- 人工智能动画展示人类的特征
AGI大模型与大数据研究院
AI大模型应用开发实战javapythonjavascriptkotlingolang架构人工智能
人工智能,动画,人类特征,情感识别,行为模拟,机器学习,深度学习,自然语言处理1.背景介绍人工智能(AI)技术近年来发展迅速,已渗透到生活的方方面面。从智能语音助手到自动驾驶汽车,AI正在改变着我们的世界。然而,尽管AI技术取得了令人瞩目的成就,但它仍然难以完全模拟人类的复杂行为和特征。人类的特征是多方面的,包括情感、认知、社交和创造力等。这些特征是人类区别于其他生物的重要标志,也是人类社会文明发
- GitHub 完全指南:从入门到高效协作开发
FrostedLotus·霜莲
github
GitHub:现代软件开发的核心协作平台GitHub作为全球领先的代码托管平台,已经成为软件开发领域不可或缺的基础设施。本文将客观介绍GitHub的核心功能和应用价值。一、平台概述GitHub创立于2008年,是基于Git版本控制系统的代码托管服务平台。2018年被微软收购后,平台功能持续增强。目前GitHub托管着超过4亿个代码仓库,服务全球1亿开发者。二、核心功能代码仓库管理支持创建公开/私有
- 机器学习18-强化学习RLHF
坐吃山猪
机器学习机器学习人工智能
机器学习18-强化学习RLHF1-什么是RLHFRLHF(ReinforcementLearningfromHumanFeedback)即基于人类反馈的强化学习算法,以下是详细介绍:基本原理RLHF是一种结合了强化学习和人类反馈的机器学习方法。传统的强化学习通常依赖于预定义的奖励函数来指导智能体的学习,而RLHF则通过引入人类的反馈来替代或补充传统的奖励函数。在训练过程中,人类会对智能体的行为或输
- 《推客分销系统架构设计:从零搭建高并发社交裂变引擎》
wx_ywyy6798
信息可视化推客小程序推客系统推客系统开发推客小程序开发推客分销系统
在当今流量红利逐渐消退的数字营销环境中,推客分销系统已成为企业实现用户裂变增长和销售转化的核心工具。本文将深入解析推客分销系统的开发逻辑、架构设计及运营策略,帮助您构建一套高效的分销增长引擎。一、推客分销系统的商业价值与市场背景1.1为什么分销系统成为企业标配在获客成本不断攀升的今天,传统广告投放的ROI持续下降。推客分销系统通过将用户转化为推广者,实现了:低成本获客:平均获客成本仅为传统渠道的3
- stm32c8t6工程,使用hal库,如何解决?
bug菌¹
全栈Bug调优(实战版)stm32嵌入式硬件单片机c语言
本文收录于《全栈Bug调优(实战版)》专栏,主要记录项目实战过程中所遇到的Bug或因后果及提供真实有效的解决方案,希望能够助你一臂之力,帮你早日登顶实现财富自由;同时,欢迎大家关注&&收藏&&订阅!持续更新中,up!up!up!!全文目录:问题描述解决方案1.**分析报错问题**2.**蓝牙通信处理的中断机制**代码示例:蓝牙数据接收中断处理3.**倒计时功能实现**4.**舵机控制**5.**O
- CTF-reverse逆向分析解题常用脚本汇总
晴友读钟
#逆向ctfreverse
注:本篇用于记录一些CTF-reverse中可能用上的脚本,脚本都来源于博主解出某道题后留下,如果遇上类似的题目,根据脚本中注释的提示更改对应的密文密钥或条件即可快速解题!持续更新!!点个收藏关注不迷路~常见解密系列这块是烂大街的各种加密,可以说这里任何一个加密都八成会出现在题目中的脚本只是模板,重点是学会找到密文密钥并套入进去,因此需要对脚本的原理(比如调用函数的方式和密文密钥的格式之类)稍微有
- hugo 部署github_从私有Hugo存储库部署公共GitHub Pages站点的两种方法
cumian9828
javagitpythongithubmakefile
hugo部署github通过使用持续部署工具从单独的私有存储库发布公共GitHubPages网站,可以使草稿不受公众的关注。(KeepyourdraftsoutofthepubliceyebymakinguseofcontinuousdeploymenttoolstopublishyourpublicGitHubPagessite—fromaseparateprivaterepository.)T
- 线性回归 python代码
黄涵奕
python线性回归numpy机器学习开发语言
下面是一个线性回归模型的Python代码示例:importnumpyasnpfromsklearn.linear_modelimportLinearRegression#训练数据x=np.array([[1],[2],[3],[4],[5]])y=np.array([5,7,9,11,13])#建立模型reg=LinearRegression().fit(x,y)#预测reg.predict(np
- python实现多元线性回归算法 (附完整源码)
源代码大师
python算法完整教程算法python线性回归
python实现多元线性回归算法1.使用正规方程实现多元线性回归代码说明运行结果示例2.使用梯度下降法实现多元线性回归代码说明运行结果示例进一步优化与注意事项下面是使用Python从头实现多元线性回归算法的完整源码。这个实现利用了numpy进行矩阵运算,并展示了如何训练模型、进行预测以及评估模型性能。为了更全面,代码中还包含了一个使用梯度下降法(GradientDescent)优化参数的实现。多元
- 深度学习篇---简单果实分类网络
下面我将提供一个使用Python从零实现果实分类模型的完整流程,包括数据准备、模型构建、训练和部署,不依赖任何深度学习框架,仅使用NumPy进行数值计算。1.数据准备与预处理首先需要准备果实图像数据集,将其分为好果和坏果两类,并进行预处理:importosimportnumpyasnpfromPILimportImagefromsklearn.model_selectionimporttrain_
- YOLO学习笔记 | 从YOLOv5到YOLOv11:技术演进与核心改进
北斗猿
YOLO学习从零到1YOLO目标检测算法python计算机视觉
从YOLOv5到YOLOv11:技术演进与核心改进深度解析一、YOLO系列发展概述YOLO(YouOnlyLookOnce)目标检测算法自2016年诞生以来,凭借其"单次检测"的独特理念和卓越的实时性能,持续引领着计算机视觉领域的技术革新。从JosephRedmon的初代YOLO到AlexeyBochkovskiy的YOLOv4,再到Ultralytics团队的YOLOv5及后续系列,这一算法家族
- 文末含资料链接!YOLOv11性能飞跃:深度融合iRMB注意力机制,实战教程助你突破检测极限!
博导ai君
深度学习教学-附源码YOLO
文章目录1.介绍:揭秘iRMB——轻量化与高性能的完美融合1.1摘要:洞察iRMB的设计哲学与卓越表现1.2简单描述:深入剖析iRMB的构造与工作原理核心灵感:CNN与Transformer的珠联璧合iRMB的核心结构:短距离与长距离的协同设计理念:实用、统一、有效、高效1.3模块结构:iRMB的内部构造图(概念描述)2.代码解析:逐行揭秘iRMB的魔法2.1`LayerNorm2d`:为2D数据
- Python+AI十分钟自动生成小说!程序员:这工具让我月入5万+
小筱在线
人工智能人工智能开发语言
引言:AI写作革命已来,你准备好了吗?2025年的今天,AI写作已经从科幻概念变成了现实生产力。一位名叫李明的程序员在社交媒体上晒出他的收入截图:单月稿费突破5万元,而他的"秘密武器"竟是用Python开发的AI小说生成工具。这不是天方夜谭,而是正在发生的技术革命。随着GPT-4、Claude3等大语言模型的成熟,结合Python强大的自动化能力,任何人都可以在十分钟内生成一部完整的小说初稿。AI
- RNN案例人名分类器(完整步骤)
AI扶我青云志
rnn人工智能深度学习nlplstmgru
今天给大家分享一个NLP(自然语言处理)中的一个小案例,本案例讲解了RNN、LSTM、GRU模型是如何使用并进行预测的,一、案例架构人名分类器的实现可分为以下五个步骤:第一步:导入必备的工具包第二步:对data文件中的数据进行处理,满足训练要求第三步:构建RNN模型(包括传统RNN,LSTM以及GRU)第四步:构建训练函数并进行训练五步第:构建评估函数并进行预测二、实现步骤1.导包#导入torch
- Teacher Forcing--------一种用于序列生成任务的训练技巧
AI扶我青云志
自然语言处理人工智能
好的,我们来详细介绍一下TeacherForcing,这是一种在训练序列生成模型(如循环神经网络RNN、长短期记忆网络LSTM、门控循环单元GRU、以及后来的Transformer)时常用的重要技术。核心概念目标:训练一个模型,使其能够根据给定的输入序列(如前一个词、图像编码、时间步数据等)预测下一个输出元素(如下一个词、下一个音符、下一个时间点的值等)。这在机器翻译、文本摘要、对话生成、语音合成
- Chat Model API
虾条_花吹雪
SpringAIjava
聊天模型API为开发人员提供了将人工智能聊天完成功能集成到应用程序中的能力。它利用预训练的语言模型,如GPT(生成预训练转换器),以自然语言对用户输入生成类似人类的响应。API通常通过向人工智能模型发送提示或部分对话来工作,然后人工智能模型根据其训练数据和对自然语言模式的理解生成对话的完成或继续。然后将完成的响应返回给应用程序,应用程序可以将其呈现给用户或用于进一步处理。Spring人工智能聊天模
- Python 库 包 sentence-transformers
音程
机器学习人工智能python开发语言
sentence-transformers是一个非常流行的Python库,专门用于将文本(句子、段落、文档)转换为高质量的语义向量(嵌入)。它基于Transformer架构(如BERT、RoBERTa、DistilBERT等)的预训练模型,并在大量语义相似性数据上进行了微调,能够捕捉句子之间的深层语义关系。什么是sentence-transformers?项目地址:https://www.sber
- 创客匠人视角下:创始人 IP 如何通过内容运营实现知识变现的冷启动
创小匠
tcp/ip内容运营网络协议
知识付费创业的冷启动阶段,如何快速建立IP影响力并实现用户积累,是创业者面临的首要挑战。创客匠人服务的慈航德教育从0-1入局家庭教育赛道,单月拓客1.6万+的实践,揭示了创始人IP通过内容运营驱动知识变现的底层逻辑。视频号作为IP冷启动的核心阵地,其运营本质是价值观的持续输出。陈向杰老师通过840期连续直播(日均2小时),将“慈祥之心+明确方向+立德树人”的IP理念拆解为具体的育儿干货、案例解析与
- 巅峰对决,超三十万奖金等你挑战!第十届信也科技杯全球AI算法大赛火热开赛!
中杯可乐多加冰
前沿资讯分享科技人工智能算法计算机视觉机器学习深度学习
信也科技今年跟IJCAI和CIKM这两大全球顶级AI会议合作,这场比赛被全球人工智能顶会CIKM收录为官方赛事单元,获奖选手有机会全球人工智能顶会创造更大的影响力。一、赛事概况随着深度伪造技术的高度发展,人工智能产业走深向实,生成合成技术开始呈现工具化和普及化趋势。在生成合成内容质量显著提升的当下,基于换脸攻击的身份冒用和欺诈事件在全球范围内激增,严重威胁个人隐私和公共数据安全。第十届信也科技杯全
- 2025年6月AIGC发展全景:技术轻量化、Agent产业化与伦理新挑战
Loving_enjoy
计算机学科论文创新点深度学习人工智能经验分享facebook
>**当一块消费级GPU能解高考数学题,当AI智能体接管医院诊断流程,我们正站在人机协作新纪元的门槛上**2025年6月,AIGC领域迎来关键转折点——**模型轻量化**让百亿参数算法飞入寻常设备,**多模态融合**打破文本与视觉的次元壁,而**Agent智能体**正从实验室概念蜕变为产业核心引擎。这场变革不仅重塑技术范式,更在重构商业逻辑与人类创造力边界。---###一、技术突破:垂直化、轻量化
- 代码随想录算法训练营第十一天
天天开心(∩_∩)
算法
LeetCode.150逆波兰表达式求值题目链接逆波兰表达式求值题解classSolution{publicintevalRPN(String[]tokens){Stackcstack=newStackset=newHashSetdeque=newLinkedListdeque.getLast()){deque.removeLast();}deque.add(val);}intpeek(){ret
- 【图像超分】论文复现:密集残差链接Transformer!DRCT的Pytorch源码复现,跑通超分源码,获得指标、模型复杂度、结果可视化,核心模块拆解与源码对应,注释详细!
十小大
超分辨率重建(理论+实战科研+应用)pytorch深度学习超分辨率重建图像处理计算机视觉pythontransformer
请先看【专栏介绍文章】:【超分辨率(Super-Resolution)】关于【超分辨率重建】专栏的相关说明,包含专栏简介、专栏亮点、适配人群、相关说明、阅读顺序、超分理解、实现流程、研究方向、论文代码数据集汇总等)完整代码和训练好的模型权重文件下载链接见本文底部,订阅专栏免费获取!本文亮点:跑通DRCT源码,获得与论文一致的PSNR/SSIM、Params、超分可视化结果,修正论文中FLOPs的计
- 鸿蒙设备开发OpenHarmony深度解读之设备认证:HiChain机制部分源码解析1(推荐模块之外)
往期推文全新看点(文中附带最新·鸿蒙全栈学习笔记)鸿蒙(HarmonyOS)北向开发知识点记录~鸿蒙(OpenHarmony)南向开发保姆级知识点汇总~鸿蒙应用开发与鸿蒙系统开发哪个更有前景?嵌入式开发适不适合做鸿蒙南向开发?看完这篇你就了解了~对于大前端开发来说,转鸿蒙开发究竟是福还是祸?鸿蒙岗位需求突增!移动端、PC端、IoT到底该怎么选?记录一场鸿蒙开发岗位面试经历~持续更新中……一、概述H
- 我国在AI、元宇宙、生成式AI赛道的竞争带来的投资机会
数据与人工智能律师
大数据区块链人工智能网络数据库
首席数据官高鹏律师团队编著中国在AI、元宇宙、生成式AI赛道的竞争已进入技术深化与商业落地并行的关键阶段,未来投资机会可围绕以下五大方向展开:一、基础设施与算力支撑1.云计算与混合云服务生成式AI对算力和云服务需求激增,联想集团等布局混合云的企业受益于企业数字化转型需求。IDC预测,到2025年,50%的企业将与生成式AI云提供商建立战略联系,云服务商需优化数据治理和成本控制能力。2.AI芯片与算
- Python|Pyppeteer规避反自动化检测方法【最新方案】(33)
写python的鑫哥
Pyppeteer从入门到精通pythonpyppeteerpuppeteer规避反自动化检测反爬虫
前言本文是该专栏的第33篇,结合优质项目案例持续分享Pyppeteer的干货知识,记得关注。相信有些同学在使用Pyppeteer框架进行某个自动化操作的时候,会触发平台的检测机制,让目标平台识别出当前是机器人在操作,而非人为操作,导致让你的程序无法继续进行下一步。对于上述这种情况,你是不是有很大的疑惑呢?别担心,本文笔者专门针对上述问题,来详细介绍在使用Pyppeteer的过程中,出现反自动化机制
- 深度报告:中老年AI陪伴机器人需求分析
MidJourney中文版
AI机器人人工智能机器人
银发经济新赛道:中老年陪伴聊天AI机器人需求价值与发展路径分析1老龄化社会的隐性需求全球人口结构加速老龄化背景下,老年孤独问题日益凸显为公共健康挑战。传统家庭结构变迁导致独居老人比例持续上升,情感支持缺位与社交隔离形成双重压力,而现有社会服务难以满足高频次、个性化的陪伴需求。在此现实困境中,具备自然语言交互能力的AI机器人玩具展现出独特价值——通过技术手段填补情感空缺,成为应对银发群体精神健康问题
- 向量运算、矩阵运算、线性变换相关运算
超龄超能程序猿
机器学习矩阵线性代数机器学习
一、向量核心运算1.向量加法与数乘(线性组合基础)定义:加法:若a=(a1,a2,…,an),b=(b1,b2,…,bn),则a+b=(a1+b1,a2+b2,…,an+bn)。数乘:若k为标量,则ka=(ka1,ka2,…,kan)。性质:满足交换律、结合律,构成向量空间的基本运算。应用:向量线性组合(如基向量表示任意向量)、物理中力的合成与分解。2.点积(内积,DotProduct)定义:a⋅
- 【技术派专享】并行智算云:RTX 5090 免费算力深度评测 + 实战指南▎ 为什么开发者需要关注云端算力?
山顶望月川
人工智能云计算
在微调Llama3、训练扩散模型或跑Kaggle比赛时,本地显卡(比如RTX3090/4090)常面临显存不足、训练慢、散热差等问题。而购买多卡服务器成本极高(一台8×A100机器年成本超20万),对个人和小团队极不友好。并行智算云近期推出的“开发者扶持计划”,提供RTX5090免费算力(显存32GB,FP32算力60TFLOPS),实测比4090训练速度快1.8倍,且支持多卡并行。下面从技术优势
- 浙江省经信厅数据算力与基础设施处处长庞为兴带队调研景联文科技,共探工业数据驱动智造新路径!
景联文科技
科技
7月2日上午,浙江省经信厅数据算力与基础设施处处长庞为兴、产业数字化处处长张君等一行领导带队莅临景联文科技调研指导工作,景联文科技CEO刘云涛参加调研并做汇报讲解,双方就数据服务公司业务,工业高质量数据集建设及政企合作方向展开深入探讨。景联文科技作为“懂模型、懂业务”的AI数据服务商,业务模式涵盖按需标注、预置数据集供应及平台部署服务,并积极汇聚公共数据资源,携手华为构建语料知识库,赋能数据标注产
- 深度学习实验:GPU加速,突破性能瓶颈
AI天才研究院
AgenticAI实战计算AI人工智能与大数据计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
深度学习实验:GPU加速,突破性能瓶颈1.背景介绍随着深度学习模型变得越来越复杂和庞大,传统的CPU已经无法满足训练和推理的计算需求。GPU凭借其强大的并行计算能力和专门为矩阵运算优化的架构,成为了深度学习领域的核心加速器。本文将探讨如何利用GPU加速深度学习实验,突破性能瓶颈,提高模型训练和推理的效率。2.核心概念与联系2.1GPU架构GPU(图形处理器)最初是为了加速图形渲染而设计的,但由于其
- scala的option和some
矮蛋蛋
编程scala
原文地址:
http://blog.sina.com.cn/s/blog_68af3f090100qkt8.html
对于学习 Scala 的 Java™ 开发人员来说,对象是一个比较自然、简单的入口点。在 本系列 前几期文章中,我介绍了 Scala 中一些面向对象的编程方法,这些方法实际上与 Java 编程的区别不是很大。我还向您展示了 Scala 如何重新应用传统的面向对象概念,找到其缺点
- NullPointerException
Cb123456
androidBaseAdapter
java.lang.NullPointerException: Attempt to invoke virtual method 'int android.view.View.getImportantForAccessibility()' on a null object reference
出现以上异常.然后就在baidu上
- PHP使用文件和目录
天子之骄
php文件和目录读取和写入php验证文件php锁定文件
PHP使用文件和目录
1.使用include()包含文件
(1):使用include()从一个被包含文档返回一个值
(2):在控制结构中使用include()
include_once()函数需要一个包含文件的路径,此外,第一次调用它的情况和include()一样,如果在脚本执行中再次对同一个文件调用,那么这个文件不会再次包含。
在php.ini文件中设置
- SQL SELECT DISTINCT 语句
何必如此
sql
SELECT DISTINCT 语句用于返回唯一不同的值。
SQL SELECT DISTINCT 语句
在表中,一个列可能会包含多个重复值,有时您也许希望仅仅列出不同(distinct)的值。
DISTINCT 关键词用于返回唯一不同的值。
SQL SELECT DISTINCT 语法
SELECT DISTINCT column_name,column_name
F
- java冒泡排序
3213213333332132
java冒泡排序
package com.algorithm;
/**
* @Description 冒泡
* @author FuJianyong
* 2015-1-22上午09:58:39
*/
public class MaoPao {
public static void main(String[] args) {
int[] mao = {17,50,26,18,9,10
- struts2.18 +json,struts2-json-plugin-2.1.8.1.jar配置及问题!
7454103
DAOspringAjaxjsonqq
struts2.18 出来有段时间了! (貌似是 稳定版)
闲时研究下下! 貌似 sruts2 搭配 json 做 ajax 很吃香!
实践了下下! 不当之处请绕过! 呵呵
网上一大堆 struts2+json 不过大多的json 插件 都是 jsonplugin.34.jar
strut
- struts2 数据标签说明
darkranger
jspbeanstrutsservletScheme
数据标签主要用于提供各种数据访问相关的功能,包括显示一个Action里的属性,以及生成国际化输出等功能
数据标签主要包括:
action :该标签用于在JSP页面中直接调用一个Action,通过指定executeResult参数,还可将该Action的处理结果包含到本页面来。
bean :该标签用于创建一个javabean实例。如果指定了id属性,则可以将创建的javabean实例放入Sta
- 链表.简单的链表节点构建
aijuans
编程技巧
/*编程环境WIN-TC*/ #include "stdio.h" #include "conio.h"
#define NODE(name, key_word, help) \ Node name[1]={{NULL, NULL, NULL, key_word, help}}
typedef struct node { &nbs
- tomcat下jndi的三种配置方式
avords
tomcat
jndi(Java Naming and Directory Interface,Java命名和目录接口)是一组在Java应用中访问命名和目录服务的API。命名服务将名称和对象联系起来,使得我们可以用名称
访问对象。目录服务是一种命名服务,在这种服务里,对象不但有名称,还有属性。
tomcat配置
- 关于敏捷的一些想法
houxinyou
敏捷
从网上看到这样一句话:“敏捷开发的最重要目标就是:满足用户多变的需求,说白了就是最大程度的让客户满意。”
感觉表达的不太清楚。
感觉容易被人误解的地方主要在“用户多变的需求”上。
第一种多变,实际上就是没有从根本上了解了用户的需求。用户的需求实际是稳定的,只是比较多,也比较混乱,用户一般只能了解自己的那一小部分,所以没有用户能清楚的表达出整体需求。而由于各种条件的,用户表达自己那一部分时也有
- 富养还是穷养,决定孩子的一生
bijian1013
教育人生
是什么决定孩子未来物质能否丰盛?为什么说寒门很难出贵子,三代才能出贵族?真的是父母必须有钱,才能大概率保证孩子未来富有吗?-----作者:@李雪爱与自由
事实并非由物质决定,而是由心灵决定。一朋友富有而且修养气质很好,兄弟姐妹也都如此。她的童年时代,物质上大家都很贫乏,但妈妈总是保持生活中的美感,时不时给孩子们带回一些美好小玩意,从来不对孩子传递生活艰辛、金钱来之不易、要懂得珍惜
- oracle 日期时间格式转化
征客丶
oracle
oracle 系统时间有 SYSDATE 与 SYSTIMESTAMP;
SYSDATE:不支持毫秒,取的是系统时间;
SYSTIMESTAMP:支持毫秒,日期,时间是给时区转换的,秒和毫秒是取的系统的。
日期转字符窜:
一、不取毫秒:
TO_CHAR(SYSDATE, 'YYYY-MM-DD HH24:MI:SS')
简要说明,
YYYY 年
MM 月
- 【Scala六】分析Spark源代码总结的Scala语法四
bit1129
scala
1. apply语法
FileShuffleBlockManager中定义的类ShuffleFileGroup,定义:
private class ShuffleFileGroup(val shuffleId: Int, val fileId: Int, val files: Array[File]) {
...
def apply(bucketId
- Erlang中有意思的bug
bookjovi
erlang
代码中常有一些很搞笑的bug,如下面的一行代码被调用两次(Erlang beam)
commit f667e4a47b07b07ed035073b94d699ff5fe0ba9b
Author: Jovi Zhang <
[email protected]>
Date: Fri Dec 2 16:19:22 2011 +0100
erts:
- 移位打印10进制数转16进制-2008-08-18
ljy325
java基础
/**
* Description 移位打印10进制的16进制形式
* Creation Date 15-08-2008 9:00
* @author 卢俊宇
* @version 1.0
*
*/
public class PrintHex {
// 备选字符
static final char di
- 读《研磨设计模式》-代码笔记-组合模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.List;
abstract class Component {
public abstract void printStruct(Str
- 利用cmd命令将.class文件打包成jar
chenyu19891124
cmdjar
cmd命令打jar是如下实现:
在运行里输入cmd,利用cmd命令进入到本地的工作盘符。(如我的是D盘下的文件有此路径 D:\workspace\prpall\WEB-INF\classes)
现在是想把D:\workspace\prpall\WEB-INF\classes路径下所有的文件打包成prpall.jar。然后继续如下操作:
cd D: 回车
cd workspace/prpal
- [原创]JWFD v0.96 工作流系统二次开发包 for Eclipse 简要说明
comsci
eclipse设计模式算法工作swing
JWFD v0.96 工作流系统二次开发包 for Eclipse 简要说明
&nb
- SecureCRT右键粘贴的设置
daizj
secureCRT右键粘贴
一般都习惯鼠标右键自动粘贴的功能,对于SecureCRT6.7.5 ,这个功能也已经是默认配置了。
老版本的SecureCRT其实也有这个功能,只是不是默认设置,很多人不知道罢了。
菜单:
Options->Global Options ...->Terminal
右边有个Mouse的选项块。
Copy on Select
Paste on Right/Middle
- Linux 软链接和硬链接
dongwei_6688
linux
1.Linux链接概念Linux链接分两种,一种被称为硬链接(Hard Link),另一种被称为符号链接(Symbolic Link)。默认情况下,ln命令产生硬链接。
【硬连接】硬连接指通过索引节点来进行连接。在Linux的文件系统中,保存在磁盘分区中的文件不管是什么类型都给它分配一个编号,称为索引节点号(Inode Index)。在Linux中,多个文件名指向同一索引节点是存在的。一般这种连
- DIV底部自适应
dcj3sjt126com
JavaScript
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml&q
- Centos6.5使用yum安装mysql——快速上手必备
dcj3sjt126com
mysql
第1步、yum安装mysql
[root@stonex ~]# yum -y install mysql-server
安装结果:
Installed:
mysql-server.x86_64 0:5.1.73-3.el6_5 &nb
- 如何调试JDK源码
frank1234
jdk
相信各位小伙伴们跟我一样,想通过JDK源码来学习Java,比如collections包,java.util.concurrent包。
可惜的是sun提供的jdk并不能查看运行中的局部变量,需要重新编译一下rt.jar。
下面是编译jdk的具体步骤:
1.把C:\java\jdk1.6.0_26\sr
- Maximal Rectangle
hcx2013
max
Given a 2D binary matrix filled with 0's and 1's, find the largest rectangle containing all ones and return its area.
public class Solution {
public int maximalRectangle(char[][] matrix)
- Spring MVC测试框架详解——服务端测试
jinnianshilongnian
spring mvc test
随着RESTful Web Service的流行,测试对外的Service是否满足期望也变的必要的。从Spring 3.2开始Spring了Spring Web测试框架,如果版本低于3.2,请使用spring-test-mvc项目(合并到spring3.2中了)。
Spring MVC测试框架提供了对服务器端和客户端(基于RestTemplate的客户端)提供了支持。
&nbs
- Linux64位操作系统(CentOS6.6)上如何编译hadoop2.4.0
liyong0802
hadoop
一、准备编译软件
1.在官网下载jdk1.7、maven3.2.1、ant1.9.4,解压设置好环境变量就可以用。
环境变量设置如下:
(1)执行vim /etc/profile
(2)在文件尾部加入:
export JAVA_HOME=/home/spark/jdk1.7
export MAVEN_HOME=/ho
- StatusBar 字体白色
pangyulei
status
[[UIApplication sharedApplication] setStatusBarStyle:UIStatusBarStyleLightContent];
/*you'll also need to set UIViewControllerBasedStatusBarAppearance to NO in the plist file if you use this method
- 如何分析Java虚拟机死锁
sesame
javathreadoracle虚拟机jdbc
英文资料:
Thread Dump and Concurrency Locks
Thread dumps are very useful for diagnosing synchronization related problems such as deadlocks on object monitors. Ctrl-\ on Solaris/Linux or Ctrl-B
- 位运算简介及实用技巧(一):基础篇
tw_wangzhengquan
位运算
http://www.matrix67.com/blog/archives/263
去年年底写的关于位运算的日志是这个Blog里少数大受欢迎的文章之一,很多人都希望我能不断完善那篇文章。后来我看到了不少其它的资料,学习到了更多关于位运算的知识,有了重新整理位运算技巧的想法。从今天起我就开始写这一系列位运算讲解文章,与其说是原来那篇文章的follow-up,不如说是一个r
- jsearch的索引文件结构
yangshangchuan
搜索引擎jsearch全文检索信息检索word分词
jsearch是一个高性能的全文检索工具包,基于倒排索引,基于java8,类似于lucene,但更轻量级。
jsearch的索引文件结构定义如下:
1、一个词的索引由=分割的三部分组成: 第一部分是词 第二部分是这个词在多少