[26];intleft=0;f
- 基于MySQL8.0安装部署MHA集群(一主两从)
收买神的欢心
mysql数据库大数据
写在前面之前搭建过MySQL5.7版本的MHA集群,因为一些需要,现进行MySQL8.0版本的MHA集群搭建,搭建步骤基本与5.7版本相似,所以某些测试部分、问题解决、安装包、mha的IP漂移配置文件可以参照我之前写的博文,但是有部分配置文件做了改动,且8.0版本的某些命令与5.7版本的也不尽相同,需要注意。基于MySQL5.7安装部署MHA集群(一主一从)可查看MySQL高可用集群搭建(一主一从
- 一步教你轻松实现--Word方括号打勾☑
韦_恩
windows日常使用总结word
开门见山,不说废话,本文介绍两种方法任君选择!1.方法1:在需要输入“方框打勾”符号的地方按着【Alt】键的同时,输入数字“9745”,输入完之后再松开【Alt】键,你会发现这个数字瞬间变成了“方框打勾”符号【如果没有就再按下回车键】。2.方法2:需要输入“方框打勾”符号的地方输入“2611”,然后按下【Alt+X】的组合键,即可看到“2611”瞬间变成了“方框打勾”符号。alt+x键后:以上两种
- 论文阅读:DeepFake-Adapter: Dual-Level Adapter for DeepFake Detection(Deepfake模型快速调参)
海拉鲁的小厨娘
读论文论文阅读
一、论文信息论文名称:DeepFake-Adapter:Dual-LevelAdapterforDeepFakeDetection作者团队:项目主页:https://github.com/rshaojimmy/DeepFake-Adapter(代码暂未开源)二、动机与创新动机:目前的deepfake检测模型泛化能力差,将其归因于过拟合于低级的伪造模式,现有的deepfake检测方法仅关注低级别的伪
- [Qt]常用控件介绍-显示类控件-QLabel、QLCDNumber、QProgressBar、QCalendarWidget控件
北顾南栀倾寒
QtC++c++qt开发语言
目录1.Label控件属性介绍三种文本格式的设置应用编辑图片与自动拉伸应用QLable伙伴设置2.LCDNumber控件属性Demo:倒计时程序多线程实现倒计时程序3.ProgressBar控件属性Demo:定时器--进度条随机增长Qt头文件的前置声明4.CalendarWidget控件属性重要的信号1.Label控件可以用来显示文本和图片内容,内部含有许多功能,但是在运行后只能用于显示文本和实现
- MHA架构部署
凰玥
MySQLmysql
一、**简介MHA(MasterHA)是一款开源的MySQL的高可用程序,它为MySQL主从复制架构提供了automatingmasterfailover功能。MHA在监控到master节点故障时,会提升其中拥有最新数据的slave节点成为新的master节点,在此期间,MHA会通过于其它从节点获取额外信息来避免一致性方面的问题。MHA还提供了master节点的在线切换功能,即按需切换master
- 震惊!996加班写教程?OUT了!我用Python+AI,一键自动生成,效率提升100倍!
lizhijianwill
人工智能python开发语言改行学itjavajavascript
导语:你是否还在为了撰写技术教程而苦苦挣扎?是否还在996的工位上,熬夜爆肝,只为输出一篇高质量的技术文档?醒醒吧!这个时代变了!今天,我就要告诉你一个颠覆传统的秘密武器,让你彻底告别低效的手工教程编写模式,拥抱AI,解放生产力,让效率飞起来!时代焦虑:AI浪潮来袭,你还在用“石器时代”的方法写教程?2024年,AI技术已经渗透到我们生活的方方面面。“AI智能体”、“思维链”、“生产力革命”这些词
- 基于Python的自然语言处理系列(2):Word2Vec(负采样)
会飞的Anthony
自然语言处理人工智能信息系统自然语言处理word2vec人工智能
在本系列的第二篇文章中,我们将继续探讨Word2Vec模型,这次重点介绍负采样(NegativeSampling)技术。负采样是一种优化Skip-gram模型训练效率的技术,它能在大规模语料库中显著减少计算复杂度。接下来,我们将通过详细的代码实现和理论讲解,帮助你理解负采样的工作原理及其在Word2Vec中的应用。1.Word2Vec(负采样)原理1.1负采样的背景在Word2Vec的Skip-g
- 如何运用python爬虫获取大型资讯类网站文章,并同时导出pdf或word格式文本?
大懒猫软件
深度学习python网络爬虫自然语言处理
这里,我们以比较知名的商业新知网站https://www.shangyexinzhi.com/为例进行代码编写,下面进行代码应用思路。第一部分,分析网站结构首先,我们来分析,要使用Python技术分析一个网站的结构,通常可以通过以下步骤实现:获取网站的HTML内容:使用requests库来获取网站的HTML源代码。解析HTML内容:使用BeautifulSoup库来解析HTML,提取网站的结构信息
- 大模型GUI系列论文阅读 DAY4:《PREDICT: Multi-Agent-based Debate Simulation for Generalized Hate Speech Detecti》
feifeikon
论文阅读
摘要虽然已经提出了一些公共基准用于训练仇恨言论检测模型,但这些基准之间的标注标准差异为模型的泛化学习带来了挑战,限制了其适用性。先前的研究提出了通过数据整合或扩充来泛化模型的方法,但在克服数据集之间的标注标准差异方面仍然存在局限性。为了解决这些挑战,我们提出了PREDICT,一种基于多代理(multi-agent)概念的仇恨言论检测新框架。PREDICT包括两个阶段:(1)PRE(基于视角的推理)
- 基本数据类型和引用类型的初始值
3213213333332132
java基础
package com.array;
/**
* @Description 测试初始值
* @author FuJianyong
* 2015-1-22上午10:31:53
*/
public class ArrayTest {
ArrayTest at;
String str;
byte bt;
short s;
int i;
long
- 摘抄笔记--《编写高质量代码:改善Java程序的151个建议》
白糖_
高质量代码
记得3年前刚到公司,同桌同事见我无事可做就借我看《编写高质量代码:改善Java程序的151个建议》这本书,当时看了几页没上心就没研究了。到上个月在公司偶然看到,于是乎又找来看看,我的天,真是非常多的干货,对于我这种静不下心的人真是帮助莫大呀。
看完整本书,也记了不少笔记
- 【备忘】Django 常用命令及最佳实践
dongwei_6688
django
注意:本文基于 Django 1.8.2 版本
生成数据库迁移脚本(python 脚本)
python manage.py makemigrations polls
说明:polls 是你的应用名字,运行该命令时需要根据你的应用名字进行调整
查看该次迁移需要执行的 SQL 语句(只查看语句,并不应用到数据库上):
python manage.p
- 阶乘算法之一N! 末尾有多少个零
周凡杨
java算法阶乘面试效率
&n
- spring注入servlet
g21121
Spring注入
传统的配置方法是无法将bean或属性直接注入到servlet中的,配置代理servlet亦比较麻烦,这里其实有比较简单的方法,其实就是在servlet的init()方法中加入要注入的内容:
ServletContext application = getServletContext();
WebApplicationContext wac = WebApplicationContextUtil
- Jenkins 命令行操作说明文档
510888780
centos
假设Jenkins的URL为http://22.11.140.38:9080/jenkins/
基本的格式为
java
基本的格式为
java -jar jenkins-cli.jar [-s JENKINS_URL] command [options][args]
下面具体介绍各个命令的作用及基本使用方法
1. &nb
- UnicodeBlock检测中文用法
布衣凌宇
UnicodeBlock
/** * 判断输入的是汉字 */ public static boolean isChinese(char c) { Character.UnicodeBlock ub = Character.UnicodeBlock.of(c);
- java下实现调用oracle的存储过程和函数
aijuans
javaorale
1.创建表:STOCK_PRICES
2.插入测试数据:
3.建立一个返回游标:
PKG_PUB_UTILS
4.创建和存储过程:P_GET_PRICE
5.创建函数:
6.JAVA调用存储过程返回结果集
JDBCoracle10G_INVO
- Velocity Toolbox
antlove
模板toolboxvelocity
velocity.VelocityUtil
package velocity;
import org.apache.velocity.Template;
import org.apache.velocity.app.Velocity;
import org.apache.velocity.app.VelocityEngine;
import org.apache.velocity.c
- JAVA正则表达式匹配基础
百合不是茶
java正则表达式的匹配
正则表达式;提高程序的性能,简化代码,提高代码的可读性,简化对字符串的操作
正则表达式的用途;
字符串的匹配
字符串的分割
字符串的查找
字符串的替换
正则表达式的验证语法
[a] //[]表示这个字符只出现一次 ,[a] 表示a只出现一
- 是否使用EL表达式的配置
bijian1013
jspweb.xmlELEasyTemplate
今天在开发过程中发现一个细节问题,由于前端采用EasyTemplate模板方法实现数据展示,但老是不能正常显示出来。后来发现竟是EL将我的EasyTemplate的${...}解释执行了,导致我的模板不能正常展示后台数据。
网
- 精通Oracle10编程SQL(1-3)PLSQL基础
bijian1013
oracle数据库plsql
--只包含执行部分的PL/SQL块
--set serveroutput off
begin
dbms_output.put_line('Hello,everyone!');
end;
select * from emp;
--包含定义部分和执行部分的PL/SQL块
declare
v_ename varchar2(5);
begin
select
- 【Nginx三】Nginx作为反向代理服务器
bit1129
nginx
Nginx一个常用的功能是作为代理服务器。代理服务器通常完成如下的功能:
接受客户端请求
将请求转发给被代理的服务器
从被代理的服务器获得响应结果
把响应结果返回给客户端
实例
本文把Nginx配置成一个简单的代理服务器
对于静态的html和图片,直接从Nginx获取
对于动态的页面,例如JSP或者Servlet,Nginx则将请求转发给Res
- Plugin execution not covered by lifecycle configuration: org.apache.maven.plugin
blackproof
maven报错
转:http://stackoverflow.com/questions/6352208/how-to-solve-plugin-execution-not-covered-by-lifecycle-configuration-for-sprin
maven报错:
Plugin execution not covered by lifecycle configuration:
- 发布docker程序到marathon
ronin47
docker 发布应用
1 发布docker程序到marathon 1.1 搭建私有docker registry 1.1.1 安装docker regisry
docker pull docker-registry
docker run -t -p 5000:5000 docker-registry
下载docker镜像并发布到私有registry
docker pull consol/tomcat-8.0
- java-57-用两个栈实现队列&&用两个队列实现一个栈
bylijinnan
java
import java.util.ArrayList;
import java.util.List;
import java.util.Stack;
/*
* Q 57 用两个栈实现队列
*/
public class QueueImplementByTwoStacks {
private Stack<Integer> stack1;
pr
- Nginx配置性能优化
cfyme
nginx
转载地址:http://blog.csdn.net/xifeijian/article/details/20956605
大多数的Nginx安装指南告诉你如下基础知识——通过apt-get安装,修改这里或那里的几行配置,好了,你已经有了一个Web服务器了。而且,在大多数情况下,一个常规安装的nginx对你的网站来说已经能很好地工作了。然而,如果你真的想挤压出Nginx的性能,你必
- [JAVA图形图像]JAVA体系需要稳扎稳打,逐步推进图像图形处理技术
comsci
java
对图形图像进行精确处理,需要大量的数学工具,即使是从底层硬件模拟层开始设计,也离不开大量的数学工具包,因为我认为,JAVA语言体系在图形图像处理模块上面的研发工作,需要从开发一些基础的,类似实时数学函数构造器和解析器的软件包入手,而不是急于利用第三方代码工具来实现一个不严格的图形图像处理软件......
&nb
- MonkeyRunner的使用
dai_lm
androidMonkeyRunner
要使用MonkeyRunner,就要学习使用Python,哎
先抄一段官方doc里的代码
作用是启动一个程序(应该是启动程序默认的Activity),然后按MENU键,并截屏
# Imports the monkeyrunner modules used by this program
from com.android.monkeyrunner import MonkeyRun
- Hadoop-- 海量文件的分布式计算处理方案
datamachine
mapreducehadoop分布式计算
csdn的一个关于hadoop的分布式处理方案,存档。
原帖:http://blog.csdn.net/calvinxiu/article/details/1506112。
Hadoop 是Google MapReduce的一个Java实现。MapReduce是一种简化的分布式编程模式,让程序自动分布到一个由普通机器组成的超大集群上并发执行。就如同ja
- 以資料庫驗證登入
dcj3sjt126com
yii
以資料庫驗證登入
由於 Yii 內定的原始框架程式, 採用綁定在UserIdentity.php 的 demo 與 admin 帳號密碼: public function authenticate() { $users=array( &nbs
- github做webhooks:[2]php版本自动触发更新
dcj3sjt126com
githubgitwebhooks
上次已经说过了如何在github控制面板做查看url的返回信息了。这次就到了直接贴钩子代码的时候了。
工具/原料
git
github
方法/步骤
在github的setting里面的webhooks里把我们的url地址填进去。
钩子更新的代码如下: error_reportin
- Eos开发常用表达式
蕃薯耀
Eos开发Eos入门Eos开发常用表达式
Eos开发常用表达式
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2014年8月18日 15:03:35 星期一
&
- SpringSecurity3.X--SpEL 表达式
hanqunfeng
SpringSecurity
使用 Spring 表达式语言配置访问控制,要实现这一功能的直接方式是在<http>配置元素上添加 use-expressions 属性:
<http auto-config="true" use-expressions="true">
这样就会在投票器中自动增加一个投票器:org.springframework
- Redis vs Memcache
IXHONG
redis
1. Redis中,并不是所有的数据都一直存储在内存中的,这是和Memcached相比一个最大的区别。
2. Redis不仅仅支持简单的k/v类型的数据,同时还提供list,set,hash等数据结构的存储。
3. Redis支持数据的备份,即master-slave模式的数据备份。
4. Redis支持数据的持久化,可以将内存中的数据保持在磁盘中,重启的时候可以再次加载进行使用。
Red
- Python - 装饰器使用过程中的误区解读
kvhur
JavaScriptjqueryhtml5css
大家都知道装饰器是一个很著名的设计模式,经常被用于AOP(面向切面编程)的场景,较为经典的有插入日志,性能测试,事务处理,Web权限校验, Cache等。
原文链接:http://www.gbtags.com/gb/share/5563.htm
Python语言本身提供了装饰器语法(@),典型的装饰器实现如下:
@function_wrapper
de
- 架构师之mybatis-----update 带case when 针对多种情况更新
nannan408
case when
1.前言.
如题.
2. 代码.
<update id="batchUpdate" parameterType="java.util.List">
<foreach collection="list" item="list" index=&
- Algorithm算法视频教程
栏目记者
Algorithm算法
课程:Algorithm算法视频教程
百度网盘下载地址: http://pan.baidu.com/s/1qWFjjQW 密码: 2mji
程序写的好不好,还得看算法屌不屌!Algorithm算法博大精深。
一、课程内容:
课时1、算法的基本概念 + Sequential search
课时2、Binary search
课时3、Hash table
课时4、Algor
- C语言算法之冒泡排序
qiufeihu
c算法
任意输入10个数字由小到大进行排序。
代码:
#include <stdio.h>
int main()
{
int i,j,t,a[11]; /*定义变量及数组为基本类型*/
for(i = 1;i < 11;i++){
scanf("%d",&a[i]); /*从键盘中输入10个数*/
}
for
- JSP异常处理
wyzuomumu
Webjsp
1.在可能发生异常的网页中通过指令将HTTP请求转发给另一个专门处理异常的网页中:
<%@ page errorPage="errors.jsp"%>
2.在处理异常的网页中做如下声明:
errors.jsp:
<%@ page isErrorPage="true"%>,这样设置完后就可以在网页中直接访问exc