- 【干货】视频文件抽帧(opencv和ffmpeg方式对比)
zkFun
超硬干货Pythonopencvffmpeg人工智能
1废话不多说,直接上代码opencv方式importtimeimportsubprocessimportcv2,osfrommathimportceildefextract_frames_opencv(video_path,output_folder,frame_rate=1):"""使用OpenCV从视频中抽取每秒指定帧数的帧,并保存到指定文件夹。如果视频长度不是整数秒,则会在最后一帧时补充空白
- 代理IP助力AI图像处理,开启行业新篇章
傻啦嘿哟
关于代理IP那些事儿人工智能tcp/ip图像处理
目录一、代理IP技术简介二、代理IP在AI图像处理中的应用1.提升数据访问速度2.增强数据处理能力3.突破网络限制三、代理IP在AI图像处理中的实际案例案例一:AI图像生成软件案例二:AI动画创作四、代理IP技术的未来展望五、结语在科技日新月异的今天,AI图像处理技术以其广泛的应用前景和强大的处理能力,正深刻改变着我们的世界。从人脸识别、自动驾驶到医学影像分析,AI图像处理技术无处不在,发挥着不可
- 使用BLIP模型生成图像描述的可查询索引
dgay_hua
python计算机视觉开发语言
在本篇文章中,我们将介绍如何使用预训练的SalesforceBLIP图像描述模型,生成一个可查询的图像描述索引。我们将使用ImageCaptionLoader来加载图像,并通过一系列步骤生成查询索引。使用示例代码进行演示,帮助读者理解和实践。技术背景介绍随着计算机视觉技术的发展,图像描述生成成为了重要的研究领域。通过对图像内容自动生成文字描述,可以大大提高对图像信息的检索和管理效率。Salesfo
- 8-项目实战-信用卡数字识别
#北极星star
Opencv图像处理框架实战opencv计算机视觉人工智能
目录(1)总体流程与方法(2)代码实现(3)识别结果(1)总体流程与方法①读取模板图像:加载包含数字模板的图像,并提取每个数字的轮廓,将它们作为模板存储。②读取输入图像:加载待识别的信用卡图像,并进行预处理。③提取数字区域:通过一系列图像处理操作(如礼帽操作、梯度计算、闭操作等)提取可能包含数字的区域。④轮廓排序与筛选:找到提取区域的轮廓,并根据轮廓的宽高比和尺寸筛选出符合条件的数字区域。⑤数字识
- 查看opencv版本信息
zhanghui9020
在VS2010中编写控制台C++程序:#include#include"cv.h"usingnamespacestd;main(){cout<<CV_VERSION;}运行即可打印安装的opencv的版本信息
- 深入浅出:CUDA是什么,如何利用它进行高效并行计算
码上飞扬
CUDA
在当今这个数据驱动的时代,计算能力的需求日益增加,特别是在深度学习、科学计算和图像处理等领域。为了满足这些需求,NVIDIA推出了CUDA(ComputeUnifiedDeviceArchitecture),这是一种并行计算平台和编程模型。本文将带你全面了解CUDA的基本概念、工作原理及其应用场景。一、什么是CUDA?CUDA(ComputeUnifiedDeviceArchitecture)是由
- 深度学习模型中的知识蒸馏是如何工作的?
c++服务器开发
深度学习人工智能
深度学习模型在多个领域,特别是计算机视觉和自然语言处理中,已经取得了革命性的进展。然而,随着模型复杂性和资源需求的不断攀升,如何将这些庞大模型的知识浓缩为更紧凑、更高效的形式,成为了当前研究的热点。知识蒸馏,作为一种将知识从复杂模型转移到更简单模型的策略,已经成为实现这一目标的有效工具。在本文中,我们将深入探究深度学习模型中知识蒸馏的概念、原理及其在各领域的应用,以期为读者提供一个全面而严谨的视角
- Python从0到100(四):Python中的运算符介绍(补充)
是Dream呀
pythonjava数据库
前言:零基础学Python:Python从0到100最新最全教程。想做这件事情很久了,这次我更新了自己所写过的所有博客,汇集成了Python从0到100,共一百节课,帮助大家一个月时间里从零基础到学习Python基础语法、Python爬虫、Web开发、计算机视觉、机器学习、神经网络以及人工智能相关知识,成为学习学习和学业的先行者!欢迎大家订阅专栏:零基础学Python:Python从0到100最新
- Python从0到100(三十五):beautifulsoup的学习
是Dream呀
Dream的茶话会pythonbeautifulsoup学习
前言:零基础学Python:Python从0到100最新最全教程。想做这件事情很久了,这次我更新了自己所写过的所有博客,汇集成了Python从0到100,共一百节课,帮助大家一个月时间里从零基础到学习Python基础语法、Python爬虫、Web开发、计算机视觉、机器学习、神经网络以及人工智能相关知识,成为学习学习和学业的先行者!欢迎大家订阅专栏:零基础学Python:Python从0到100最新
- 《深入浅出AI》前言知识:深度学习基础总结
GoAI
深入浅出AI人工智能深度学习机器学习cnnrnn生成对抗网络神经网络
个人主页:GoAI|公众号:GoAI的学习小屋|交流群:704932595|个人简介:掘金签约作者、百度飞桨PPDE、领航团团长、开源特训营导师、CSDN、阿里云社区人工智能领域博客专家、新星计划计算机视觉方向导师等,专注大数据与人工智能知识分享。AI学习星球推荐:GoAI的学习社区知识星球是一个致力于提供《机器学习|深度学习|CV|NLP|大模型|多模态|AIGC》各个最新AI方向综述、论文等成
- python中的Pillow 有哪些常用的功能?
大懒猫软件
pillow计算机视觉人工智能python
Pillow的常用功能Pillow是一个强大的图像处理库,提供了丰富的功能来处理和操作图像。以下是一些常用的功能及其示例代码:1.打开和保存图像Pillow可以轻松地打开和保存各种格式的图像文件。示例代码Python复制fromPILimportImage#打开图像img=Image.open("example.jpg")#显示图像img.show()#保存图像img.save("output.j
- ️ 总览:TotalSegmentator - 医学影像分割的革新者
金斐茉
️总览:TotalSegmentator-医学影像分割的革新者TotalSegmentatorToolforrobustsegmentationof>100importantanatomicalstructuresinCTimages项目地址:https://gitcode.com/gh_mirrors/to/TotalSegmentator在医学图像处理领域中,精确且高效的自动分割工具对于研究和
- 探索TotalSegmentator:一款强大的全场景图像分割工具
计蕴斯Lowell
探索TotalSegmentator:一款强大的全场景图像分割工具项目地址:https://gitcode.com/gh_mirrors/to/TotalSegmentator项目简介是一个开源的、基于深度学习的全场景图像分割框架。它由开发者Wasserth创建,旨在为医学影像分析、自动驾驶、遥感图像处理等多个领域提供高效且准确的像素级分类能力。该项目的亮点在于其模型的通用性和易用性,能够处理多种
- 对比度调整操作
weixin_51302377
深度学习人工智能计算机视觉算法
对比度调整是一种常见的图像处理操作,用于增强或减弱图像中不同颜色或亮度之间的差异,使图像的细节更加清晰或柔和。以下是关于对比度调整操作的详细介绍:原理对比度是指图像中最亮和最暗区域之间的差异程度。对比度调整通过改变图像中像素值的分布来实现。一般来说,增加对比度会使亮的部分更亮,暗的部分更暗,从而增强图像的层次感和细节;降低对比度则会使图像的亮度分布更加均匀,减少图像的层次感。在数学上,对比度调整通
- Python中的GIL锁详解
_Itachi__
pythonpython开发语言
Python中的GIL锁详解大家好,今天我们来聊聊Python中一个备受争议的话题——GIL锁(GlobalInterpreterLock,全局解释器锁)。GIL锁是Python解释器中的一个重要机制,但它对多线程程序的性能影响很大,尤其是在计算密集型任务(如图像处理)中。本文将从GIL锁的原理、影响以及如何在图像处理中规避GIL锁的角度,带大家彻底搞懂这个问题!1.什么是GIL锁?GIL锁是Py
- 海康SDK中NET_DVR_CapturePicture方法截图使用心得概述
Mr1Qian
springbootjavasdkman
前言鉴于实际应用需求,我们需要通过操控云台相机来捕捉其各个角度的图像。原先采用的方法NET_DVR_CaptureJPEGPicture,虽然能够成功截取图片,但所得图片格式为JPEG,这一格式由于采用了有损压缩技术,可能在后续的图像处理工作中影响图像质量。在深入研究了SDK使用手册后,我们发现了一个名为NET_DVR_CapturePicture的方法,它能够截取BMP格式的图片。相较于JPEG
- OpenCV的卡尔曼滤波器:实现和应用
雪域Code
opencv人工智能计算机视觉C/C++
OpenCV的卡尔曼滤波器:实现和应用卡尔曼滤波器(Kalmanfilter)是一种最优估计的算法,在众多领域有着广泛的应用,如控制系统、通信系统、机器人等。OpenCV作为一个计算机视觉库,也提供了对卡尔曼滤波器的支持。本文将介绍OpenCV中卡尔曼滤波器的基本原理、实现方法以及在图像处理中的应用。一、卡尔曼滤波器简介卡尔曼滤波器是一种用于状态估计和信号滤波的算法,主要针对线性、高斯分布的系统。
- 生成式AI如何重塑计算机视觉:自监督学习与稀疏计算的革命
ProgramHan
人工智能计算机视觉学习
生成式AI如何重塑计算机视觉:自监督学习与稀疏计算的革命引言:从“数据饥渴”到“智能涌现”传统计算机视觉高度依赖海量标注数据,但现实场景中标注成本高昂且覆盖范围有限。例如,医疗影像标注需专业医生耗时数月,工业缺陷检测需针对特定产线定制数据集。生成式AI(如Diffusion模型、自监督学习)的崛起,正在打破这一瓶颈——通过更高效的训练范式与计算架构,让机器学会“从无标注数据中看见世界”。(示意图:
- 【深度学习】计算机视觉(CV)-目标检测-DETR(DEtection TRansformer)—— 基于 Transformer 的端到端目标检测
IT古董
深度学习人工智能深度学习计算机视觉目标检测
1.什么是DETR?DETR(DEtectionTRansformer)是FacebookAI(FAIR)于2020年提出的端到端目标检测算法,它基于Transformer架构,消除了FasterR-CNN、YOLO等方法中的候选框(AnchorBoxes)和非极大值抑制(NMS)机制,使目标检测变得更简单、高效。论文:End-to-EndObjectDetectionwithTransforme
- 机器学习:支持向量机
小源学AI
人工智能支持向量机机器学习算法
基本概念1.什么是支持向量机支持向量机是一种二分类模型,在机器学习、计算机视觉、数据挖掘中广泛应用,主要用于解决数据分类问题,它的目的是寻找一个超平面对样本进行分割,分割的原则是间隔最大化(也就是数据集的边缘点到分界点的距离d最大)最终转化成一个凸二次规划问题来求解。通常的SVM用于二元分类问题,对于多元分类问题可将其分解为多个二元分类问题,在进行分类。2.最优分类边界什么才是最优分类边界?什么条
- QT Data Visualization模块(一)
淼淼763
qt6.3c++
1、.pro文件添加模块:QT+=datavisualization2、包含头文件:#include3、Q3DBars、Q3DScatter、Q3DSurface继承QWindow类。QAbstract3DGraph是Qt框架中用于实现三维图形的抽象基类,QAbstract3DGraph提供了一组通用的方法和属性。4、每一种三维图形类对应一种三维序列(在图像处理和计算机图形学中,"图形序列"是指一
- 利用cuda加速图像处理—实现sobel边缘检测
我不会打代码啊啊
cuda编程图像处理计算机视觉opencvc++gpu算力
利用cuda加速图像处理—实现sobel边缘检测#include#include#includeusingnamespacecv;/***@brief对图像进行Sobel滤波*@paraminput输入图像*@paramoutput输出图像*@paramwidth图像宽度*@paramheight图像高度*@returnvoid*@note该函数使用CUDA进行加速*@note该函数使用Sobel
- 基于图像处理的裂缝检测与特征提取
机器懒得学习
图像处理计算机视觉人工智能
一、引言裂缝检测是基础设施监测中至关重要的一项任务,尤其是在土木工程和建筑工程领域。随着自动化技术的发展,传统的人工巡检方法逐渐被基于图像分析的自动化检测系统所取代。通过计算机视觉和图像处理技术,能够高效、精确地提取裂缝的几何特征,如长度、宽度、方向、面积等,从而为工程质量评估提供数据支持。本文将详细介绍一段用于裂缝检测与特征提取的Python代码,重点讲解其实现的核心算法与关键步骤,分析其应用场
- 利用 OpenCV 进行棋盘检测与透视变换
萧鼎
python基础到进阶教程opencv人工智能计算机视觉
利用OpenCV进行棋盘检测与透视变换1.引言在计算机视觉领域,棋盘检测与透视变换是一个常见的任务,广泛应用于摄像机标定、文档扫描、增强现实(AR)等场景。本篇文章将详细介绍如何使用OpenCV进行棋盘检测,并通过透视变换将棋盘区域转换为一个标准的矩形图像。我们将基于一段Python代码进行分析,代码的主要任务包括:读取图像并进行预处理(灰度转换、自适应直方图均衡化、去噪)检测边缘并提取棋盘区域计
- 对换脸、动嘴生成的视频做初筛
之群害马
音视频计算机视觉opencv
首尾帧人脸差异检测代码概述本脚本实现了一个简单的视频筛查系统,主要功能是通过比较视频首帧和尾帧中的人脸差异来判断视频是否合格。如果视频中没有人脸或存在其他异常情况,视频将被移动到错误目录中。具体来说,系统包含以下几个主要步骤:加载视频文件:尝试打开视频文件,并读取首帧和尾帧。人脸检测:使用OpenCV的Haar级联分类器检测视频首帧和尾帧中的人脸。人脸提取与标准化:从检测到的人脸区域中提取并标准化
- CVPR2023 Highlight | ECON:最新单图穿衣人三维重建SOTA算法
3D视觉工坊
3D视觉从入门到精通算法SLAM自动驾驶3D视觉
作者:宁了个宁|来源:计算机视觉工坊在公众号「3D视觉工坊」后台,回复「原论文」可获取论文pdf。添加微信:dddvisiona,备注:三维重建,拉你入群。文末附行业细分群。图1所示。从彩色图像进行人体数字化。ECON结合了自由形式隐式表示的最佳方面,以及明确的拟人化正则化,以推断高保真度的3D人类,即使是宽松的衣服或具有挑战性的姿势。0.笔者个人体会这篇文章讨论了单图像的穿着人类重建问题。隐式方
- 什么是插值?(通俗解释)
MO__YE
计算机视觉人工智能
什么是插值?(通俗解释)想象一下,你有一本100页的书,现在你想把它缩小到50页或放大到200页,但是你不想丢失重要的信息。你会怎么做?缩小(Downsampling):你可以挑选关键的内容,把不重要的部分去掉。放大(Upsampling):你可以在两页之间补充一些额外的内容,使它们读起来更连贯。在图像处理中,插值(Interpolation)就是如何在缩放图片时,生成新的像素点,让图片看起来更自
- 商汤绝影端到端自动驾驶的迭代优化
AGI大模型与大数据研究院
计算机软件编程原理与应用实践javapythonjavascriptkotlingolang架构人工智能
自动驾驶,端到端,迭代优化,深度学习,感知,规划,控制,模型训练,数据增强,模型微调1.背景介绍随着人工智能和计算机视觉技术的飞速发展,自动驾驶汽车从科幻走进了现实。商汤科技推出的绝影端到端自动驾驶系统,就是其中的佼佼者。本文将深入剖析商汤绝影端到端自动驾驶系统的迭代优化过程,帮助读者理解其背后的技术原理和架构设计。2.核心概念与联系商汤绝影端到端自动驾驶系统的核心架构如下:graphLRA[感知
- ocr智能票据识别系统|自动化票据识别集成方案
OCR_API
接口ocr自动化运维
在企业日常运营中,对大量票据实现数字化管理是一项耗时且容易出错的任务。随着技术的进步,OCR(光学字符识别)智能票据识别系统的出现为企业提供了一个高效、准确的解决方案,不仅简化了财务流程,还大幅提升了工作效率。一、什么是OCR智能票据识别系统?OCR智能票据识别系统是一种基于先进图像处理和深度学习算法的技术,能够自动从各类票据中提取关键信息,并将其转换为结构化数据。翔云发票识别系统可以应用于增值税
- 深度学习下的图像分割
人工智能大讲堂
深度学习人工智能
在之前写的文章[图像分割演进之路]中,讲述了图像分割的发展历程,从传统图像分割算法到人工智能,分割算法百花齐放,但最终的佼佼者当属人工智能,但即使是人工智能领域,图像分割也五花八门,今天就让我们看几种基于学习的图像分割方法。基于学习的图像分割算法主要依赖于深度神经网络,经典的深度神经网络分为如下几种:2.1卷积神经网络CNN:卷积神经网络是图像处理领域应用最为广泛的网络,其权值共享,局部连接等特性
- 深入浅出Java Annotation(元注解和自定义注解)
Josh_Persistence
Java Annotation元注解自定义注解
一、基本概述
Annontation是Java5开始引入的新特征。中文名称一般叫注解。它提供了一种安全的类似注释的机制,用来将任何的信息或元数据(metadata)与程序元素(类、方法、成员变量等)进行关联。
更通俗的意思是为程序的元素(类、方法、成员变量)加上更直观更明了的说明,这些说明信息是与程序的业务逻辑无关,并且是供指定的工具或
- mysql优化特定类型的查询
annan211
java工作mysql
本节所介绍的查询优化的技巧都是和特定版本相关的,所以对于未来mysql的版本未必适用。
1 优化count查询
对于count这个函数的网上的大部分资料都是错误的或者是理解的都是一知半解的。在做优化之前我们先来看看
真正的count()函数的作用到底是什么。
count()是一个特殊的函数,有两种非常不同的作用,他可以统计某个列值的数量,也可以统计行数。
在统
- MAC下安装多版本JDK和切换几种方式
棋子chessman
jdk
环境:
MAC AIR,OS X 10.10,64位
历史:
过去 Mac 上的 Java 都是由 Apple 自己提供,只支持到 Java 6,并且OS X 10.7 开始系统并不自带(而是可选安装)(原自带的是1.6)。
后来 Apple 加入 OpenJDK 继续支持 Java 6,而 Java 7 将由 Oracle 负责提供。
在终端中输入jav
- javaScript (1)
Array_06
JavaScriptjava浏览器
JavaScript
1、运算符
运算符就是完成操作的一系列符号,它有七类: 赋值运算符(=,+=,-=,*=,/=,%=,<<=,>>=,|=,&=)、算术运算符(+,-,*,/,++,--,%)、比较运算符(>,<,<=,>=,==,===,!=,!==)、逻辑运算符(||,&&,!)、条件运算(?:)、位
- 国内顶级代码分享网站
袁潇含
javajdkoracle.netPHP
现在国内很多开源网站感觉都是为了利益而做的
当然利益是肯定的,否则谁也不会免费的去做网站
&
- Elasticsearch、MongoDB和Hadoop比较
随意而生
mongodbhadoop搜索引擎
IT界在过去几年中出现了一个有趣的现象。很多新的技术出现并立即拥抱了“大数据”。稍微老一点的技术也会将大数据添进自己的特性,避免落大部队太远,我们看到了不同技术之间的边际的模糊化。假如你有诸如Elasticsearch或者Solr这样的搜索引擎,它们存储着JSON文档,MongoDB存着JSON文档,或者一堆JSON文档存放在一个Hadoop集群的HDFS中。你可以使用这三种配
- mac os 系统科研软件总结
张亚雄
mac os
1.1 Microsoft Office for Mac 2011
大客户版,自行搜索。
1.2 Latex (MacTex):
系统环境:https://tug.org/mactex/
&nb
- Maven实战(四)生命周期
AdyZhang
maven
1. 三套生命周期 Maven拥有三套相互独立的生命周期,它们分别为clean,default和site。 每个生命周期包含一些阶段,这些阶段是有顺序的,并且后面的阶段依赖于前面的阶段,用户和Maven最直接的交互方式就是调用这些生命周期阶段。 以clean生命周期为例,它包含的阶段有pre-clean, clean 和 post
- Linux下Jenkins迁移
aijuans
Jenkins
1. 将Jenkins程序目录copy过去 源程序在/export/data/tomcatRoot/ofctest-jenkins.jd.com下面 tar -cvzf jenkins.tar.gz ofctest-jenkins.jd.com &
- request.getInputStream()只能获取一次的问题
ayaoxinchao
requestInputstream
问题:在使用HTTP协议实现应用间接口通信时,服务端读取客户端请求过来的数据,会用到request.getInputStream(),第一次读取的时候可以读取到数据,但是接下来的读取操作都读取不到数据
原因: 1. 一个InputStream对象在被读取完成后,将无法被再次读取,始终返回-1; 2. InputStream并没有实现reset方法(可以重
- 数据库SQL优化大总结之 百万级数据库优化方案
BigBird2012
SQL优化
网上关于SQL优化的教程很多,但是比较杂乱。近日有空整理了一下,写出来跟大家分享一下,其中有错误和不足的地方,还请大家纠正补充。
这篇文章我花费了大量的时间查找资料、修改、排版,希望大家阅读之后,感觉好的话推荐给更多的人,让更多的人看到、纠正以及补充。
1.对查询进行优化,要尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引。
2.应尽量避免在 where
- jsonObject的使用
bijian1013
javajson
在项目中难免会用java处理json格式的数据,因此封装了一个JSONUtil工具类。
JSONUtil.java
package com.bijian.json.study;
import java.util.ArrayList;
import java.util.Date;
import java.util.HashMap;
- [Zookeeper学习笔记之六]Zookeeper源代码分析之Zookeeper.WatchRegistration
bit1129
zookeeper
Zookeeper类是Zookeeper提供给用户访问Zookeeper service的主要API,它包含了如下几个内部类
首先分析它的内部类,从WatchRegistration开始,为指定的znode path注册一个Watcher,
/**
* Register a watcher for a particular p
- 【Scala十三】Scala核心七:部分应用函数
bit1129
scala
何为部分应用函数?
Partially applied function: A function that’s used in an expression and that misses some of its arguments.For instance, if function f has type Int => Int => Int, then f and f(1) are p
- Tomcat Error listenerStart 终极大法
ronin47
tomcat
Tomcat报的错太含糊了,什么错都没报出来,只提示了Error listenerStart。为了调试,我们要获得更详细的日志。可以在WEB-INF/classes目录下新建一个文件叫logging.properties,内容如下
Java代码
handlers = org.apache.juli.FileHandler, java.util.logging.ConsoleHa
- 不用加减符号实现加减法
BrokenDreams
实现
今天有群友发了一个问题,要求不用加减符号(包括负号)来实现加减法。
分析一下,先看最简单的情况,假设1+1,按二进制算的话结果是10,可以看到从右往左的第一位变为0,第二位由于进位变为1。
 
- 读《研磨设计模式》-代码笔记-状态模式-State
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/*
当一个对象的内在状态改变时允许改变其行为,这个对象看起来像是改变了其类
状态模式主要解决的是当控制一个对象状态的条件表达式过于复杂时的情况
把状态的判断逻辑转移到表示不同状态的一系列类中,可以把复杂的判断逻辑简化
如果在
- CUDA程序block和thread超出硬件允许值时的异常
cherishLC
CUDA
调用CUDA的核函数时指定block 和 thread大小,该大小可以是dim3类型的(三维数组),只用一维时可以是usigned int型的。
以下程序验证了当block或thread大小超出硬件允许值时会产生异常!!!GPU根本不会执行运算!!!
所以验证结果的正确性很重要!!!
在VS中创建CUDA项目会有一个模板,里面有更详细的状态验证。
以下程序在K5000GPU上跑的。
- 诡异的超长时间GC问题定位
chenchao051
jvmcmsGChbaseswap
HBase的GC策略采用PawNew+CMS, 这是大众化的配置,ParNew经常会出现停顿时间特别长的情况,有时候甚至长到令人发指的地步,例如请看如下日志:
2012-10-17T05:54:54.293+0800: 739594.224: [GC 739606.508: [ParNew: 996800K->110720K(996800K), 178.8826900 secs] 3700
- maven环境快速搭建
daizj
安装mavne环境配置
一 下载maven
安装maven之前,要先安装jdk及配置JAVA_HOME环境变量。这个安装和配置java环境不用多说。
maven下载地址:http://maven.apache.org/download.html,目前最新的是这个apache-maven-3.2.5-bin.zip,然后解压在任意位置,最好地址中不要带中文字符,这个做java 的都知道,地址中出现中文会出现很多
- PHP网站安全,避免PHP网站受到攻击的方法
dcj3sjt126com
PHP
对于PHP网站安全主要存在这样几种攻击方式:1、命令注入(Command Injection)2、eval注入(Eval Injection)3、客户端脚本攻击(Script Insertion)4、跨网站脚本攻击(Cross Site Scripting, XSS)5、SQL注入攻击(SQL injection)6、跨网站请求伪造攻击(Cross Site Request Forgerie
- yii中给CGridView设置默认的排序根据时间倒序的方法
dcj3sjt126com
GridView
public function searchWithRelated() {
$criteria = new CDbCriteria;
$criteria->together = true; //without th
- Java集合对象和数组对象的转换
dyy_gusi
java集合
在开发中,我们经常需要将集合对象(List,Set)转换为数组对象,或者将数组对象转换为集合对象。Java提供了相互转换的工具,但是我们使用的时候需要注意,不能乱用滥用。
1、数组对象转换为集合对象
最暴力的方式是new一个集合对象,然后遍历数组,依次将数组中的元素放入到新的集合中,但是这样做显然过
- nginx同一主机部署多个应用
geeksun
nginx
近日有一需求,需要在一台主机上用nginx部署2个php应用,分别是wordpress和wiki,探索了半天,终于部署好了,下面把过程记录下来。
1. 在nginx下创建vhosts目录,用以放置vhost文件。
mkdir vhosts
2. 修改nginx.conf的配置, 在http节点增加下面内容设置,用来包含vhosts里的配置文件
#
- ubuntu添加admin权限的用户账号
hongtoushizi
ubuntuuseradd
ubuntu创建账号的方式通常用到两种:useradd 和adduser . 本人尝试了useradd方法,步骤如下:
1:useradd
使用useradd时,如果后面不加任何参数的话,如:sudo useradd sysadm 创建出来的用户将是默认的三无用户:无home directory ,无密码,无系统shell。
顾应该如下操作:
- 第五章 常用Lua开发库2-JSON库、编码转换、字符串处理
jinnianshilongnian
nginxlua
JSON库
在进行数据传输时JSON格式目前应用广泛,因此从Lua对象与JSON字符串之间相互转换是一个非常常见的功能;目前Lua也有几个JSON库,本人用过cjson、dkjson。其中cjson的语法严格(比如unicode \u0020\u7eaf),要求符合规范否则会解析失败(如\u002),而dkjson相对宽松,当然也可以通过修改cjson的源码来完成
- Spring定时器配置的两种实现方式OpenSymphony Quartz和java Timer详解
yaerfeng1989
timerquartz定时器
原创整理不易,转载请注明出处:Spring定时器配置的两种实现方式OpenSymphony Quartz和java Timer详解
代码下载地址:http://www.zuidaima.com/share/1772648445103104.htm
有两种流行Spring定时器配置:Java的Timer类和OpenSymphony的Quartz。
1.Java Timer定时
首先继承jav
- Linux下df与du两个命令的差别?
pda158
linux
一、df显示文件系统的使用情况,与du比較,就是更全盘化。 最经常使用的就是 df -T,显示文件系统的使用情况并显示文件系统的类型。 举比例如以下: [root@localhost ~]# df -T Filesystem Type &n
- [转]SQLite的工具类 ---- 通过反射把Cursor封装到VO对象
ctfzh
VOandroidsqlite反射Cursor
在写DAO层时,觉得从Cursor里一个一个的取出字段值再装到VO(值对象)里太麻烦了,就写了一个工具类,用到了反射,可以把查询记录的值装到对应的VO里,也可以生成该VO的List。
使用时需要注意:
考虑到Android的性能问题,VO没有使用Setter和Getter,而是直接用public的属性。
表中的字段名需要和VO的属性名一样,要是不一样就得在查询的SQL中
- 该学习笔记用到的Employee表
vipbooks
oraclesql工作
这是我在学习Oracle是用到的Employee表,在该笔记中用到的就是这张表,大家可以用它来学习和练习。
drop table Employee;
-- 员工信息表
create table Employee(
-- 员工编号
EmpNo number(3) primary key,
-- 姓