来个简单的理解:
CAS 是 compare and swap 的简写,即比较并交换。它是指一种操作机制,而不是某个具体的类或方法。在 Java 平台上对这种操作进行了包装。在 Unsafe 类中,调用代码如下:
unsafe.compareAndSwapInt(this, valueOffset, expect, update);
它需要三个参数,分别是内存位置 V,旧的预期值 A 和新的值 B。操作时,先从内存位置读取到值,然后和预期值A比较。如果相等,则将此内存位置的值改为新值 B,返回 true。如果不相等,说明和其他线程冲突了,则不做任何改变,返回 false。
这种机制在不阻塞其他线程的情况下避免了并发冲突,比独占锁的性能高很多。 CAS 在 Java 的原子类和并发包中有大量使用。
有很多文章说,CAS 操作失败后会一直重试直到成功,这种说法很不严谨。
第一,CAS 本身并未实现失败后的处理机制,它只负责返回成功或失败的布尔值,后续由调用者自行处理。只不过我们最常用的处理方式是重试而已。
第二,这句话很容易理解错,被理解成重新比较并交换。实际上失败的时候,原值已经被修改,如果不更改期望值,再怎么比较都会失败。而新值同样需要修改。
所以正确的方法是,使用一个死循环进行 CAS 操作,成功了就结束循环返回,失败了就重新从内存读取值和计算新值,再调用 CAS。看下 AtomicInteger 的源码就什么都懂了:
public final int incrementAndGet () {
for (;;) {
int current = get();
int next = current + 1;
if (compareAndSet(current, next))
return next;
}
}
CAS 主要分三步,读取-比较-修改。其中比较是在检测是否有冲突,如果检测到没有冲突后,其他线程还能修改这个值,那么 CAS 还是无法保证正确性。所以最关键的是要保证比较-修改这两步操作的原子性。
CAS 底层是靠调用 CPU 指令集的 cmpxchg 完成的,它是 x86 和 Intel 架构中的 compare and exchange 指令。在多核的情况下,这个指令也不能保证原子性,需要在前面加上 lock 指令。lock 指令可以保证一个 CPU 核心在操作期间独占一片内存区域。那么 这又是如何实现的呢?
在处理器中,一般有两种方式来实现上述效果:总线锁和缓存锁。在多核处理器的结构中,CPU 核心并不能直接访问内存,而是统一通过一条总线访问。总线锁就是锁住这条总线,使其他核心无法访问内存。这种方式代价太大了,会导致其他核心停止工作。而缓存锁并不锁定总线,只是锁定某部分内存区域。当一个 CPU 核心将内存区域的数据读取到自己的缓存区后,它会锁定缓存对应的内存区域。锁住期间,其他核心无法操作这块内存区域。
CAS 就是通过这种方式实现比较和交换操作的原子性的。值得注意的是, CAS 只是保证了操作的原子性,并不保证变量的可见性,因此变量需要加上 volatile 关键字。
上面提到,CAS 保证了比较和交换的原子性。但是从读取到开始比较这段期间,其他核心仍然是可以修改这个值的。如果核心将 A 修改为 B,CAS 可以判断出来。但是如果核心将 A 修改为 B 再修改回 A。那么 CAS 会认为这个值并没有被改变,从而继续操作。这是和实际情况不符的。解决方案是加一个版本号。
ReentrantLock 使用代码实现了和 synchronized 一样的语义,包括可重入,保证内存可见性和解决竞态条件问题等。相比 synchronized,它还有如下好处:
基本用法如下:
public class Counter {
private final Lock lock = new ReentrantLock();
private volatile int count;
public void incr() {
lock.lock();
try {
count++;
} finally {
lock.unlock();
}
}
public int getCount() {
return count;
}
}
ReentrantLock 内部有两个内部类,分别是 FairSync 和 NoFairSync,对应公平锁和非公平锁。他们都继承自 Sync。Sync 又继承自AQS。
AQS 全称 AbstractQueuedSynchronizer。AQS 中有两个重要的成员:
下面以 ReentrantLock 非公平锁的代码看看 AQS 的原理。
请求锁时有三种可能:
final void lock() {
if (compareAndSetState(0, 1))
setExclusiveOwnerThread(Thread.currentThread()); //没有线程持有锁时,直接获取锁,对应情况1
else
acquire(1);
}
public final void acquire(int arg) {
if (!tryAcquire(arg) && //在此方法中会判断当前持有线程是否等于自己,对应情况2
acquireQueued(addWaiter(Node.EXCLUSIVE), arg)) //将自己加入队列中,对应情况3
selfInterrupt();
}
如果没竞争到锁,这时候就要进入等待队列。队列是默认有一个 head 节点的,并且不包含线程信息。上面情况3中,addWaiter 会创建一个 Node,并添加到链表的末尾,Node 中持有当前线程的引用。同时还有一个成员变量 waitStatus,表示线程的等待状态,初始值为0。我们还需要关注两个值:
同时,加到链表末尾的操作使用了 CAS+死循环的模式,很有代表性,拿出来看一看:
Node node = new Node(mode);
for (;;) {
Node oldTail = tail;
if (oldTail != null) {
U.putObject(node, Node.PREV, oldTail);
if (compareAndSetTail(oldTail, node)) {
oldTail.next = node;
return node;
}
} else {
initializeSyncQueue();
}
}
可以看到,在死循环里调用了 CAS 的方法。如果多个线程同时调用该方法,那么每次循环都只有一个线程执行成功,其他线程进入下一次循环,重新调用。N个线程就会循环N次。这样就在无锁的模式下实现了并发模型。
可以看到,一个线程最多有两次机会,还竞争不到就去挂起等待。
final boolean acquireQueued(final Node node, int arg) {
try {
boolean interrupted = false;
for (;;) {
final Node p = node.predecessor();
if (p == head && tryAcquire(arg)) {
setHead(node);
p.next = null; // help GC
return interrupted;
}
if (shouldParkAfterFailedAcquire(p, node) &&
parkAndCheckInterrupt())
interrupted = true;
}
} catch (Throwable t) {
cancelAcquire(node);
throw t;
}
}
public final boolean release(int arg) {
if (tryRelease(arg)) { //将 state 减1
Node h = head;
if (h != null && h.waitStatus != 0)
unparkSuccessor(h);
return true;
}
return false;
}
private void unparkSuccessor(Node node) {
int ws = node.waitStatus;
if (ws < 0)
node.compareAndSetWaitStatus(ws, 0);
Node s = node.next;
if (s == null || s.waitStatus > 0) {
s = null;
for (Node p = tail; p != node && p != null; p = p.prev)
if (p.waitStatus <= 0)
s = p;
}
if (s != null) //唤醒第一个等待的线程
LockSupport.unpark(s.thread);
}
上面分析的是非公平锁,那公平锁呢?很简单,在竞争锁之前判断一下等待队列中有没有线程在等待就行了。
protected final boolean tryAcquire(int acquires) {
final Thread current = Thread.currentThread();
int c = getState();
if (c == 0) {
if (!hasQueuedPredecessors() && //判断等待队列是否有节点
compareAndSetState(0, acquires)) {
setExclusiveOwnerThread(current);
return true;
}
}
......
return false;
}
理解 ReentrantLock 和 AQS 之后,再来理解读写锁就很简单了。读写锁有一个读锁和一个写锁,分别对应读操作和锁操作。锁的特性如下:
上面锁的特点保证了可以并发读取,这大大提高了效率,在实际开发中非常有用。那么在具体是如何实现的呢?
package xyz.amewin.aqs;
import java.util.concurrent.locks.AbstractQueuedSynchronizer;
/**
* 描述: 自己用AQS实现一个简单的线程协作器
*/
public class OneShotLatch {
private final Sync sync = new Sync();
public void signal() {
sync.releaseShared(0);
}
public void await() {
sync.acquireShared(0);
}
private class Sync extends AbstractQueuedSynchronizer {
@Override
protected int tryAcquireShared(int arg) {
return (getState() == 1) ? 1 : -1;
}
@Override
protected boolean tryReleaseShared(int arg) {
setState(1);
return true;
}
}
public static void main(String[] args) throws InterruptedException {
OneShotLatch oneShotLatch = new OneShotLatch();
for (int i = 0; i < 10; i++) {
new Thread(new Runnable() {
@Override
public void run() {
System.out.println(Thread.currentThread().getName()+"尝试获取latch,获取失败那就等待");
oneShotLatch.await();
System.out.println("开闸放行"+Thread.currentThread().getName()+"继续运行");
}
}).start();
}
Thread.sleep(5000);
oneShotLatch.signal();
new Thread(new Runnable() {
@Override
public void run() {
System.out.println(Thread.currentThread().getName()+"尝试获取latch,获取失败那就等待");
oneShotLatch.await();
System.out.println("开闸放行"+Thread.currentThread().getName()+"继续运行");
}
}).start();
}
}
读写锁虽然有两个锁,但实际上只有一个等待队列。