Redis持久化之AOF

为什么持久化?
由于 Redis 是一个内存数据库,所谓内存数据库,就是将数据库中的内容保存在内存中,这与传统的MySQL,Oracle等关系型数据库直接将内容保存到硬盘中相比,内存数据库的读写效率比传统数据库要快的多(内存的读写效率远远大于硬盘的读写效率)。但是数据保存在内存中也随之带来了一个缺点,一旦断电或者宕机,那么内存数据库中的数据将会全部丢失。
为了解决这个缺点,Redis提供了将内存数据持久化到硬盘,以及用持久化文件来恢复数据库数据的功能。Redis 支持两种形式的持久化,一种是RDB快照(snapshotting),另外一种是AOF(append-only-file)。

什么是AOF
AOF 持久化记录服务器执行的所有写操作命令,并在服务器启动时,通过重新执行这些命令来还原数据集。AOF 文件中的命令全部以 Redis 协议的格式来保存,新命令会被追加到文件的末尾。 Redis 还可以在后台对 AOF 文件进行重写(rewrite),使得 AOF 文件的体积不会超出保存数据集状态所需的实际大小。
Redis持久化之AOF_第1张图片
RDB 持久化方式就是将 str1,str2,str3 这三个键值对保存到 RDB文件中,而 AOF 持久化则是将执行的 set,sadd,lpush 三个命令保存到 AOF 文件中。

aof配置
Redis持久化之AOF_第2张图片
①、appendonly:默认值为no,也就是说redis 默认使用的是rdb方式持久化,如果想要开启 AOF 持久化方式,需要将 appendonly 修改为 yes。
在这里插入图片描述
②、appendfilename :aof文件名,默认是"appendonly.aof"
在这里插入图片描述
③、appendfsync:aof持久化策略的配置;

  1. no 表示不执行fsync,由操作系统保证数据同步到磁盘,速度最快,但是不太安全;
  2. always 表示每次写入都执行fsync,以保证数据同步到磁盘,效率很低;
  3. everysec 表示每秒执行一次fsync,可能会导致丢失这1s数据。通常选择 everysec ,兼顾安全性和效率。

在这里插入图片描述
④、no-appendfsync-on-rewrite:在aof重写或者写入rdb文件的时候,会执行大量IO,此时对于everysec和always的aof模式来说,执行fsync会造成阻塞过长时间,no-appendfsync-on-rewrite字段设置为默认设置为no。如果对延迟要求很高的应用,这个字段可以设置为yes,否则还是设置为no,这样对持久化特性来说这是更安全的选择。 设置为yes表示rewrite期间对新写操作不fsync,暂时存在内存中,等rewrite完成后再写入,默认为no,建议yes。Linux的默认fsync策略是30秒。可能丢失30秒数据。默认值为no。
在这里插入图片描述
⑤、auto-aof-rewrite-percentage:默认值为100。aof自动重写配置,当目前aof文件大小超过上一次重写的aof文件大小的百分之多少进行重写,即当aof文件增长到一定大小的时候,Redis能够调用bgrewriteaof对日志文件进行重写。当前AOF文件大小是上次日志重写得到AOF文件大小的二倍(设置为100)时,自动启动新的日志重写过程。
⑥、auto-aof-rewrite-min-size:64mb。设置允许重写的最小aof文件大小,避免了达到约定百分比但尺寸仍然很小的情况还要重写。

⑦、aof-load-truncated:aof文件可能在尾部是不完整的,当redis启动的时候,aof文件的数据被载入内存。重启可能发生在redis所在的主机操作系统宕机后,尤其在ext4文件系统没有加上data=ordered选项,出现这种现象 redis宕机或者异常终止不会造成尾部不完整现象,可以选择让redis退出,或者导入尽可能多的数据。如果选择的是yes,当截断的aof文件被导入的时候,会自动发布一个log给客户端然后load。如果是no,用户必须手动redis-check-aof修复AOF文件才可以。默认值为 yes。

aof文件恢复
重启 Redis 之后就会进行 AOF 文件的载入。
异常修复命令:redis-check-aof –fix(fix前面是两条杠) 进行修复,出错的命令会被删除
存入数据
Redis持久化之AOF_第3张图片
Redis持久化之AOF_第4张图片
修改aof文件
在这里插入图片描述
连接redis服务器
在这里插入图片描述
使用redis-check-aof –fix命令修复aof文件
Redis持久化之AOF_第5张图片

AOF 重写
由于AOF持久化是Redis不断将写命令记录到 AOF 文件中,随着Redis不断的进行,AOF 的文件会越来越大,文件越大,占用服务器内存越大以及 AOF 恢复要求时间越长。为了解决这个问题,Redis新增了重写机制,当AOF文件的大小超过所设定的阈值时,Redis就会启动AOF文件的内容压缩,只保留可以恢复数据的最小指令集。可以使用命令 bgrewriteaof 来重新。
  比如对于如下命令:
Redis持久化之AOF_第6张图片
如果不进行 AOF 文件重写,那么 AOF 文件将保存四条 SADD 命令,如果使用AOF 重写,那么AOF 文件中将只会保留下面一条命令:

sadd animals "dog" "tiger" "panda" "lion" "cat"

也就是说 AOF 文件重写并不是对原文件进行重新整理,而是直接读取服务器现有的键值对,然后用一条命令去代替之前记录这个键值对的多条命令,生成一个新的文件后去替换原来的 AOF 文件。、
  AOF 文件重写触发机制:通过 redis.conf 配置文件中的 auto-aof-rewrite-percentage:默认值为100,以及auto-aof-rewrite-min-size:64mb 配置,也就是说默认Redis会记录上次重写时的AOF大小,默认配置是当AOF文件大小是上次rewrite后大小的一倍且文件大于64M时触发。
  这里再提一下,我们知道 Redis 是单线程工作,如果重写 AOF 需要比较长的时间,那么在重写 AOF 期间,Redis将长时间无法处理其他的命令,这显然是不能忍受的。Redis为了克服这个问题,解决办法是将 AOF 重写程序放到子程序中进行,这样有两个好处:
  ①、子进程进行 AOF 重写期间,服务器进程(父进程)可以继续处理其他命令。
  ②、子进程带有父进程的数据副本,使用子进程而不是线程,可以在避免使用锁的情况下,保证数据的安全性。
  
  使用子进程解决了上面的问题,但是新问题也产生了:因为子进程在进行 AOF 重写期间,服务器进程依然在处理其它命令,这新的命令有可能也对数据库进行了修改操作,使得当前数据库状态和重写后的 AOF 文件状态不一致。
  为了解决这个数据状态不一致的问题,Redis 服务器设置了一个 AOF 重写缓冲区,这个缓冲区是在创建子进程后开始使用,当Redis服务器执行一个写命令之后,就会将这个写命令也发送到 AOF 重写缓冲区。当子进程完成 AOF 重写之后,就会给父进程发送一个信号,父进程接收此信号后,就会调用函数将 AOF 重写缓冲区的内容都写到新的 AOF 文件中。
这样将 AOF 重写对服务器造成的影响降到了最低。
AOF 重写和 RDB 创建快照一样,都巧妙地利用了写时复制机制。
以下是 AOF 重写的执行步骤:

  1. Redis 执行 fork() ,现在同时拥有父进程和子进程。
  2. 子进程开始将新 AOF 文件的内容写入到临时文件。
  3. 对于所有新执行的写入命令,父进程一边将它们累积到一个内存缓存中,一边将这些改动追加到现有 AOF 文件的末尾: 这样即使在重写的中途发生停机,现有的 AOF 文件也还是安全的。
  4. 当子进程完成重写工作时,它给父进程发送一个信号,父进程在接收到信号之后,将内存缓存中的所有数据追加到新 AOF 文件的末尾。
  5. 搞定!现在 Redis 原子地用新文件替换旧文件,之后所有命令都会直接追加到新 AOF 文件的末尾。

AOF优缺点
AOF 的优点

  1. 使用 AOF 持久化会让 Redis 变得非常耐久(much more durable):你可以设置不同的 fsync 策略,比如无
    fsync ,每秒钟一次 fsync ,或者每次执行写入命令时 fsync 。 AOF 的默认策略为每秒钟 fsync
    一次,在这种配置下,Redis 仍然可以保持良好的性能,并且就算发生故障停机,也最多只会丢失一秒钟的数据( fsync
    会在后台线程执行,所以主线程可以继续努力地处理命令请求)。
  2. AOF 文件是一个只进行追加操作的日志文件(append only log), 因此对 AOF 文件的写入不需要进行 seek ,
    即使日志因为某些原因而包含了未写入完整的命令(比如写入时磁盘已满,写入中途停机,等等), redis-check-aof
    工具也可以轻易地修复这种问题。
  3. Redis 可以在 AOF 文件体积变得过大时,自动地在后台对 AOF 进行重写: 重写后的新 AOF
    文件包含了恢复当前数据集所需的最小命令集合。 整个重写操作是绝对安全的,因为 Redis 在创建新 AOF
    文件的过程中,会继续将命令追加到现有的 AOF 文件里面,即使重写过程中发生停机,现有的 AOF 文件也不会丢失。 而一旦新 AOF
    文件创建完毕,Redis 就会从旧 AOF 文件切换到新 AOF 文件,并开始对新 AOF 文件进行追加操作。
  4. AOF 文件有序地保存了对数据库执行的所有写入操作, 这些写入操作以 Redis 协议的格式保存, 因此 AOF
    文件的内容非常容易被人读懂, 对文件进行分析(parse)也很轻松。 导出(export) AOF 文件也非常简单: 举个例子,
    如果你不小心执行了 FLUSHALL 命令, 但只要 AOF 文件未被重写, 那么只要停止服务器, 移除 AOF 文件末尾的
    FLUSHALL 命令, 并重启 Redis , 就可以将数据集恢复到 FLUSHALL 执行之前的状态。

AOF 的缺点

(1) 对于相同的数据集来说,AOF 文件的体积通常要大于 RDB 文件的体积。

(2) 根据所使用的 fsync 策略,AOF 的速度可能会慢于 RDB 。 在一般情况下, 每秒 fsync 的性能依然非常高, 而关闭 fsync 可以让 AOF 的速度和 RDB 一样快, 即使在高负荷之下也是如此。 不过在处理巨大的写入载入时,RDB 可以提供更有保证的最大延迟时间(latency)。

(3) AOF 在过去曾经发生过这样的 bug : 因为个别命令的原因,导致 AOF 文件在重新载入时,无法将数据集恢复成保存时的原样。 (举个例子,阻塞命令 BRPOPLPUSH source destination timeout 就曾经引起过这样的 bug 。) 测试套件里为这种情况添加了测试: 它们会自动生成随机的、复杂的数据集, 并通过重新载入这些数据来确保一切正常。 虽然这种 bug 在 AOF 文件中并不常见, 但是对比来说, RDB 几乎是不可能出现这种 bug 的。

你可能感兴趣的:(redis,redis,aof,nosql,数据库)