最近在做视频方向,处理的是时序特征,就想着能不能用Batch Normalization来做视频特征BN层?在网上查阅资料发现,时序特征并不能用Batch Normalization,因为一个batch中的序列有长有短。此外,BN 的一个缺点是需要较大的 batchsize 才能合理估训练数据的均值和方差,这导致内存很可能不够用,同时它也很难应用在训练数据长度不同的 RNN 模型上。Layer Normalization (LN) 的一个优势是不需要批训练,在单条数据内部就能归一化。
对于RNN等时序模型,有时候同一个batch内部的训练实例长度不一(不同长度的句子),则不同的时态下需要保存不同的统计量,无法正确使用BN层,只能使用Layer Normalization。
查阅Layer Normalization(下述LN)后发现,这东西有两种用法,一个是F.layer_norm,一个是torch.nn.LayerNorm,本文探究他们的区别。
F.layer_norm(x, normalized_shape, self.weight.expand(normalized_shape), self.bias.expand(normalized_shape))
其中:
很容易看出来,跟F.normalize基本一样,没有可学习的参数,或者自定义参数。具体使用示例如下:
import torch.nn.functional as F
input = torch.tensor(a)
y = F.layer_norm(input,(4,))
print(y)
#####################输出################
tensor([[[-0.8095, -1.1224, 1.2966, 0.6354],
[-1.0215, -0.9661, 0.8387, 1.1488],
[-0.3047, 1.0412, -1.4978, 0.7613]],
[[ 0.4605, 1.2144, -1.5122, -0.1627],
[ 1.5676, 0.1340, -1.0471, -0.6545],
[ 1.5388, -0.3520, -1.2273, 0.0405]]])
添加缩放:
w = torch.tensor([1,1,2,2])
b = torch.tensor([1,1,1,1])
y = F.layer_norm(input,(4,),w,b)
print(y)
#########################输出######################
tensor([[[ 0.1905, -0.1224, 3.5931, 2.2708],
[-0.0215, 0.0339, 2.6775, 3.2976],
[ 0.6953, 2.0412, -1.9956, 2.5225]],
[[ 1.4605, 2.2144, -2.0243, 0.6746],
[ 2.5676, 1.1340, -1.0942, -0.3090],
[ 2.5388, 0.6480, -1.4546, 1.0810]]])
torch.nn.LayerNorm(
normalized_shape: Union[int, List[int], torch.Size],
eps: float = 1e-05,
elementwise_affine: bool = True)
elementwise_affine如果设为False,则LayerNorm层不含有任何可学习参数。
如果设为True(默认是True)则会包含可学习参数weight和bias,用于仿射变换,即对输入数据归一化到均值0方差1后,乘以weight,即bias。
import torch
input = torch.randn(2,3,2,2)
import torch.nn as nn
#取消仿射变换要写成
#m = nn.LayerNorm(input.size()[1:], elementwise_affine=False)
m1 = nn.LayerNorm(input.size()[1:])#input.size()[1:]为torch.Size([3, 2, 2])
output1 = m1(input)
#只normalize后两个维度
m2 = nn.LayerNorm([2,2])
output2 = m2(input)
#只normalize最后一个维度
m3 = nn.LayerNorm(2)
output3 = m3(input)
F.layer_norm中没有可学习参数,而nn.LayerNorm有可学习参数。当elementwise_affine设为False时,nn.LayerNorm退化为F.layer_norm。