数据结构与算法之美学习笔记:15 | 二分查找(上):如何用最省内存的方式实现快速查找功能?

目录

  • 前言
  • 无处不在的二分思想
  • O(logn) 惊人的查找速度
  • 二分查找的递归与非递归实现
  • 二分查找应用场景的局限性
  • 解答开篇
  • 内容小结

前言

数据结构与算法之美学习笔记:15 | 二分查找(上):如何用最省内存的方式实现快速查找功能?_第1张图片
本节课程思维导图:
数据结构与算法之美学习笔记:15 | 二分查找(上):如何用最省内存的方式实现快速查找功能?_第2张图片

今天我们讲一种针对有序数据集合的查找算法:二分查找(Binary Search)算法,也叫折半查找算法。
抛出问题:假设我们有 1000 万个整数数据,每个数据占 8 个字节,如何设计数据结构和算法,快速判断某个整数是否出现在这 1000 万数据中?

无处不在的二分思想

比如说,我们现在来做一个猜字游戏。我随机写一个 0 到 99 之间的数字,然后你来猜我写的是什么。猜的过程中,你每猜一次,我就会告诉你猜的大了还是小了,直到猜中为止。你来想想,如何快速猜中我写的数字呢?
假设我写的数字是 23,你可以按照下面的步骤来试一试。(如果猜测范围的数字有偶数个,中间数有两个,就选择较小的那个。)
数据结构与算法之美学习笔记:15 | 二分查找(上):如何用最省内存的方式实现快速查找功能?_第3张图片
次就猜出来了,是不是很快?这个例子用的就是二分思想。二分查找针对的是一个有序的数据集合,查找思想有点类似分治思想。每次都通过跟区间的中间元素对比,将待查找的区间缩小为之前的一半,直到找到要查找的元素,或者区间被缩小为 0。

O(logn) 惊人的查找速度

我们来分析一下它的时间复杂度。我们假设数据大小是 n,每次查找后数据都会缩小为原来的一半,也就是会除以 2。最坏情况下,直到查找区间被缩小为空,才停止。
数据结构与算法之美学习笔记:15 | 二分查找(上):如何用最省内存的方式实现快速查找功能?_第4张图片
可以看出来,这是一个等比数列。其中 n/2k=1 时,k 的值就是总共缩小的次数。而每一次缩小操作只涉及两个数据的大小比较,所以,经过了 k 次区间缩小操作,时间复杂度就是 O(k)。通过 n/2k=1,我们可以求得 k=log2n,所以时间复杂度就是 O(logn)。二分查找是我们目前为止遇到的第一个时间复杂度为 O(logn) 的算法。

二分查找的递归与非递归实现

最简单的情况就是有序数组中不存在重复元素,我们在其中用二分查找值等于给定值的数据。我用 Java 代码实现了一个最简单的二分查找算法。

public int bsearch(int[] a, int n, int value) {
  int low = 0;
  int high = n - 1;

  while (low <= high) {
    int mid = (low + high) / 2;
    if (a[mid] == value) {
      return mid;
    } else if (a[mid] < value) {
      low = mid + 1;
    } else {
      high = mid - 1;
    }
  }

  return -1;
}

low、high、mid 都是指数组下标,其中 low 和 high 表示当前查找的区间范围,初始 low=0, high=n-1。mid 表示[low, high]的中间位置。我们通过对比 a[mid]与 value 的大小,来更新接下来要查找的区间范围,直到找到或者区间缩小为 0,就退出。
注意:

  1. 循环退出条件注意是 low<=high,而不是 low< high
  2. mid 的取值,改进的方法是将 mid 的计算方式写成 low+(high-low)/2;
  3. low 和 high 的更新,low=mid+1,high=mid-1。

实际上,二分查找除了用循环来实现,还可以用递归来实现,过程也非常简单。我用 Java 语言实现了一下这个过程,正好你可以借此机会回顾一下写递归代码的技巧。

// 二分查找的递归实现
public int bsearch(int[] a, int n, int val) {
  return bsearchInternally(a, 0, n - 1, val);
}

private int bsearchInternally(int[] a, int low, int high, int value) {
  if (low > high) return -1;

  int mid =  low + ((high - low) >> 1);
  if (a[mid] == value) {
    return mid;
  } else if (a[mid] < value) {
    return bsearchInternally(a, mid+1, high, value);
  } else {
    return bsearchInternally(a, low, mid-1, value);
  }
}

二分查找应用场景的局限性

首先,二分查找依赖的是顺序表结构,简单点说就是数组。二分查找只能用在数据是通过顺序表来存储的数据结构上。如果你的数据是通过其他数据结构存储的,则无法应用二分查找。
其次,二分查找针对的是有序数据。
再次,数据量太小不适合二分查找。如果要处理的数据量很小,完全没有必要用二分查找,顺序遍历就足够了。
最后,数据量太大也不适合二分查找。二分查找的底层需要依赖数组这种数据结构,而数组为了支持随机访问的特性,要求内存空间连续,对内存的要求比较苛刻。

解答开篇

这个问题并不难。我们的内存限制是 100MB,每个数据大小是 8 字节,最简单的办法就是将数据存储在数组中,内存占用差不多是 80MB,符合内存的限制。借助今天讲的内容,我们可以先对这 1000 万数据从小到大排序,然后再利用二分查找算法,就可以快速地查找想要的数据了。

内容小结

今天我们学习了一种针对有序数据的高效查找算法,二分查找,它的时间复杂度是 O(logn)。
二分查找的核心思想理解起来非常简单,有点类似分治思想。即每次都通过跟区间中的中间元素对比,将待查找的区间缩小为一半,直到找到要查找的元素,或者区间被缩小为 0。但是二分查找的代码实现比较容易写错。你需要着重掌握它的三个容易出错的地方:循环退出条件、mid 的取值,low 和 high 的更新。
二分查找虽然性能比较优秀,但应用场景也比较有限。底层必须依赖数组,并且还要求数据是有序的。对于较小规模的数据查找,我们直接使用顺序遍历就可以了,二分查找的优势并不明显。二分查找更适合处理静态数据,也就是没有频繁的数据插入、删除操作。

你可能感兴趣的:(数据结构与算法之美学习笔记,数据结构,算法)