- AI人工智能代理工作流 AI Agent WorkFlow:在音乐创作中的应用
AGI大模型与大数据研究院
大数据AI人工智能计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
AI人工智能代理工作流AIAgentWorkFlow:在音乐创作中的应用1.背景介绍1.1问题的由来在音乐创作领域,艺术家们一直在寻找创新的方式来提升作品的独特性、丰富性以及创作效率。随着人工智能技术的快速发展,特别是深度学习和生成模型的广泛应用,音乐创作过程正逐渐被赋予新的生命力。AI代理工作流的概念应运而生,旨在通过自动化的流程和智能辅助手段,帮助音乐人探索新的音乐风格、创作灵感,甚至生成完整
- 在量子计算与AI结合的未来,是否能够实现更高效、更复杂的模式识别和数据处理?
concisedistinct
编程开发技术栈人工智能
随着量子计算和人工智能(AI)的发展,二者的结合正在成为前沿科技领域的一个重要研究方向。量子计算通过利用量子叠加和纠缠等特性,能够在某些问题上提供比经典计算机更强大的计算能力。人工智能,特别是深度学习,已经在许多领域取得了突破性的进展。本文将探讨量子计算与AI结合的创新机会,重点分析其在模式识别和数据处理中的优势与挑战。通过量子计算的并行处理能力和AI模型的智能学习能力,未来有望实现比传统计算更高
- python必读书单
Vin0sen
python开发语言
文章目录{编程入门}{编程进阶}{算法基础}{Web开发}{网络编程}{爬虫}{安全}{数据分析}{数据科学}{数据挖掘}{机器学习}{深度学习}{其他方向}{编程入门}父与子的编程之旅:与小卡特一起学Python[HOT]Python2.7和孩子一起玩编程Python2.7零压力学PythonPython3.0,但也指出了如何修改示例,以支持Python2.0Python编程:从入门到实践[HO
- 心法利器[127] | 24年算法思考-特征工程和经典深度学习
机智的叉烧
算法深度学习人工智能
心法利器本栏目主要和大家一起讨论近期自己学习的心得和体会。具体介绍:仓颉专项:飞机大炮我都会,利器心法我还有。2023年新的文章合集已经发布,获取方式看这里:又添十万字-CS的陋室2023年文章合集来袭,更有历史文章合集,欢迎下载。往期回顾心法利器[122]|效果提升的根本来源讨论心法利器[123]|算法面试的八股和非八股讨论心法利器[124]|24年算法思考-大模型的应用与训练篇心法利器[125
- Pytorch深度学习实战2-1:详细推导Xavier参数初始化(附Python实现)
2401_84140080
程序员深度学习pythonpytorch
做了那么多年开发,自学了很多门编程语言,我很明白学习资源对于学一门新语言的重要性,这些年也收藏了不少的Python干货,对我来说这些东西确实已经用不到了,但对于准备自学Python的人来说,或许它就是一个宝藏,可以给你省去很多的时间和精力。别在网上瞎学了,我最近也做了一些资源的更新,只要你是我的粉丝,这期福利你都可拿走。我先来介绍一下这些东西怎么用,文末抱走。(1)Python所有方向的学习路线(
- TensorFlow 示例项目实战与源码解析.zip
ELSON麦香包
本文还有配套的精品资源,点击获取简介:TensorFlow是谷歌大脑团队开发的开源机器学习库,广泛应用于深度学习、人工智能等领域。该压缩包提供了一个TensorFlow示例项目的源代码,涵盖了从基础操作到复杂模型的各种主题。文章将详细介绍TensorFlow的核心概念,如张量、图计算、会话、变量、梯度下降与优化器、损失函数、数据集、模型评估、模型保存与恢复以及KerasAPI。读者可通过实践这些示
- 大模型带你学pytorch课程
立杰说
Pythondeep-learningPytorchpytorch人工智能python
时间有限,大家有想看的部分,可以私信或者评论区联系,我及时补充。或者大家有想帮忙补充的也可以联系。注:大部分内容均为大模型生成,若有疏漏,欢迎指出。看起来你想要开始学习PyTorch,这是一个非常棒的选择!PyTorch是一个强大的开源机器学习框架,由Facebook的人工智能研究实验室开发,被广泛用于深度学习模型的构建和训练。让我们开始你的PyTorch旅程吧!1.预备课程大纲1.1引入Pyth
- 【2024年国内一些知名的免费AI对话工具的对比】
龙少9543
后端人工智能
2024年国内一些知名的免费AI对话工具的对比免费体验以下是2024年国内一些知名的免费AI对话工具的对比以及它们的体验地址。这些工具基于各自公司的深度学习和自然语言处理技术,为用户提供智能对话服务。百度文心一言特点:基于ERNIE模型,拥有知识增强、检索增强和对话增强的技术特色,支持跨模态生成。体验地址:https://yiyan.baidu.com/讯飞星火认知大模型特点:支持多风格长文本生成
- 用于深度学习的硬件配置列表
Mr.Q
项目记录环境搭建工具深度学习
自己2021年配制的一台深度学习机子,体验是水冷没必要(主要是安装费劲)。注意电源功率一定要够,不然带不动显卡,最好是1000w左右。1处理器:英特尔(Intel)i9-10900K10核20线程盒装CPU处理器【英特尔i9-10900K】英特尔(Intel)10代酷睿i9-10900KCPU处理器10核20线程睿频至高可达5Ghz【行情报价价格评测】-京东35992主板:玩家国度(ROG)ROG
- 计算范式的变革:从图灵机到神经网络
AI架构设计之禅
AI大模型应用入门实战与进阶javapythonjavascriptkotlingolang架构人工智能
图灵机,神经网络,计算范式,深度学习,机器学习,人工智能,算法,模型1.背景介绍自20世纪中叶以来,计算机科学经历了飞速发展,计算范式也经历了深刻的变革。从最初的图灵机模型到如今的深度学习,我们不断探索更强大、更灵活的计算方式。图灵机作为计算机科学的基石,奠定了通用计算的理论基础。它以有限的符号和规则,模拟了人类的逻辑思维过程,为现代计算机的诞生提供了理论支撑。然而,图灵机的计算能力受限于其固定的
- 【Python】已解决:Python读取字典查询键报错“KeyError: ‘d‘”
屿小夏
python开发语言
个人简介:某不知名博主,致力于全栈领域的优质博客分享|用最优质的内容带来最舒适的阅读体验!文末获取免费IT学习资料!文末获取更多信息精彩专栏推荐订阅收藏专栏系列直达链接相关介绍书籍分享点我跳转书籍作为获取知识的重要途径,对于IT从业者来说更是不可或缺的资源。不定期更新IT图书,并在评论区抽取随机粉丝,书籍免费包邮到家AI前沿点我跳转探讨人工智能技术领域的最新发展和创新,涵盖机器学习、深度学习、自然
- DeepSeek R1重塑行业标准:BIM智能审查效率提升300%的实战解密
Coderabo
DeepSeekR1模型企业级应用人工智能
DeepSeekR1驱动的BIM模型智能审查技术深度解析与实践指南第一章BIM智能审查技术概述建筑信息模型(BIM)的智能化审查是建筑行业数字化转型的核心环节。传统人工审查方式存在效率低、标准不统一、易遗漏等问题,DeepSeekR1框架支持的智能审查系统通过以下技术突破实现革新:多源异构数据融合:支持IFC/RVT/DWG等格式的自动转换语义特征解析引擎:基于深度学习的构件特征识别准确率达98.
- DeepSeek R1赋能智能建造:施工安全风险预判系统全栈开发实战与创新解析
Coderabo
DeepSeekR1模型企业级应用安全
基于DeepSeekR1的智能施工安全风险预判系统构建与实战一、施工安全风险预判技术概述在建筑工程领域,安全风险预判是保障施工人员和财产安全的关键环节。传统的人工巡检方式存在效率低、覆盖面窄、响应滞后等问题。DeepSeekR1智能分析系统通过融合计算机视觉、物联网传感技术和深度学习算法,构建了多维度的风险预警体系。本系统具备以下核心功能:实时视频监控分析(安全装备检测、危险区域入侵识别)设备状态
- 基于深度学习的政策效果仿真推演:实现智能化决策支持
Coderabo
DeepSeekR1模型企业级应用深度学习人工智能
政策效果仿真推演:基于DeepSeekR1的人工智能驱动决策支持系统引言政策效果仿真推演是现代社会治理中不可或缺的重要环节。通过模拟不同政策在实际执行过程中可能产生的各种影响,政府和相关机构可以更科学地制定和调整政策,从而提高治理效率和效果。然而,传统的政策仿真方法往往依赖于大量的历史数据、复杂的数学模型以及人工经验判断,存在耗时长、成本高、结果不够精准等问题。近年来,随着人工智能技术的快速发展,
- 深度学习|表示学习|卷积神经网络|输出维度公式|15
漂亮_大男孩
表示学习深度学习学习cnn
如是我闻:在卷积和池化操作中,计算输出维度的公式是关键,它们分别可以帮助我们计算卷积操作和池化操作后的输出大小。下面分别总结公式,并结合解释它们的意义:1.卷积操作的输出维度公式当我们对输入图像进行卷积时,输出的宽度和高度可以通过以下公式计算:输出大小=输入大小−卷积核大小+2⋅填充大小步长+1\text{输出大小}=\frac{\text{输入大小}-\text{卷积核大小}+2\cdot\te
- 深度学习|表示学习|卷积神经网络|输出维度公式如何理解?|16
漂亮_大男孩
表示学习深度学习学习cnn
如是我闻:当我们对输入图像进行卷积时,输出的宽度和高度可以通过以下公式计算:输出大小=输入大小−卷积核大小+2⋅填充大小步长+1\text{输出大小}=\frac{\text{输入大小}-\text{卷积核大小}+2\cdot\text{填充大小}}{\text{步长}}+1输出大小=步长输入大小−卷积核大小+2⋅填充大小+1池化(Pooling)的输出大小公式类似卷积,但更加简单:输出大小=输入
- 深度学习-98-大语言模型LLM之基于langchain的代理create_react_agent工具
皮皮冰燃
深度学习深度学习语言模型langchain
文章目录1Agent代理1.1代理的分类1.2ReAct和Structuredchat2代理应用ReAct2.1创建工具2.1.1嵌入模型2.1.2创建检索器2.1.3测试检索结果2.1.4创建工具列表2.2初始化大模型2.3创建Agent2.4运行Agent3参考附录1Agent代理Agent代理的核心思想是使用语言模型来选择要采取的一系列动作。(1)在链中,动作序列是硬编码的。(2)在代理中,
- 基于 FPGA 的 CNN 卷积神经网络整体实现
鱼弦
人工智能时代fpga开发cnn人工智能
基于FPGA的CNN卷积神经网络整体实现介绍卷积神经网络(CNN)是一种强大的深度学习架构,广泛用于图像识别、物体检测和自然语言处理等领域。FPGA以其并行处理能力、低延迟和灵活性,是加速CNN推理的理想硬件平台。通过在FPGA上实现CNN,可以显著提高实时应用中的推理效率。应用使用场景实时图像识别:如智能手机摄像头中的面部识别。自动驾驶:环境感知和障碍物检测。医疗影像分析:快速处理MRI或X-R
- 【大模型应用开发 动手做AI Agent】第二轮思考:模型决定计算
AGI大模型与大数据研究院
大数据AI人工智能计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
【大模型应用开发动手做AIAgent】第二轮思考:模型决定计算关键词:大模型,AIAgent,模型决定计算,模型优化,计算优化,硬件加速,效率提升1.背景介绍随着深度学习技术的飞速发展,大模型在自然语言处理、计算机视觉等领域取得了突破性进展。这些模型通过学习海量数据,能够完成复杂的任务,如机器翻译、图像识别、问答系统等。然而,大模型在应用开发中面临着计算资源、能耗和效率等方面的挑战。本文将从“模型
- AI Agent: AI的下一个风口 具身机器人的发展趋势
AGI大模型与大数据研究院
大数据AI人工智能计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
AIAgent:AI的下一个风口——具身机器人的发展趋势1.背景介绍1.1问题的由来随着人工智能技术的快速发展,特别是深度学习的突破性进展,我们正目睹着从“智慧大脑”向“具身智能”的转变。具身智能,即赋予机器以身体形式的能力,使之能够在物理环境中行动和互动,是人工智能领域的一个新兴且极具潜力的方向。具身机器人的发展标志着从对静态数据的处理转向对动态环境的适应与交互,这不仅是技术上的飞跃,也是人类对
- 2025年最新最全的大模型学习路线规划,对于零基础入门到精通的学习者来说,可以遵循以下阶段进行
程序员辣条
学习大模型学习AI产品经理人工智能LLama大模型大模型教程
2025年最新最全的大模型学习路线规划,对于零基础入门到精通的学习者来说,可以遵循以下阶段进行:一、基础准备阶段数学基础:学习线性代数、微积分、概率论与数理统计等基础知识。这些数学基础对于理解大模型的原理和算法至关重要。编程语言:熟练掌握Python编程,这是大模型开发的首选语言。同时,了解常用的深度学习框架,如TensorFlow和PyTorch。深度学习基础:学习深度学习的基本原理和常用算法,
- 什么是大模型?大模型从入门到精通(超详细)看这一篇就够了!!!
AI产品经理
java人工智能开发语言金融运维
随着人工智能技术的发展,大模型成为了近年来的热门话题之一。本文旨在为初学者提供关于大模型的基础知识介绍,并探讨其对企业的影响、应用领域的就业前景以及如何系统地学习大模型。前排提示,文末有大模型AGI-CSDN独家资料包哦!1.什么是大模型?大模型(LargeModels),通常指的是拥有大量参数的深度学习模型。这些模型由于其规模庞大,能够捕捉到数据中的复杂模式,因此在自然语言处理(NLP)、计算机
- 超级好用、超准文字识别框架----飞浆PaddlePaddleOCR(文件检测+识别)实战篇
数虫
深度学习人工智能ocr飞桨
目录简介项目介绍安装难点问题解决办法参数介绍模型推理调用简介飞桨(PaddlePaddle)OCR(OpticalCharacterRecognition)是一个开源的深度学习框架,用于文字识别任务。它提供了一系列强大的工具和模型,可以用于实现各种文本识别应用。飞桨OCR主要包括以下几个方面的功能和特点:文字检测(TextDetection):通过检测图像中的文本区域,确定文本的位置和边界框。文字
- 基于Python实现机器视觉与深度学习相结合的项目
max500600
python算法开发工具python深度学习开发语言
以下是一个基于Python实现机器视觉与深度学习相结合的项目,用于对茶汤照片进行背景处理、提取RGB值的详细步骤及代码示例。整体思路图像读取与预处理:从采集装置传输到电脑的照片,使用OpenCV库读取图像,并进行灰度转换、高斯模糊等预处理操作。背景处理:通过图像分割算法(如基于颜色空间的分割或阈值分割)去除背景,只保留茶汤区域。识别颜色最均匀的区域:使用图像的纹理分析方法(如局部二值模式LBP)来
- 毕设开源 深度学习图像搜索算法-图像搜索引擎(源码分享)
knooor
毕业设计毕设大数据
文章目录0简介1前言2图像检索介绍(1)无监督图像检索(2)有监督图像检索3图像检索步骤4应用实例最后0简介今天学长向大家分享一个毕业设计项目毕业设计深度学习图像搜索算法-图像搜索引擎(源码分享)项目运行效果:毕业设计深度学习图像搜索算法-图像搜索引擎项目分享:见文末!1前言图像检索:是从一堆图片中找到与待匹配的图像相似的图片,就是以图找图。网络时代,随着各种社交网络的兴起,网络中图片,视频数据每
- 全场景深度学习开源框架(MindSpore)
deepdata_cn
人工智能深度学习开源人工智能
MindSpore是华为推出的一款全场景深度学习开源框架。旨在实现不同计算平台(如云端、边缘端、端侧)和不同硬件(如CPU、GPU、Ascend等)之间的高效协同。无论是在数据中心的大规模计算,还是在手机、物联网设备等资源受限的终端上,MindSpore都能灵活适配,充分发挥各硬件平台的性能优势,实现模型的高效训练和推理。该框架引入了自动并行技术,能够根据模型结构和硬件资源自动进行并行策略的搜索和
- AI学习指南HuggingFace篇-高级优化技巧
俞兆鹏
AI学习指南ai
一、引言在深度学习和自然语言处理(NLP)中,模型训练的效率和性能至关重要。HuggingFace提供了多种高级优化技巧,帮助开发者提升模型训练的效率和效果。本文将介绍混合精度训练、分布式训练等高级优化技巧,并探讨如何通过这些方法提升模型训练效率。二、混合精度训练(一)混合精度训练的原理混合精度训练利用自动混合精度(AMP)技术,高效管理FP16和FP32之间的转换。通过在前向传播中使用FP16加
- 零信任赋予安全牙齿,AI促使它更锋利
零信任Enlink_Young
零信任网络安全AIai网络安全
距离上次写关于安全的文字已经过去了很久很久,久到上次看到的AI还停留在TTS、ASR等最初的语音交互+搜索类似的各种智能音箱以及通过关键字匹配的基于知识库的聊天的机器人。之后的几年各种视觉识别遍地开花,AI四小龙在人脸识别上成熟应用,再然后到大热的机器学习、深度学习,对于AI一直都有关注,但商业价值均没有得到有效发挥,大部分都停在科研和实验室阶段。19年ChatGPT横空处世,直到ChatGPT通
- PyTorch动态计算图:如何灵活构建复杂模型
AI天才研究院
计算AI大模型企业级应用开发实战ChatGPT计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
PyTorch动态计算图:如何灵活构建复杂模型关键词:PyTorch、动态计算图、自动微分、反向传播、神经网络、模型构建、计算图优化文章目录PyTorch动态计算图:如何灵活构建复杂模型1.背景介绍1.1深度学习框架的发展1.2静态图与动态图的对比1.3PyTorch的崛起及其优势2.核心概念与联系2.1PyTorch中的张量(Tensor)2.2自动微分(Autograd)机制2.3动态计算图的
- 深度学习框架PyTorch原理与实践
AI天才研究院
AI实战大数据人工智能语言模型JavaPython架构设计
作者:禅与计算机程序设计艺术文章目录1.简介2.背景介绍3.基本概念和术语3.1PyTorch简介3.2PyTorch的特点1)自动求导机制2)GPU加速3)模型部署4)数据管道5)代码阅读友好4.核心算法原理4.1神经网络结构4.2神经网络层4.3激活函数5.实际案例——MNIST手写数字识别数据准备模型定义训练测试整体代码1.简介Deeplearning(DL)hasbeenanincreas
- 集合框架
天子之骄
java数据结构集合框架
集合框架
集合框架可以理解为一个容器,该容器主要指映射(map)、集合(set)、数组(array)和列表(list)等抽象数据结构。
从本质上来说,Java集合框架的主要组成是用来操作对象的接口。不同接口描述不同的数据类型。
简单介绍:
Collection接口是最基本的接口,它定义了List和Set,List又定义了LinkLi
- Table Driven(表驱动)方法实例
bijian1013
javaenumTable Driven表驱动
实例一:
/**
* 驾驶人年龄段
* 保险行业,会对驾驶人的年龄做年龄段的区分判断
* 驾驶人年龄段:01-[18,25);02-[25,30);03-[30-35);04-[35,40);05-[40,45);06-[45,50);07-[50-55);08-[55,+∞)
*/
public class AgePeriodTest {
//if...el
- Jquery 总结
cuishikuan
javajqueryAjaxWebjquery方法
1.$.trim方法用于移除字符串头部和尾部多余的空格。如:$.trim(' Hello ') // Hello2.$.contains方法返回一个布尔值,表示某个DOM元素(第二个参数)是否为另一个DOM元素(第一个参数)的下级元素。如:$.contains(document.documentElement, document.body); 3.$
- 面向对象概念的提出
麦田的设计者
java面向对象面向过程
面向对象中,一切都是由对象展开的,组织代码,封装数据。
在台湾面向对象被翻译为了面向物件编程,这充分说明了,这种编程强调实体。
下面就结合编程语言的发展史,聊一聊面向过程和面向对象。
c语言由贝尔实
- linux网口绑定
被触发
linux
刚在一台IBM Xserver服务器上装了RedHat Linux Enterprise AS 4,为了提高网络的可靠性配置双网卡绑定。
一、环境描述
我的RedHat Linux Enterprise AS 4安装双口的Intel千兆网卡,通过ifconfig -a命令看到eth0和eth1两张网卡。
二、双网卡绑定步骤:
2.1 修改/etc/sysconfig/network
- XML基础语法
肆无忌惮_
xml
一、什么是XML?
XML全称是Extensible Markup Language,可扩展标记语言。很类似HTML。XML的目的是传输数据而非显示数据。XML的标签没有被预定义,你需要自行定义标签。XML被设计为具有自我描述性。是W3C的推荐标准。
二、为什么学习XML?
用来解决程序间数据传输的格式问题
做配置文件
充当小型数据库
三、XML与HTM
- 为网页添加自己喜欢的字体
知了ing
字体 秒表 css
@font-face {
font-family: miaobiao;//定义字体名字
font-style: normal;
font-weight: 400;
src: url('font/DS-DIGI-e.eot');//字体文件
}
使用:
<label style="font-size:18px;font-famil
- redis范围查询应用-查找IP所在城市
矮蛋蛋
redis
原文地址:
http://www.tuicool.com/articles/BrURbqV
需求
根据IP找到对应的城市
原来的解决方案
oracle表(ip_country):
查询IP对应的城市:
1.把a.b.c.d这样格式的IP转为一个数字,例如为把210.21.224.34转为3524648994
2. select city from ip_
- 输入两个整数, 计算百分比
alleni123
java
public static String getPercent(int x, int total){
double result=(x*1.0)/(total*1.0);
System.out.println(result);
DecimalFormat df1=new DecimalFormat("0.0000%");
- 百合——————>怎么学习计算机语言
百合不是茶
java 移动开发
对于一个从没有接触过计算机语言的人来说,一上来就学面向对象,就算是心里上面接受的了,灵魂我觉得也应该是跟不上的,学不好是很正常的现象,计算机语言老师讲的再多,你在课堂上面跟着老师听的再多,我觉得你应该还是学不会的,最主要的原因是你根本没有想过该怎么来学习计算机编程语言,记得大一的时候金山网络公司在湖大招聘我们学校一个才来大学几天的被金山网络录取,一个刚到大学的就能够去和
- linux下tomcat开机自启动
bijian1013
tomcat
方法一:
修改Tomcat/bin/startup.sh 为:
export JAVA_HOME=/home/java1.6.0_27
export CLASSPATH=$CLASSPATH:$JAVA_HOME/lib/tools.jar:$JAVA_HOME/lib/dt.jar:.
export PATH=$JAVA_HOME/bin:$PATH
export CATALINA_H
- spring aop实例
bijian1013
javaspringAOP
1.AdviceMethods.java
package com.bijian.study.spring.aop.schema;
public class AdviceMethods {
public void preGreeting() {
System.out.println("--how are you!--");
}
}
2.beans.x
- [Gson八]GsonBuilder序列化和反序列化选项enableComplexMapKeySerialization
bit1129
serialization
enableComplexMapKeySerialization配置项的含义
Gson在序列化Map时,默认情况下,是调用Key的toString方法得到它的JSON字符串的Key,对于简单类型和字符串类型,这没有问题,但是对于复杂数据对象,如果对象没有覆写toString方法,那么默认的toString方法将得到这个对象的Hash地址。
GsonBuilder用于
- 【Spark九十一】Spark Streaming整合Kafka一些值得关注的问题
bit1129
Stream
包括Spark Streaming在内的实时计算数据可靠性指的是三种级别:
1. At most once,数据最多只能接受一次,有可能接收不到
2. At least once, 数据至少接受一次,有可能重复接收
3. Exactly once 数据保证被处理并且只被处理一次,
具体的多读几遍http://spark.apache.org/docs/lates
- shell脚本批量检测端口是否被占用脚本
ronin47
#!/bin/bash
cat ports |while read line
do#nc -z -w 10 $line
nc -z -w 2 $line 58422>/dev/null2>&1if[ $?-eq 0]then
echo $line:ok
else
echo $line:fail
fi
done
这里的ports 既可以是文件
- java-2.设计包含min函数的栈
bylijinnan
java
具体思路参见:http://zhedahht.blog.163.com/blog/static/25411174200712895228171/
import java.util.ArrayList;
import java.util.List;
public class MinStack {
//maybe we can use origin array rathe
- Netty源码学习-ChannelHandler
bylijinnan
javanetty
一般来说,“有状态”的ChannelHandler不应该是“共享”的,“无状态”的ChannelHandler则可“共享”
例如ObjectEncoder是“共享”的, 但 ObjectDecoder 不是
因为每一次调用decode方法时,可能数据未接收完全(incomplete),
它与上一次decode时接收到的数据“累计”起来才有可能是完整的数据,是“有状态”的
p
- java生成随机数
cngolon
java
方法一:
/**
* 生成随机数
* @author cngolon@126.com
* @return
*/
public synchronized static String getChargeSequenceNum(String pre){
StringBuffer sequenceNum = new StringBuffer();
Date dateTime = new D
- POI读写海量数据
ctrain
海量数据
import java.io.FileOutputStream;
import java.io.OutputStream;
import org.apache.poi.xssf.streaming.SXSSFRow;
import org.apache.poi.xssf.streaming.SXSSFSheet;
import org.apache.poi.xssf.streaming
- mysql 日期格式化date_format详细使用
daizj
mysqldate_format日期格式转换日期格式化
日期转换函数的详细使用说明
DATE_FORMAT(date,format) Formats the date value according to the format string. The following specifiers may be used in the format string. The&n
- 一个程序员分享8年的开发经验
dcj3sjt126com
程序员
在中国有很多人都认为IT行为是吃青春饭的,如果过了30岁就很难有机会再发展下去!其实现实并不是这样子的,在下从事.NET及JAVA方面的开发的也有8年的时间了,在这里在下想凭借自己的亲身经历,与大家一起探讨一下。
明确入行的目的
很多人干IT这一行都冲着“收入高”这一点的,因为只要学会一点HTML, DIV+CSS,要做一个页面开发人员并不是一件难事,而且做一个页面开发人员更容
- android欢迎界面淡入淡出效果
dcj3sjt126com
android
很多Android应用一开始都会有一个欢迎界面,淡入淡出效果也是用得非常多的,下面来实现一下。
主要代码如下:
package com.myaibang.activity;
import android.app.Activity;import android.content.Intent;import android.os.Bundle;import android.os.CountDown
- linux 复习笔记之常见压缩命令
eksliang
tar解压linux系统常见压缩命令linux压缩命令tar压缩
转载请出自出处:http://eksliang.iteye.com/blog/2109693
linux中常见压缩文件的拓展名
*.gz gzip程序压缩的文件
*.bz2 bzip程序压缩的文件
*.tar tar程序打包的数据,没有经过压缩
*.tar.gz tar程序打包后,并经过gzip程序压缩
*.tar.bz2 tar程序打包后,并经过bzip程序压缩
*.zi
- Android 应用程序发送shell命令
gqdy365
android
项目中需要直接在APP中通过发送shell指令来控制lcd灯,其实按理说应该是方案公司在调好lcd灯驱动之后直接通过service送接口上来给APP,APP调用就可以控制了,这是正规流程,但我们项目的方案商用的mtk方案,方案公司又没人会改,只调好了驱动,让应用程序自己实现灯的控制,这不蛋疼嘛!!!!
发就发吧!
一、关于shell指令:
我们知道,shell指令是Linux里面带的
- java 无损读取文本文件
hw1287789687
读取文件无损读取读取文本文件charset
java 如何无损读取文本文件呢?
以下是有损的
@Deprecated
public static String getFullContent(File file, String charset) {
BufferedReader reader = null;
if (!file.exists()) {
System.out.println("getFull
- Firebase 相关文章索引
justjavac
firebase
Awesome Firebase
最近谷歌收购Firebase的新闻又将Firebase拉入了人们的视野,于是我做了这个 github 项目。
Firebase 是一个数据同步的云服务,不同于 Dropbox 的「文件」,Firebase 同步的是「数据」,服务对象是网站开发者,帮助他们开发具有「实时」(Real-Time)特性的应用。
开发者只需引用一个 API 库文件就可以使用标准 RE
- C++学习重点
lx.asymmetric
C++笔记
1.c++面向对象的三个特性:封装性,继承性以及多态性。
2.标识符的命名规则:由字母和下划线开头,同时由字母、数字或下划线组成;不能与系统关键字重名。
3.c++语言常量包括整型常量、浮点型常量、布尔常量、字符型常量和字符串性常量。
4.运算符按其功能开以分为六类:算术运算符、位运算符、关系运算符、逻辑运算符、赋值运算符和条件运算符。
&n
- java bean和xml相互转换
q821424508
javabeanxmlxml和bean转换java bean和xml转换
这几天在做微信公众号
做的过程中想找个java bean转xml的工具,找了几个用着不知道是配置不好还是怎么回事,都会有一些问题,
然后脑子一热谢了一个javabean和xml的转换的工具里,自己用着还行,虽然有一些约束吧 ,
还是贴出来记录一下
顺便你提一下下,这个转换工具支持属性为集合、数组和非基本属性的对象。
packag
- C 语言初级 位运算
1140566087
位运算c
第十章 位运算 1、位运算对象只能是整形或字符型数据,在VC6.0中int型数据占4个字节 2、位运算符: 运算符 作用 ~ 按位求反 << 左移 >> 右移 & 按位与 ^ 按位异或 | 按位或 他们的优先级从高到低; 3、位运算符的运算功能: a、按位取反: ~01001101 = 101
- 14点睛Spring4.1-脚本编程
wiselyman
spring4
14.1 Scripting脚本编程
脚本语言和java这类静态的语言的主要区别是:脚本语言无需编译,源码直接可运行;
如果我们经常需要修改的某些代码,每一次我们至少要进行编译,打包,重新部署的操作,步骤相当麻烦;
如果我们的应用不允许重启,这在现实的情况中也是很常见的;
在spring中使用脚本编程给上述的应用场景提供了解决方案,即动态加载bean;
spring支持脚本