- L1-7 撒狗粮(一分钟讲清差分)
小竹子14
算法
网络上称一对情侣秀恩爱为“撒狗粮”,因为单身人士统称为“单身狗”。在一个大型聚会上,所有宾客被安排坐在一张长条宴会桌边。如果一对情侣坐在一起,那么他们两人身边的单身狗就会被撒一脸狗粮;如果他们没有坐在一起,那么所有被夹在他们两人之间的单身狗都会被撒一脸狗粮。本题就请你找出被撒狗粮最多(以“脸”为单位)的那位单身人士。输入格式:输入第一行给出一个正整数N(≤50000),是已知情侣的对数;随后N行,
- 使用BLSTM自动评估句子级构音障碍的可理解性
帅小柏
声音的未来:语音识别文献解读深度学习人工智能分类
使用BLSTM自动评估句子级构音障碍的可理解性原文:AutomaticAssessmentofSentence-LevelDysarthriaIntelligibilityUsingBLSTM引言构音障碍简介构音障碍的定义与特征构音障碍是一种由神经原因引起的运动性言语障碍表现为肌肉无力、瘫痪或协调不良,导致言语清晰度下降可理解性的重要性可理解性是衡量言语障碍严重程度的重要指标自动评估可帮助语言病理
- jieba库词频统计_jieba分词器(应用及字典的补充)及文档高频词提取实战
袁圆园建建
jieba库词频统计
jieba分词器是Python中最好的中文分词组件,本文讲解一下jieba分词器及其应用。1、jieba分词器的分词模式jieba分词器提供了三种常用的分词模式1、精确模式:将句子按照最精确的方法进行切分,适合用于进行文本分析;2、全模式:将句子当中所有可以成词的词语都扫描出来,分词速度很快但容易产生歧义;3、搜索引擎模式:在精确模式分词的基础上,将长的句子再次进行切分,提高召回率,适用于搜索引擎
- NLU-预训练模型-2018:Bert(二)【“Masked LM”缺点:①预训练与微调不一致;②忽略了掩码位置间的依赖关系】【复杂度:O(n^2·d);n:输入序列长度(规定最长512)】
u013250861
#NLP/词向量_预训练模型bert人工智能深度学习
五、BERT中的词嵌入1、为什么要使用BERT的嵌入使用BERT从文本数据中提取特征,即单词和句子的嵌入向量。我们可以用这些词和句子的嵌入向量做什么?首先,这些嵌入对于关键字/搜索扩展、语义搜索和信息检索非常有用。例如,如果你希望将客户的问题或搜索与已经回答的问题或文档化的搜索相匹配,这些表示将帮助准确的检索匹配客户意图和上下文含义的结果,即使没有关键字或短语重叠。其次,或许更重要的是,这些向量被
- 【DeepSeek干货总结】对不同类型学术内容进行润色的顶级提示词汇总!
AIWritePaper官方账号
DeepSeekPromptAIWritePaperAIWritePaperdeepseek深度学习人工智能AIGC论文润色
目录1.英文润色2.中文润色3.SCI润色4.润色Prompt汇总连贯性与句子逻辑提示词多参考版本提示词语法矫正提示词润色内容定位提示词修改建议提示词大家好这里是AIWritePaper官方账号!AIWritePaper官网AIWritePaper宝子们在写学术论文的过程中要想让DeepSeek发挥出最佳效能,尤其在进行文本润色时,精确和具体的提示词至关重要。很多宝子们在请求DeepSeek文本润
- Dify知识库构建流程及示例
cqbelt
ai笔记AI应用
总体流程1.数据预处理清洗:去除噪声、特殊字符、标准化格式。分词/标记化:拆分文本为单词或子词单元(如使用Tokenizer)。元数据关联:附加来源、时间戳等信息,支持多维度检索。2.文本分块固定长度分块:按字符或Token数切分,简单高效。语义分块:基于句子边界或主题分割(如NLP模型识别段落主旨)。重叠策略:相邻块间部分重叠,避免上下文断裂。3.向量化(Embedding)嵌入模型:调用预训练
- 【Image captioning-RS】论文12 Prior Knowledge-Guided Transformer for Remote Sensing Image Captioning
CV视界
Imagecaptioning学习transformer深度学习人工智能
1.摘要遥感图像(RSI)字幕生成旨在为遥感图像生成有意义且语法正确的句子描述。然而,相比于自然图像字幕,RSI字幕生成面临着由于RSI特性而产生的额外挑战。第一个挑战源于这些图像中存在大量物体。随着物体数量的增加,确定描述的主要焦点变得越来越困难。此外,RSI中的物体通常外观相似,进一步复杂化了准确描述的生成。为克服这些挑战,我们提出了一种基于先验知识的transformer(PKG-Trans
- 一文读懂stm32和51单片机的区别
对error说不
stm3251单片机嵌入式硬件
一、引言在嵌入式系统开发领域,STM32和51单片机是两款被广泛使用的微控制器。51单片机以其简单易学、成本低廉的特点,在早期的电子开发中占据了主导地位;而STM32作为后起之秀,凭借其高性能、丰富的外设和强大的处理能力,逐渐成为了中高端应用的首选。本文将从多个方面详细阐述STM32和51单片机的区别,并给出相应的代码示例进行对比。二、硬件架构2.1内核51单片机:采用8位的8051内核,数据处理
- 处理文本的原则
the only KIrsTEN
语音和文本处理(Python)
没有字符编码方案本身就是目的:它是一种启用计算机上有用的文本处理。•计算机预期支持的基本低级文本处理包括:使字符可见(包括连字、上下文形式等)渲染时断线(包括断字)修改外观,例如点大小、字距、下划线、倾斜和重量(轻,半,粗体等)确定“单词”和“句子”等单位在选择和突出显示文本等过程中与用户交互通过插入和删除接受键盘输入和编辑存储的文本比较操作中的文本,例如排序或确定排序顺序两串分析文本内容,例如拼
- Elasticsearch:为推理端点配置分块设置
Elastic 中国社区官方博客
ElasticsearchAIElasticelasticsearch大数据搜索引擎人工智能全文检索数据库ai
推理端点对一次可处理的文本量有限,具体取决于模型的输入容量。分块(Chunking)是指将输入文本拆分成符合这些限制的小块的过程,在将文档摄取到semantic_text字段时会进行分块。分块不仅有助于保持输入文本在可处理范围内,还能使内容更加易读。相比返回一整篇长文档,在搜索结果中提供最相关的文本片段更有价值。每个分块都会包含文本片段以及从中生成的对应嵌入。默认情况下,文档会被拆分为句子(sen
- 小程序生命周期三段式结构口诀
向贤
小程序前端开发技术面试小程序
文章目录一、应用大总管[应用生命周期(AppLevel)]1.冷启热启错不慌(App.onLaunch/onShow/onError)2.切后隐身守空房(App.onHide)3.未寻页面有担当(App.onPageNotFound)二、页面五部曲[页面生命周期(PageLevel)]1.加载登场秀(Page.onLoad)2.现身就绪走(Page.onShow→onReady)3.隐身卸载收(P
- PyTorch 生态概览:为什么选择动态计算图框架?
小诸葛IT课堂
pytorch人工智能python
一、PyTorch的核心价值PyTorch作为深度学习框架的后起之秀,通过动态计算图技术革新了传统的静态图模式。其核心优势体现在:动态灵活性:代码即模型,支持即时调试Python原生支持:无缝衔接Python生态高效的GPU加速:通过CUDA实现透明的硬件加速活跃的社区生态:GitHub贡献者超1.8万人,日均更新100+次二、动态计算图VS静态计算图对比#动态计算图示例(PyTorch)impo
- Python个人学习笔记(2):编程入门知识与基础语法介绍
NEET_LH
樵夫老师Python零基础课程个人学习笔记python学习笔记
一、注释(一)作用1.对代码进行解释和说明避免自己忘了写的代码是做什么的——写给人看的,机器不运行不要去注释你代码做了什么,而要去注释我的代码为什么要这么做。用于记录思路、实现方法、代码功能注释很重要,大厂很重视,尤其日企2.调试代码报错的一篇代码,从下到上一句一句加#,依次运行,如果某行代码加了#后,程序运行成功,那么就是这行有问题,但这个方法不好。(二)注释方法1.单行注释==句子前加#快捷键
- 大模型工程师学习日记(十四):检索增强生成(RAG)
MMMMMMMay Love Code
学习langchain深度学习人工智能开发语言
如何递归分割文本递归分割(recursively),这个文本分割器是用于通用文本的推荐工具。它接受一个字符列表作为参数。它会按顺序尝试在这些字符上进行分割,直到块足够小。默认的字符列表是["\n\n","\n","",""]。这样做的效果是尽可能保持所有段落(然后是句子,再然后是单词)在一起,因为这些通常看起来是语义上相关的文本块。文本如何分割:根据字符列表。块大小如何衡量:根据字符数量。下面我们
- 多分类—微调DistilBERT对生物医学文本进行实验方法多分类:Automated Text Mining of Experimental Methodologies from Biomedical
小小帅AIGC
informationextraction人工智能自然语言处理语言模型多分类学术领域生物医学
AutomatedTextMiningofExperimentalMethodologiesfromBiomedicalLiterature从生物医学文献中自动挖掘实验方法文本paper:https://arxiv.org/abs/2404.13779github:本文做的就是微调DistilBERT去做多分类任务,训练自己的数据集,分类每个句子对应的实验方法。没有什么讲的。文章目录~1.背景动机
- 毕业论文AIGC高?5个方法有效降低AI率,消除AI痕迹!
我是宝库
AIGC人工智能经验分享论文抽检毕业论文AIGC检测学习方法
现在很多学校要求毕业论文基本都要检测AIGC了。AIGC是指人工智能生成的内容,现在无论是毕业论文还是期刊投稿,都会检测论文是否由AI生成的,比如知网、维普、万方、Turnitin、MasterAI率检测等。如果你的论文使用了AI工具辅助写作,自己提前进行AIGC检测,必要时降低AIGC率是很有必要的,那么,如何降低AIGC率呢?分享5种方法:1、改写句子结构。AI生成的句子通常比较长,句子结构僵
- 论文摘要生成器:用TextRank算法实现文献关键信息提取
Atlas Shepherd
python算法自然语言处理python信息可视化
我们基于python代码,使用PyQt5创建图形用户界面(GUI),同时支持中英文两种语言的文本论文文献关键信息提取。PyQt5:用于创建GUI应用程序。jieba:中文分词库,用于中文文本的处理。re:正则表达式模块,用于文本清理和句子分割。numpy:提供数值计算能力,如数组操作、矩阵运算等,主要用于TextRank算法的实现。importsysimportreimportjiebaimpor
- 句子改写器在线转换的原创性提升策略
hjehheje
算法人工智能python
在文本处理领域,"句子改写器在线转换"的原创性提升并非单纯依赖工具升级,而是需要融合算法优化、人工干预与策略设计的系统工程。以下从技术底层到应用层拆解核心方法,辅以实验数据验证其可行性:一、语义拓扑重构技术(SemanticTopologyReconstruction)原理突破传统同义词替换仅影响表层词汇(LexicalLevel),而STR技术通过依存句法分析,构建句子的语义网络拓扑图,对主谓宾
- DeepSeek源码解析(2)
白鹭凡
deepseekai
Tensor(张量)的介绍在计算机科学和机器学习领域,“张量”(Tensor)是一个数学概念,它被用来表示多维数组。在大模型(如深度学习模型)中,张量扮演着核心角色,具体来说:数据表示:张量用于表示输入数据、模型参数和中间计算结果。例如,在图像处理中,一张图片可以被表示为一个三维张量(高度、宽度、颜色通道数),而在自然语言处理中,一段文本可以被编码为一系列词向量组成的二维张量(句子长度、词向量维度
- 培养哪些特质才能在工作中出类拔萃?
晏小北
求职招聘经验分享学习方法职场和发展
芯片工程师以脱口秀领域顶尖人物——李诞为例,聊聊强者的共性。(1)常人难以想象的工作量无论哪个领域,天赋当然重要。但,以大多数人的努力程度,压根到不了拼天赋的程度。你的量够吗?能不能做到每天起来,先写5个段子,再玩手机?能不能做到每天睡前,把5个段子改得更好,再睡觉?全部的核心秘密就是量。肌肉是怎么长出来的?是把它拉伤了,才能长出来。脑子也是这样。每天的创作,就是拉伤褶皱的过程。痛苦的时候,多喝点
- PTA天梯赛-L2-4 秀恩爱分得快
乔梦圆的博客
天梯赛题字符串算法c++
古人云:秀恩爱,分得快。互联网上每天都有大量人发布大量照片,我们通过分析这些照片,可以分析人与人之间的亲密度。如果一张照片上出现了K个人,这些人两两间的亲密度就被定义为1/K。任意两个人如果同时出现在若干张照片里,他们之间的亲密度就是所有这些同框照片对应的亲密度之和。下面给定一批照片,请你分析一对给定的情侣,看看他们分别有没有亲密度更高的异性朋友?输入格式:输入在第一行给出2个正整数:N(不超过1
- ——当机器开始"思考",人类终于读懂了自己的大脑
人工智能机器学习
第一层突破:AI让我们看见"思维的源代码"想象一下,你正在教ChatGPT写诗——当它从"枯藤老树昏鸦"的堆砌,突然产出"月光在二进制河流里流淌"的句子时,这不仅是算法的胜利,更是一面照向人类思维的魔镜。科学家发现,AI学习语言的方式竟与婴儿惊人相似:✅模式捕捉:像人类从环境声音中提取词汇✅联想迭代:用已知概念嫁接新知识(比如用"电"理解"闪电网络")✅创造性错误:AI的"幻觉"对应人脑的直觉跳跃
- python基础题目练习19
码卡巴卡bug
python算法数据结构
说反话-加强版给定一句英语,要求你编写程序,将句中所有单词的顺序颠倒输出。输入格式:测试输入包含一个测试用例,在一行内给出总长度不超过500000的字符串。字符串由若干单词和若干空格组成,其中单词是由英文字母(大小写有区分)组成的字符串,单词之间用若干个空格分开。输出格式:每个测试用例的输出占一行,输出倒序后的句子,并且保证单词间只有1个空格。输入样例:HelloWorldHereICome输出样
- 关于自然语言处理(三)深度学习中的文字序列数据的分词操作
MatrixSparse
大模型人工智能自然语言处理深度学习人工智能
深度学习中的文字序列数据二维文字序列在文字数据中,样本与样本之间的联系是语义的联系,语义的联系即是词与词之间、字与字之间的联系,因此在文字序列中每个样本是一个单词或一个字(对英文来说大部分时候是一个单词,偶尔也可以是更小的语言单位,如字母或半词),故而在中文文字数据中,一张二维表往往是一个句子或一段话,而单个样本则表示单词或字。此时,不能够打乱顺序的维度是vocab_size,它代表了一个句子/一
- 【设计模式】——解释器模式(Interpreter Pattern)
J^T
设计模式C/C++解释器模式设计模式c++系统架构
目录引言一、解析器模式的基本概念核心思想解析器模式结构UML图应用场景二、解析器模式的优点与缺点优点缺点三、C++实现算术表达式解释器1.定义抽象表达式2.实现终结符表达式3.实现非终结符表达式4.构建和解释表达式四、总结引言在软件开发中,设计模式是解决常见软件设计问题的一种成熟方案。解释器模式(InterpreterPattern)是一种行为型设计模式,它提供了一种解释语言句子或表达式的方法。这
- Manus:AI Agent的未来,还是一场营销秀?
人工智能机器学习深度学习
作者:TechubNews今天,AI圈子里掀起了波澜。一个名为Manus的产品,凭借一部全英文的宣传片和邀请码制的发布方式,迅速吸引了大量关注。这个由中国团队开发的AIAgent,被官方称为“全球首个通用Agent”,仿佛一夜之间,OpenAI和Anthropic的Operator们都被淘汰了。Manus发布后,迅速在一个小圈子内引发了“炸裂”式的传播,类似于DeepSeek的现象。然而,Manu
- Word2Vec向量化语句的计算原理
堕落年代
AIword2vec人工智能机器学习
一、Word2Vec的核心理念Word2Vec由Google团队于2013年提出,是一种通过无监督学习生成词向量的模型。其核心思想是“相似的词拥有相似的上下文”,通过上下文关系捕捉词汇的语义和语法特征。生成的向量具有低维(通常100-300维)、连续且稠密的特点,解决了传统One-Hot编码的高维稀疏和语义缺失问题。二、向量化的核心步骤(以Skip-Gram模型为例)示例句子假设句子为:“Theq
- 大语言模型中的 Token:它们是什么,如何工作?
运维小子
语言模型人工智能自然语言处理
引言如果你使用过ChatGPT这样的AI工具,你可能会好奇:它是如何理解并生成文字的?大语言模型(LLM,LargeLanguageModel)并不是直接处理整个句子或文章,而是拆分成一个个Token(标记)来进行计算。那么,什么是Token?它们在大语言模型中起到什么作用?这篇文章将用通俗易懂的语言帮你解开这些谜团。1.什么是Token?在大语言模型的世界里,Token(标记)是文本的最小单位,
- 详解DeepSeek模型底层原理及和ChatGPT区别点
瞬间动力
语言模型机器学习AI编程云计算阿里云
一、DeepSeek大模型原理架构基础DeepSeek基于Transformer架构,Transformer架构主要由编码器和解码器组成,在自然语言处理任务中,通常使用的是Transformer的解码器部分。它的核心是自注意力机制(Self-Attention),这个机制允许模型在处理输入序列时,关注序列中不同位置的信息。例如,在处理句子“Thecatchasedthemouse”时,自注意力机制
- 2024第18届中国(大连)国际纺织服装供应链博览会
aczl168
其他
2024第18届中国(大连)国际纺织服装供应链博览会The18thDalianInternationalTextileandGarmentSupplyChainExpo2024开展时间:2024年8月6-8日展览地点:大连世界博览广场(沙河口区会展路18号)支持单位:天津市服装商会河北省服装行业协会承办单位:企阳会展集团天津星际展览服务有限公司大连星华展览有限公司同期活动:FIC创意主题时装秀服装
- Algorithm
香水浓
javaAlgorithm
冒泡排序
public static void sort(Integer[] param) {
for (int i = param.length - 1; i > 0; i--) {
for (int j = 0; j < i; j++) {
int current = param[j];
int next = param[j + 1];
- mongoDB 复杂查询表达式
开窍的石头
mongodb
1:count
Pg: db.user.find().count();
统计多少条数据
2:不等于$ne
Pg: db.user.find({_id:{$ne:3}},{name:1,sex:1,_id:0});
查询id不等于3的数据。
3:大于$gt $gte(大于等于)
&n
- Jboss Java heap space异常解决方法, jboss OutOfMemoryError : PermGen space
0624chenhong
jvmjboss
转自
http://blog.csdn.net/zou274/article/details/5552630
解决办法:
window->preferences->java->installed jres->edit jre
把default vm arguments 的参数设为-Xms64m -Xmx512m
----------------
- 文件上传 下载 解析 相对路径
不懂事的小屁孩
文件上传
有点坑吧,弄这么一个简单的东西弄了一天多,身边还有大神指导着,网上各种百度着。
下面总结一下遇到的问题:
文件上传,在页面上传的时候,不要想着去操作绝对路径,浏览器会对客户端的信息进行保护,避免用户信息收到攻击。
在上传图片,或者文件时,使用form表单来操作。
前台通过form表单传输一个流到后台,而不是ajax传递参数到后台,代码如下:
<form action=&
- 怎么实现qq空间批量点赞
换个号韩国红果果
qq
纯粹为了好玩!!
逻辑很简单
1 打开浏览器console;输入以下代码。
先上添加赞的代码
var tools={};
//添加所有赞
function init(){
document.body.scrollTop=10000;
setTimeout(function(){document.body.scrollTop=0;},2000);//加
- 判断是否为中文
灵静志远
中文
方法一:
public class Zhidao {
public static void main(String args[]) {
String s = "sdf灭礌 kjl d{';\fdsjlk是";
int n=0;
for(int i=0; i<s.length(); i++) {
n = (int)s.charAt(i);
if((
- 一个电话面试后总结
a-john
面试
今天,接了一个电话面试,对于还是初学者的我来说,紧张了半天。
面试的问题分了层次,对于一类问题,由简到难。自己觉得回答不好的地方作了一下总结:
在谈到集合类的时候,举几个常用的集合类,想都没想,直接说了list,map。
然后对list和map分别举几个类型:
list方面:ArrayList,LinkedList。在谈到他们的区别时,愣住了
- MSSQL中Escape转义的使用
aijuans
MSSQL
IF OBJECT_ID('tempdb..#ABC') is not null
drop table tempdb..#ABC
create table #ABC
(
PATHNAME NVARCHAR(50)
)
insert into #ABC
SELECT N'/ABCDEFGHI'
UNION ALL SELECT N'/ABCDGAFGASASSDFA'
UNION ALL
- 一个简单的存储过程
asialee
mysql存储过程构造数据批量插入
今天要批量的生成一批测试数据,其中中间有部分数据是变化的,本来想写个程序来生成的,后来想到存储过程就可以搞定,所以随手写了一个,记录在此:
DELIMITER $$
DROP PROCEDURE IF EXISTS inse
- annot convert from HomeFragment_1 to Fragment
百合不是茶
android导包错误
创建了几个类继承Fragment, 需要将创建的类存储在ArrayList<Fragment>中; 出现不能将new 出来的对象放到队列中,原因很简单;
创建类时引入包是:import android.app.Fragment;
创建队列和对象时使用的包是:import android.support.v4.ap
- Weblogic10两种修改端口的方法
bijian1013
weblogic端口号配置管理config.xml
一.进入控制台进行修改 1.进入控制台: http://127.0.0.1:7001/console 2.展开左边树菜单 域结构->环境->服务器-->点击AdminServer(管理) &
- mysql 操作指令
征客丶
mysql
一、连接mysql
进入 mysql 的安装目录;
$ bin/mysql -p [host IP 如果是登录本地的mysql 可以不写 -p 直接 -u] -u [userName] -p
输入密码,回车,接连;
二、权限操作[如果你很了解mysql数据库后,你可以直接去修改系统表,然后用 mysql> flush privileges; 指令让权限生效]
1、赋权
mys
- 【Hive一】Hive入门
bit1129
hive
Hive安装与配置
Hive的运行需要依赖于Hadoop,因此需要首先安装Hadoop2.5.2,并且Hive的启动前需要首先启动Hadoop。
Hive安装和配置的步骤
1. 从如下地址下载Hive0.14.0
http://mirror.bit.edu.cn/apache/hive/
2.解压hive,在系统变
- ajax 三种提交请求的方法
BlueSkator
Ajaxjqery
1、ajax 提交请求
$.ajax({
type:"post",
url : "${ctx}/front/Hotel/getAllHotelByAjax.do",
dataType : "json",
success : function(result) {
try {
for(v
- mongodb开发环境下的搭建入门
braveCS
运维
linux下安装mongodb
1)官网下载mongodb-linux-x86_64-rhel62-3.0.4.gz
2)linux 解压
gzip -d mongodb-linux-x86_64-rhel62-3.0.4.gz;
mv mongodb-linux-x86_64-rhel62-3.0.4 mongodb-linux-x86_64-rhel62-
- 编程之美-最短摘要的生成
bylijinnan
java数据结构算法编程之美
import java.util.HashMap;
import java.util.Map;
import java.util.Map.Entry;
public class ShortestAbstract {
/**
* 编程之美 最短摘要的生成
* 扫描过程始终保持一个[pBegin,pEnd]的range,初始化确保[pBegin,pEnd]的ran
- json数据解析及typeof
chengxuyuancsdn
jstypeofjson解析
// json格式
var people='{"authors": [{"firstName": "AAA","lastName": "BBB"},'
+' {"firstName": "CCC&
- 流程系统设计的层次和目标
comsci
设计模式数据结构sql框架脚本
流程系统设计的层次和目标
 
- RMAN List和report 命令
daizj
oraclelistreportrman
LIST 命令
使用RMAN LIST 命令显示有关资料档案库中记录的备份集、代理副本和映像副本的
信息。使用此命令可列出:
• RMAN 资料档案库中状态不是AVAILABLE 的备份和副本
• 可用的且可以用于还原操作的数据文件备份和副本
• 备份集和副本,其中包含指定数据文件列表或指定表空间的备份
• 包含指定名称或范围的所有归档日志备份的备份集和副本
• 由标记、完成时间、可
- 二叉树:红黑树
dieslrae
二叉树
红黑树是一种自平衡的二叉树,它的查找,插入,删除操作时间复杂度皆为O(logN),不会出现普通二叉搜索树在最差情况时时间复杂度会变为O(N)的问题.
红黑树必须遵循红黑规则,规则如下
1、每个节点不是红就是黑。 2、根总是黑的 &
- C语言homework3,7个小题目的代码
dcj3sjt126com
c
1、打印100以内的所有奇数。
# include <stdio.h>
int main(void)
{
int i;
for (i=1; i<=100; i++)
{
if (i%2 != 0)
printf("%d ", i);
}
return 0;
}
2、从键盘上输入10个整数,
- 自定义按钮, 图片在上, 文字在下, 居中显示
dcj3sjt126com
自定义
#import <UIKit/UIKit.h>
@interface MyButton : UIButton
-(void)setFrame:(CGRect)frame ImageName:(NSString*)imageName Target:(id)target Action:(SEL)action Title:(NSString*)title Font:(CGFloa
- MySQL查询语句练习题,测试足够用了
flyvszhb
sqlmysql
http://blog.sina.com.cn/s/blog_767d65530101861c.html
1.创建student和score表
CREATE TABLE student (
id INT(10) NOT NULL UNIQUE PRIMARY KEY ,
name VARCHAR
- 转:MyBatis Generator 详解
happyqing
mybatis
MyBatis Generator 详解
http://blog.csdn.net/isea533/article/details/42102297
MyBatis Generator详解
http://git.oschina.net/free/Mybatis_Utils/blob/master/MybatisGeneator/MybatisGeneator.
- 让程序员少走弯路的14个忠告
jingjing0907
工作计划学习
无论是谁,在刚进入某个领域之时,有再大的雄心壮志也敌不过眼前的迷茫:不知道应该怎么做,不知道应该做什么。下面是一名软件开发人员所学到的经验,希望能对大家有所帮助
1.不要害怕在工作中学习。
只要有电脑,就可以通过电子阅读器阅读报纸和大多数书籍。如果你只是做好自己的本职工作以及分配的任务,那是学不到很多东西的。如果你盲目地要求更多的工作,也是不可能提升自己的。放
- nginx和NetScaler区别
流浪鱼
nginx
NetScaler是一个完整的包含操作系统和应用交付功能的产品,Nginx并不包含操作系统,在处理连接方面,需要依赖于操作系统,所以在并发连接数方面和防DoS攻击方面,Nginx不具备优势。
2.易用性方面差别也比较大。Nginx对管理员的水平要求比较高,参数比较多,不确定性给运营带来隐患。在NetScaler常见的配置如健康检查,HA等,在Nginx上的配置的实现相对复杂。
3.策略灵活度方
- 第11章 动画效果(下)
onestopweb
动画
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- FAQ - SAP BW BO roadmap
blueoxygen
BOBW
http://www.sdn.sap.com/irj/boc/business-objects-for-sap-faq
Besides, I care that how to integrate tightly.
By the way, for BW consultants, please just focus on Query Designer which i
- 关于java堆内存溢出的几种情况
tomcat_oracle
javajvmjdkthread
【情况一】:
java.lang.OutOfMemoryError: Java heap space:这种是java堆内存不够,一个原因是真不够,另一个原因是程序中有死循环; 如果是java堆内存不够的话,可以通过调整JVM下面的配置来解决: <jvm-arg>-Xms3062m</jvm-arg> <jvm-arg>-Xmx
- Manifest.permission_group权限组
阿尔萨斯
Permission
结构
继承关系
public static final class Manifest.permission_group extends Object
java.lang.Object
android. Manifest.permission_group 常量
ACCOUNTS 直接通过统计管理器访问管理的统计
COST_MONEY可以用来让用户花钱但不需要通过与他们直接牵涉的权限
D