- AI安全相关漏洞
外咸瓜街的一条咸鱼
AI安全人工智能安全
最近AI大模型上线,除开常规的系统漏洞外,也涌现出很多新的漏洞,这篇文章对于新的一些漏洞进行一些整理,后期进行进一步的复现。1.对抗攻击(AdversarialAttacks)攻击机制:通过在输入数据中添加人眼难以察觉的微小扰动(如噪声、像素变化),使模型产生错误分类。例如,一张熊猫图片经过对抗扰动后,被模型误判为“长臂猿”。白盒攻击:攻击者完全了解模型结构(如梯度信息),可直接计算扰动方向(如使
- 天 锐 蓝盾终端安全管理系统:办公U盘拷贝使用管控限制
Tipray2006
安全
天锐蓝盾终端安全管理系统以终端安全为基石,深度融合安全、管理与维护三大要素,通过对桌面终端系统的精准把控,助力企业用户构筑起更为安全、稳固且可靠的网络运行环境。它实现了管理的标准化,有效破解终端安全管理难题,显著提升了信息运维部门的工作效率,同时,也进一步规范了员工的操作行为,确保每一步操作都合规有序。天锐蓝盾终端安全管理系统U盘是办公中常用移动存储工具,但同时也是终端泄密的途径之一,对其进行管控
- 【拼题A】2025跨年挑战赛
SpareLin
题解算法数据结构
文章目录20爱您爱我输入格式:输出格式:输入样例:输出样例:CodeCodeCode25浓人淡人输入样例1:输出样例1:输入样例2:输出样例2:输入样例3:输出样例3:CodeCodeCode新年贪吃蛇输入格式:输出格式:输入样例:输出样例:CodeCodeCode快乐还是浓人淡人输入格式:输出格式:输入样例1:输出样例1:输入样例2:输出样例2:输入样例3:输出样例3:CodeCodeCode身
- 自动驾驶之BEV概述
maxruan
BEV自动驾驶自动驾驶人工智能机器学习BEV
1、为什么需要BEV?自动驾驶需要目标在3D空间的位置信息,传统检测为2D图像上检测目标然后IPM投影到3D。所以无论如何3D结果才是我们最终想要的。对于单个传感器:通过单目3D、深度估计等手段好像能解决这个问题,但是往往精度不高。对于自动驾驶,往往需要360度的多个摄像头协同工作。将多个摄像头的结果进行融合也是一大问题。所以把图象特征转到BEV空间下直接进行3D位置预测,一则可以解决2D到3D的
- 动态视觉SLAM的亿点点思考(含20项最新开源代码链接)[上篇]
3D视觉工坊
3D视觉从入门到精通人工智能
作者:泡椒味的口香糖|来源:3D视觉工坊添加微信:dddvisiona,备注:SLAM,拉你入群。文末附行业细分群。0.笔者个人体会动态环境下的视觉SLAM一直都是研究的重点和难点,但最近动态SLAM的paper越来越少,感觉主要原因是动态SLAM的框架已经固化,很难做出大的创新。现有的模板基本就是使用目标检测或者语义分割网络剔除动态特征点,然后用几何一致性做进一步的验证。笔者最近也在思考突破口,
- DeepSeek的开源之路:一文读懂从V1-R1的技术发展,见证从开源新秀到推理革命的领跑者
算法
作者:京东科技蔡欣彤一、引言:AI时代的挑战与DeepSeek的崛起在大模型时代,AI技术的飞速发展带来了前所未有的机遇,但也伴随着巨大的挑战。随着模型规模的不断扩大,算力需求呈指数级增长,训练成本飙升,而性能提升的边际收益却逐渐递减,形成了所谓的“ScalingLaw”瓶颈。与此同时,OpenAI、谷歌等巨头通过闭源策略垄断技术,限制了中小企业和研究机构的参与空间。在这样的背景下,DeepSee
- MySQL底层是如何实现事物的四大特性的?
MySQL如何实现事务的四大特性(ACID)MySQL的事务支持主要通过InnoDB存储引擎实现,其底层机制结合日志系统(UndoLog/RedoLog)、锁机制和多版本并发控制(MVCC),具体实现如下:1.原子性(Atomicity)定义:事务的所有操作要么全部成功,要么全部失败回滚。实现:UndoLog(回滚日志):在事务修改数据前,UndoLog会记录数据修改前的状态(旧版本数据)。若事务
- 【LLM】本地部署LLM大语言模型+可视化交互聊天,附常见本地部署硬件要求(以Ollama+OpenWebUI部署DeepSeekR1为例)
小哈里
#数据开发语言模型人工智能自然语言处理LLMdeepseek大模型
【LLM】本地部署LLM大语言模型+可视化交互聊天,附常见本地部署硬件要求(以Ollama+OpenWebUI部署DeepSeekR1为例)文章目录1、本地部署LLM(以Ollama为例)2、本地LLM交互界面(以OpenWebUI为例)3、本地部署硬件要求对应表1、本地部署LLM(以Ollama为例)本地部署LLM的框架129k-Ollama1是一个提供简单命令行接口的工具,可以轻松下载和运行本
- msf php脚本提权,利用Metasploit提权Linux主机思路
weixin_39640904
msfphp脚本提权
本帖最后由小爱_Joker于2017-3-913:28编辑大晚上的写个文章不容易而且有点小冷利用metasploit提权Linux主机主要就是用msf生成一个马子上传到webshell打开马子后你就会发现你的msf已经建立了一个回话下面进入正题PHPMeterpretermetasploit有一个名为PHPMeterpreter的payload,可创建具有meterpreter功能的PHPwebs
- 新员工培训/转正考试 网络安全 质量意识 应知应会
Haydroid
网络安全
新员工培训/转正考试以下都是最新题库,都是考试过验证过的答案,有些答案正确却被扣分,错误答案却能得分,呵呵……世界真的很奇妙!我已经趟过雷了,呕心沥血整理考过的题目提供给大家,保证每题都能得分。本文包含网络安全、应知应会、质量意识三大块,如下:新员工网络安全单选题多选题判断题员工应知应会单选题多选题判断题新员工质量意识单选题多选题判断题本文仅供学习交流,以下是题目及正确答案,祝你顺利通过考试!(如
- flash_attn安装出现的错误及本地安装package
flow_code
人工智能深度学习经验分享
前言flash_attn安装包是在大模型的建立过程中是一个非常重要的package,但是直接使用命令行安装会出现报错。1.报错直接安装:pipinstallflash_attn错误:Buildingwheelsforcollectedpackages:flash_attnBuildingwheelforflash_attn(setup.py)…errorerror:subprocess-exite
- 大模型是如何蒸馏像Qwen-7B,Llama-3 这种小模型的?
闫哥大数据
大模型llama人工智能
1.Qwen-7B和Llama-3的所属公司Qwen-7B:属于阿里巴巴,是“通义千问”系列的开源模型,由阿里云团队研发。Llama-3:属于Meta(原Facebook),是Meta开源的Llama系列大语言模型的最新版本。2.蒸馏数据的使用与模型归属蒸馏技术的作用:DeepSeek将自研大模型(如DeepSeek-R1)生成的80万条高质量解题数据(称为“蒸馏数据”)用于训练Qwen、Llam
- DeepSeek动态增量学习技术详解与实战指南
燃灯工作室
Deepseek人工智能机器学习数据挖掘
一、主题背景1.Why:破解模型持续进化难题传统全量训练模式面临三大困境:金融风控场景中,每周新增百万级欺诈样本时,全量训练耗时从3小时增至8小时(数据量年增长300%)医疗影像诊断模型遇到新病症类型时,需要重新标注全部历史数据智能客服系统无法保留上周学习的行业专有术语DeepSeek方案实现:训练耗时:新增数据量20%时,耗时仅增加35%(传统方法需100%)灾难性遗忘率:在CLVision20
- Python进阶:详解`**kwargs`的底层原理与实战技巧,5大常见错误及解决方案
燃灯工作室
Pythonpython服务器linux
正文内容一、核心概念剖析定义:**kwargs是Python中用于接收任意数量关键字参数的特殊语法,将参数收集到字典对象中核心目的:增强函数参数处理的灵活性支持动态参数传递实现优雅的API设计基本语法:deffunction_name(**kwargs):#函数体二、语法规则详解1.标准使用范式defprocess_data(name,age=25,**info):print(f"Name:{na
- AI大模型时代,新手和程序员如何转型入局AI行业?
大模型RAG实战
人工智能aiagi程序员转行
在人工智能(AI)的浪潮中,大模型技术正以前所未有的速度发展,并在各个领域展现出其强大的应用潜力。在近期的全国两会上,“人工智能”再次被提及,并成为国家战略的焦点。这一举措预示着在接下来的十年到十五年里,人工智能将获得巨大的发展红利。技术革命正在从“互联网+”向“人工智能+”逐步迈进,我们将迎来新一轮技术革新和人才需求的增长。毫无疑问,AI工程师将是未来最紧俏的岗位。对于想要进入AI领域的新手或转
- DeepSeek技术系列之解析DeepSeek蒸馏技术
小叔技研社
AIGC人工智能
大模型落地之痛当前千亿级大模型面临严峻的部署困境:GPT-4级模型的单次推理成本高达0.01美元,而工业场景往往要求响应速度<200ms。传统蒸馏技术虽能压缩模型,但普遍存在精度滑坡超过15%的问题——直到DeepSeek提出多模态渐进框架MPD,一、什么是蒸馏技术蒸馏技术定义模型蒸馏(KnowledgeDistillation)是一种将大型复杂模型(教师模型,比如:DeepSeekR1671B
- 深入探索 llama-cpp-python:在 LangChain 中启用本地 LLM 推理
aehrutktrjk
llamapythonlangchain
引言在人工智能的迅猛发展中,大语言模型(LLM)扮演着不可或缺的角色。Llama.cpp是一个用于推理许多LLM模型的开源库,它的Python绑定——llama-cpp-python提供了在Python中更加便捷的接口。这篇文章旨在介绍如何在LangChain中运行llama-cpp-python,并探讨其安装和使用中的一些细节。主要内容1.安装llama-cpp-python首先,我们需要选择合
- GLake:优化GPU内存管理与IO传输的开源项目
2401_87458718
开源
GLake:突破GPU内存和IO瓶颈的利器在人工智能快速发展的今天,大模型训练和推理正面临着严峻的挑战。随着模型规模的不断扩大,GPU内存容量和IO带宽的增长速度已经远远跟不上AI模型规模的增长速度,形成了所谓的"内存墙"和"IO传输墙"。为了应对这些挑战,一个名为GLake的开源项目应运而生,旨在通过底层优化来突破GPU内存和IO传输的瓶颈。GLake简介GLake是一个专注于优化GPU内存管理
- Python 爬虫实战案例 - 获取BOSS直聘网招聘职位信息
西攻城狮北
python爬虫BOSS直聘招聘信息
引言在当今竞争激烈的职场环境中,无论是求职者渴望找到理想工作,还是企业力求招揽优秀人才,精准、及时的招聘信息都至关重要。BOSS直聘作为国内知名的在线招聘平台,汇聚了海量的职位资源,涵盖各行各业、各个层级。对于求职者,这里宛如一座蕴藏无限机会的宝库,能助其快速锚定契合自身发展的岗位;对于企业,它则是发现千里马的优质猎场,可精准匹配所需人才。而Python爬虫技术恰似一把神奇钥匙,能开启这座宝库的大
- DeepSeek技术解析:降本增效的“双刃剑”如何重塑AI产业?
爱吃青菜的大力水手
人工智能
DeepSeek技术解析:降本增效的“双刃剑”如何重塑AI产业?正面影响分析算力需求与成本大幅降低DeepSeek通过算法优化(如稀疏计算、知识蒸馏)和模型压缩技术,将云端训练算力需求降至传统大模型的35%,车端推理芯片需求减少至65%。例如,某车企使用高通8650平台后,智驾系统成本显著下降。这种优化使得中小企业能以更低成本部署AI,甚至支持本地化私有化部署(如金融行业案例),同时减少对英伟达高
- DeepSeek:突破闭源封锁,引领大模型新时代
fanstinmsl
算法语言模型
近年来,人工智能领域蓬勃发展,大模型作为其中的核心技术,其重要性不言而喻。然而,大模型的训练和部署往往面临着硬件依赖性强、成本高昂、效率低下等挑战。DeepSeek的出现,为解决这些问题提供了全新的思路和方案。DeepSeek的核心优势:1.减少硬件依赖:DeepSeek通过算法优化和架构创新,降低了对高性能硬件的依赖,使得大模型的训练和部署可以在更广泛的硬件平台上进行,极大地降低了应用门槛。**
- 大模型学习路线与资源推荐
数字化转型2025
AI投资人工智能
以下是基于多篇参考资料整理的大模型学习路线,涵盖从基础到进阶的完整学习路径,帮助您系统掌握大模型核心技术并应用于实际场景:一、基础阶段:构建核心知识体系编程与数学基础编程语言:优先学习Python,掌握其语法、数据结构及常用库(如NumPy、Pandas、PyTorch)37。数学基础:线性代数、概率论与统计学、微积分是理解模型原理的基石,需重点掌握矩阵运算、概率分布等概念39。深度学习入门神经网
- CF 58A.Chat room(Java实现)
Dr_Si
java算法开发语言
问题分析输入一个字符串,判断这个字符串是否能按序组成“hello”。思路分析题目说的意思是任意删除字母,能否组成"hello",实际就是判断'h'、'e'、'l'、'o'的下标是否一个比一个大,同时看'e'和'o'之间是否有两个'l'。这里我使用了indexof函数,判断'h'的首次出现位置,确认有‘h’时就使用substring函数删掉前面的所有字符,再判断‘e’的位置,同理删除前面的所有字符,
- 如何从0开始写一个操作系统
c后端
本贴用来记录作者用c语言写一个操作系统,主要参考《操作系统真相还原》一书写的,同时也会对书里的代码和linux进行对比,尽量看一下现代操作系统中是如何实现的。原书的代码https://github.com/yifengyou/os-elephant/tree/master我会挑一些说说传统的操作系统课一般从内存,虚拟化等等方面讲起,因为是自己实现操作系统,肯定不能一上来就写开始写内存管理这种大活,
- C 语言 “神秘武器”:联合体与枚举大揭秘!
南玖yy
c语言算法开发语言
在C语言里,除了常见的基本数据类型,还有一些自定义类型,它们能帮助我们更灵活地组织和管理数据。今天我们就来详细聊聊其中的联合体和枚举类型。1.联合体1.1联合体类型的声明联合体(Union),也叫共用体,它的声明语法和结构体很相似。声明一个联合体,我们使用union关键字,后面跟上联合体的名称,然后在花括号里列出联合体的成员。示例如下:#include//声明一个联合体unionData{inti
- 如何通过提示词更好地利用AI
lally.
人工智能
如何通过提示词工程释放AI的全部潜力:7个深度优化技巧前言:为什么提示词决定AI的输出质量?在人工智能对话系统的使用中,提示词(Prompt)就像开启宝藏的密码钥匙。研究表明,优化后的提示词可使输出质量提升300%(AIResearchLab,2023)。本指南将系统解析提示词设计的核心方法论,并提供可直接复用的模板库。一、基础构建:打造高效提示词的4大支柱1.1精准目标定位术原理分析:模糊指令导
- 【Rust中级教程】2.9. API设计原则之显然性(obvious) :文档与类型系统、语义化类型、使用“零大小”类型
SomeB1oody
Rust中级教程rust开发语言后端
喜欢的话别忘了点赞、收藏加关注哦(加关注即可阅读全文),对接下来的教程有兴趣的可以关注专栏。谢谢喵!(=・ω・=)2.9.1.文档与类型系统用户可能不会完全理解API的所有规则和限制。所以你写的API应该让你的用户易于理解,并且难以用错。通过Rust的文档与类型系统,我们可以尽量实现这个需求。2.9.2.文档让API透明化的第一步就是写出好的文档。写出好的文档有这么几点要求:1.清楚的记录清楚的记
- 分享一款支持二次开发的多语言订货系统
多用户商城系统
多语言订货系统订货系统源码跨境电商系统多语言订货系统中英文订货系统外贸订货系统
在全球经济一体化的浪潮中,企业的业务版图不断向海外拓展,与国际客户的贸易往来日益频繁。在这样的大背景下,一套功能完备、支持二次开发的多语言订货系统,已然成为企业突破语言障碍、优化业务流程、增强客户满意度的关键。核货宝多语言订货系统,正是这样一款能全方位满足企业国际化发展需求的优质解决方案,它凭借一系列强大且实用的功能,为企业在国际市场的角逐中筑牢根基。预翻译后人工确认机制智能高效预翻译:核货宝运用
- BP算法的python实现 + 男女生分类器
乐宝不是酒
机器学习机器学习神经网络算法
模式识别课上学习了BP算法,并用BP算法实现了男女生分类器,之前因为时间匆忙只是简单记录了一下代码实现,现在重温一下发现代码中还是存在着一些问题,于是修改了一下Bug,也当做是复习吧。本文完整代码和数据集可以到这里:BP算法的python实现获得。BP算法是神经网络中十分经典的算法之一,要把它解释清楚实在需要很多时间,我只想重点讲一下基于BP算法的男女生分类器python实现,理论方面推荐看知乎大
- 项目管理的数字化转型:趋势与实践——从工具革新到效率革命
小稻草打打打
Prince项目管理Prince敏捷开发项目管理
在数字化浪潮的推动下,项目管理正经历一场深刻的变革。传统依赖人工协调、纸质文档和静态计划的管理方式已无法应对日益复杂的项目需求。据统计,采用数字化工具的项目团队效率可提升40%以上,成本超支风险降低30%。本文将深入解析项目管理数字化转型的五大核心趋势,结合真实案例与工具应用,为读者提供可落地的实践指南。一、数字化转型的五大核心趋势1.虚拟团队与协作工具的常态化远程协作已成为项目管理的主流模式。通
- [黑洞与暗粒子]没有光的世界
comsci
无论是相对论还是其它现代物理学,都显然有个缺陷,那就是必须有光才能够计算
但是,我相信,在我们的世界和宇宙平面中,肯定存在没有光的世界....
那么,在没有光的世界,光子和其它粒子的规律无法被应用和考察,那么以光速为核心的
&nbs
- jQuery Lazy Load 图片延迟加载
aijuans
jquery
基于 jQuery 的图片延迟加载插件,在用户滚动页面到图片之后才进行加载。
对于有较多的图片的网页,使用图片延迟加载,能有效的提高页面加载速度。
版本:
jQuery v1.4.4+
jQuery Lazy Load v1.7.2
注意事项:
需要真正实现图片延迟加载,必须将真实图片地址写在 data-original 属性中。若 src
- 使用Jodd的优点
Kai_Ge
jodd
1. 简化和统一 controller ,抛弃 extends SimpleFormController ,统一使用 implements Controller 的方式。
2. 简化 JSP 页面的 bind, 不需要一个字段一个字段的绑定。
3. 对 bean 没有任何要求,可以使用任意的 bean 做为 formBean。
使用方法简介
- jpa Query转hibernate Query
120153216
Hibernate
public List<Map> getMapList(String hql,
Map map) {
org.hibernate.Query jpaQuery = entityManager.createQuery(hql);
if (null != map) {
for (String parameter : map.keySet()) {
jp
- Django_Python3添加MySQL/MariaDB支持
2002wmj
mariaDB
现状
首先,
[email protected] 中默认的引擎为 django.db.backends.mysql 。但是在Python3中如果这样写的话,会发现 django.db.backends.mysql 依赖 MySQLdb[5] ,而 MySQLdb 又不兼容 Python3 于是要找一种新的方式来继续使用MySQL。 MySQL官方的方案
首先据MySQL文档[3]说,自从MySQL
- 在SQLSERVER中查找消耗IO最多的SQL
357029540
SQL Server
返回做IO数目最多的50条语句以及它们的执行计划。
select top 50
(total_logical_reads/execution_count) as avg_logical_reads,
(total_logical_writes/execution_count) as avg_logical_writes,
(tot
- spring UnChecked 异常 官方定义!
7454103
spring
如果你接触过spring的 事物管理!那么你必须明白 spring的 非捕获异常! 即 unchecked 异常! 因为 spring 默认这类异常事物自动回滚!!
public static boolean isCheckedException(Throwable ex)
{
return !(ex instanceof RuntimeExcep
- mongoDB 入门指南、示例
adminjun
javamongodb操作
一、准备工作
1、 下载mongoDB
下载地址:http://www.mongodb.org/downloads
选择合适你的版本
相关文档:http://www.mongodb.org/display/DOCS/Tutorial
2、 安装mongoDB
A、 不解压模式:
将下载下来的mongoDB-xxx.zip打开,找到bin目录,运行mongod.exe就可以启动服务,默
- CUDA 5 Release Candidate Now Available
aijuans
CUDA
The CUDA 5 Release Candidate is now available at http://developer.nvidia.com/<wbr></wbr>cuda/cuda-pre-production. Now applicable to a broader set of algorithms, CUDA 5 has advanced fe
- Essential Studio for WinRT网格控件测评
Axiba
JavaScripthtml5
Essential Studio for WinRT界面控件包含了商业平板应用程序开发中所需的所有控件,如市场上运行速度最快的grid 和chart、地图、RDL报表查看器、丰富的文本查看器及图表等等。同时,该控件还包含了一组独特的库,用于从WinRT应用程序中生成Excel、Word以及PDF格式的文件。此文将对其另外一个强大的控件——网格控件进行专门的测评详述。
网格控件功能
1、
- java 获取windows系统安装的证书或证书链
bewithme
windows
有时需要获取windows系统安装的证书或证书链,比如说你要通过证书来创建java的密钥库 。
有关证书链的解释可以查看此处 。
public static void main(String[] args) {
SunMSCAPI providerMSCAPI = new SunMSCAPI();
S
- NoSQL数据库之Redis数据库管理(set类型和zset类型)
bijian1013
redis数据库NoSQL
4.sets类型
Set是集合,它是string类型的无序集合。set是通过hash table实现的,添加、删除和查找的复杂度都是O(1)。对集合我们可以取并集、交集、差集。通过这些操作我们可以实现sns中的好友推荐和blog的tag功能。
sadd:向名称为key的set中添加元
- 异常捕获何时用Exception,何时用Throwable
bingyingao
用Exception的情况
try {
//可能发生空指针、数组溢出等异常
} catch (Exception e) {
 
- 【Kafka四】Kakfa伪分布式安装
bit1129
kafka
在http://bit1129.iteye.com/blog/2174791一文中,实现了单Kafka服务器的安装,在Kafka中,每个Kafka服务器称为一个broker。本文简单介绍下,在单机环境下Kafka的伪分布式安装和测试验证 1. 安装步骤
Kafka伪分布式安装的思路跟Zookeeper的伪分布式安装思路完全一样,不过比Zookeeper稍微简单些(不
- Project Euler
bookjovi
haskell
Project Euler是个数学问题求解网站,网站设计的很有意思,有很多problem,在未提交正确答案前不能查看problem的overview,也不能查看关于problem的discussion thread,只能看到现在problem已经被多少人解决了,人数越多往往代表问题越容易。
看看problem 1吧:
Add all the natural num
- Java-Collections Framework学习与总结-ArrayDeque
BrokenDreams
Collections
表、栈和队列是三种基本的数据结构,前面总结的ArrayList和LinkedList可以作为任意一种数据结构来使用,当然由于实现方式的不同,操作的效率也会不同。
这篇要看一下java.util.ArrayDeque。从命名上看
- 读《研磨设计模式》-代码笔记-装饰模式-Decorator
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.io.BufferedOutputStream;
import java.io.DataOutputStream;
import java.io.FileOutputStream;
import java.io.Fi
- Maven学习(一)
chenyu19891124
Maven私服
学习一门技术和工具总得花费一段时间,5月底6月初自己学习了一些工具,maven+Hudson+nexus的搭建,对于maven以前只是听说,顺便再自己的电脑上搭建了一个maven环境,但是完全不了解maven这一强大的构建工具,还有ant也是一个构建工具,但ant就没有maven那么的简单方便,其实简单点说maven是一个运用命令行就能完成构建,测试,打包,发布一系列功
- [原创]JWFD工作流引擎设计----节点匹配搜索算法(用于初步解决条件异步汇聚问题) 补充
comsci
算法工作PHP搜索引擎嵌入式
本文主要介绍在JWFD工作流引擎设计中遇到的一个实际问题的解决方案,请参考我的博文"带条件选择的并行汇聚路由问题"中图例A2描述的情况(http://comsci.iteye.com/blog/339756),我现在把我对图例A2的一个解决方案公布出来,请大家多指点
节点匹配搜索算法(用于解决标准对称流程图条件汇聚点运行控制参数的算法)
需要解决的问题:已知分支
- Linux中用shell获取昨天、明天或多天前的日期
daizj
linuxshell上几年昨天获取上几个月
在Linux中可以通过date命令获取昨天、明天、上个月、下个月、上一年和下一年
# 获取昨天
date -d 'yesterday' # 或 date -d 'last day'
# 获取明天
date -d 'tomorrow' # 或 date -d 'next day'
# 获取上个月
date -d 'last month'
#
- 我所理解的云计算
dongwei_6688
云计算
在刚开始接触到一个概念时,人们往往都会去探寻这个概念的含义,以达到对其有一个感性的认知,在Wikipedia上关于“云计算”是这么定义的,它说:
Cloud computing is a phrase used to describe a variety of computing co
- YII CMenu配置
dcj3sjt126com
yii
Adding id and class names to CMenu
We use the id and htmlOptions to accomplish this. Watch.
//in your view
$this->widget('zii.widgets.CMenu', array(
'id'=>'myMenu',
'items'=>$this-&g
- 设计模式之静态代理与动态代理
come_for_dream
设计模式
静态代理与动态代理
代理模式是java开发中用到的相对比较多的设计模式,其中的思想就是主业务和相关业务分离。所谓的代理设计就是指由一个代理主题来操作真实主题,真实主题执行具体的业务操作,而代理主题负责其他相关业务的处理。比如我们在进行删除操作的时候需要检验一下用户是否登陆,我们可以删除看成主业务,而把检验用户是否登陆看成其相关业务
- 【转】理解Javascript 系列
gcc2ge
JavaScript
理解Javascript_13_执行模型详解
摘要: 在《理解Javascript_12_执行模型浅析》一文中,我们初步的了解了执行上下文与作用域的概念,那么这一篇将深入分析执行上下文的构建过程,了解执行上下文、函数对象、作用域三者之间的关系。函数执行环境简单的代码:当调用say方法时,第一步是创建其执行环境,在创建执行环境的过程中,会按照定义的先后顺序完成一系列操作:1.首先会创建一个
- Subsets II
hcx2013
set
Given a collection of integers that might contain duplicates, nums, return all possible subsets.
Note:
Elements in a subset must be in non-descending order.
The solution set must not conta
- Spring4.1新特性——Spring缓存框架增强
jinnianshilongnian
spring4
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- shell嵌套expect执行命令
liyonghui160com
一直都想把expect的操作写到bash脚本里,这样就不用我再写两个脚本来执行了,搞了一下午终于有点小成就,给大家看看吧.
系统:centos 5.x
1.先安装expect
yum -y install expect
2.脚本内容:
cat auto_svn.sh
#!/bin/bash
- Linux实用命令整理
pda158
linux
0. 基本命令 linux 基本命令整理
1. 压缩 解压 tar -zcvf a.tar.gz a #把a压缩成a.tar.gz tar -zxvf a.tar.gz #把a.tar.gz解压成a
2. vim小结 2.1 vim替换 :m,ns/word_1/word_2/gc  
- 独立开发人员通向成功的29个小贴士
shoothao
独立开发
概述:本文收集了关于独立开发人员通向成功需要注意的一些东西,对于具体的每个贴士的注解有兴趣的朋友可以查看下面标注的原文地址。
明白你从事独立开发的原因和目的。
保持坚持制定计划的好习惯。
万事开头难,第一份订单是关键。
培养多元化业务技能。
提供卓越的服务和品质。
谨小慎微。
营销是必备技能。
学会组织,有条理的工作才是最有效率的。
“独立
- JAVA中堆栈和内存分配原理
uule
java
1、栈、堆
1.寄存器:最快的存储区, 由编译器根据需求进行分配,我们在程序中无法控制.2. 栈:存放基本类型的变量数据和对象的引用,但对象本身不存放在栈中,而是存放在堆(new 出来的对象)或者常量池中(字符串常量对象存放在常量池中。)3. 堆:存放所有new出来的对象。4. 静态域:存放静态成员(static定义的)5. 常量池:存放字符串常量和基本类型常量(public static f