1、Flink 部署、概念介绍、source、transformation、sink使用示例、四大基石介绍和示例等系列综合文章链接
13、Flink 的table api与sql的基本概念、通用api介绍及入门示例
14、Flink 的table api与sql之数据类型: 内置数据类型以及它们的属性
15、Flink 的table api与sql之流式概念-详解的介绍了动态表、时间属性配置(如何处理更新结果)、时态表、流上的join、流上的确定性以及查询配置
16、Flink 的table api与sql之连接外部系统: 读写外部系统的连接器和格式以及FileSystem示例(1)
16、Flink 的table api与sql之连接外部系统: 读写外部系统的连接器和格式以及Elasticsearch示例(2)
16、Flink 的table api与sql之连接外部系统: 读写外部系统的连接器和格式以及Apache Kafka示例(3)
16、Flink 的table api与sql之连接外部系统: 读写外部系统的连接器和格式以及JDBC示例(4)
16、Flink 的table api与sql之连接外部系统: 读写外部系统的连接器和格式以及Apache Hive示例(6)
17、Flink 之Table API: Table API 支持的操作(1)
20、Flink SQL之SQL Client: 不用编写代码就可以尝试 Flink SQL,可以直接提交 SQL 任务到集群上
22、Flink 的table api与sql之创建表的DDL
24、Flink 的table api与sql之Catalogs(介绍、类型、java api和sql实现ddl、java api和sql操作catalog)-1
24、Flink 的table api与sql之Catalogs(java api操作数据库、表)-2
24、Flink 的table api与sql之Catalogs(java api操作视图)-3
24、Flink 的table api与sql之Catalogs(java api操作分区与函数)-4
26、Flink 的SQL之概览与入门示例
27、Flink 的SQL之SELECT (select、where、distinct、order by、limit、集合操作和去重)介绍及详细示例(1)
27、Flink 的SQL之SELECT (SQL Hints 和 Joins)介绍及详细示例(2)
27、Flink 的SQL之SELECT (窗口函数)介绍及详细示例(3)
27、Flink 的SQL之SELECT (窗口聚合)介绍及详细示例(4)
27、Flink 的SQL之SELECT (Group Aggregation分组聚合、Over Aggregation Over聚合 和 Window Join 窗口关联)介绍及详细示例(5)
27、Flink 的SQL之SELECT (Top-N、Window Top-N 窗口 Top-N 和 Window Deduplication 窗口去重)介绍及详细示例(6)
27、Flink 的SQL之SELECT (Pattern Recognition 模式检测)介绍及详细示例(7)
28、Flink 的SQL之DROP 、ALTER 、INSERT 、ANALYZE 语句
29、Flink SQL之DESCRIBE、EXPLAIN、USE、SHOW、LOAD、UNLOAD、SET、RESET、JAR、JOB Statements、UPDATE、DELETE(1)
29、Flink SQL之DESCRIBE、EXPLAIN、USE、SHOW、LOAD、UNLOAD、SET、RESET、JAR、JOB Statements、UPDATE、DELETE(2)
30、Flink SQL之SQL 客户端(通过kafka和filesystem的例子介绍了配置文件使用-表、视图等)
32、Flink table api和SQL 之用户自定义 Sources & Sinks实现及详细示例
41、Flink之Hive 方言介绍及详细示例
42、Flink 的table api与sql之Hive Catalog
43、Flink之Hive 读写及详细验证示例
44、Flink之module模块介绍及使用示例和Flink SQL使用hive内置函数及自定义函数详细示例–网上有些说法好像是错误的
本文通过示例介绍了如何使用table api进行表、视图、窗口函数的操作,同时也介绍了table api对表的查询、过滤、列、聚合以及join操作。
关于表的set、order by、insert、group window、over window等相关操作详见下篇文章:17、Flink 之Table API: Table API 支持的操作(2)。
本文依赖flink、kafka、hive集群能正常使用。
本文示例java api的实现是通过Flink 1.17版本做的示例,SQL是在Flink 1.17版本的环境中运行的。
本文分为5个部分,即入门示例、表的查询与过滤、表的列操作、表的聚合操作和表的join操作。
Table API 是批处理和流处理的统一的关系型 API。Table API 的查询不需要修改代码就可以采用批输入或流输入来运行。Table API 是 SQL 语言的超集,并且是针对 Apache Flink 专门设计的。Table API 集成了 Scala,Java 和 Python 语言的 API。Table API 的查询是使用 Java,Scala 或 Python 语言嵌入的风格定义的,有诸如自动补全和语法校验的 IDE 支持,而不是像普通 SQL 一样使用字符串类型的值来指定查询。
Table API 和 Flink SQL 共享许多概念以及部分集成的 API。通过查看公共概念 & API来学习如何注册表或如何创建一个表对象。流概念页面讨论了诸如动态表和时间属性等流特有的概念。
具体内容参照下文:
15、Flink 的table api与sql之流式概念-详解的介绍了动态表、时间属性配置(如何处理更新结果)、时态表、流上的join、流上的确定性以及查询配置
本文中所有示例,若无特别说明,均使用如下maven依赖。
<properties>
<encoding>UTF-8encoding>
<project.build.sourceEncoding>UTF-8project.build.sourceEncoding>
<maven.compiler.source>1.8maven.compiler.source>
<maven.compiler.target>1.8maven.compiler.target>
<java.version>1.8java.version>
<scala.version>2.12scala.version>
<flink.version>1.17.0flink.version>
properties>
<dependencies>
<dependency>
<groupId>org.apache.flinkgroupId>
<artifactId>flink-clientsartifactId>
<version>${flink.version}version>
<scope>providedscope>
dependency>
<dependency>
<groupId>org.apache.flinkgroupId>
<artifactId>flink-javaartifactId>
<version>${flink.version}version>
<scope>providedscope>
dependency>
<dependency>
<groupId>org.apache.flinkgroupId>
<artifactId>flink-table-commonartifactId>
<version>${flink.version}version>
<scope>providedscope>
dependency>
<dependency>
<groupId>org.apache.flinkgroupId>
<artifactId>flink-streaming-javaartifactId>
<version>${flink.version}version>
<scope>providedscope>
dependency>
<dependency>
<groupId>org.apache.flinkgroupId>
<artifactId>flink-table-api-java-bridgeartifactId>
<version>${flink.version}version>
<scope>providedscope>
dependency>
<dependency>
<groupId>org.apache.flinkgroupId>
<artifactId>flink-sql-gatewayartifactId>
<version>${flink.version}version>
<scope>providedscope>
dependency>
<dependency>
<groupId>org.apache.flinkgroupId>
<artifactId>flink-csvartifactId>
<version>${flink.version}version>
<scope>providedscope>
dependency>
<dependency>
<groupId>org.apache.flinkgroupId>
<artifactId>flink-jsonartifactId>
<version>${flink.version}version>
<scope>providedscope>
dependency>
<dependency>
<groupId>org.apache.flinkgroupId>
<artifactId>flink-table-planner_2.12artifactId>
<version>${flink.version}version>
<scope>providedscope>
dependency>
<dependency>
<groupId>org.apache.flinkgroupId>
<artifactId>flink-table-api-java-uberartifactId>
<version>${flink.version}version>
<scope>providedscope>
dependency>
<dependency>
<groupId>org.apache.flinkgroupId>
<artifactId>flink-table-runtimeartifactId>
<version>${flink.version}version>
<scope>providedscope>
dependency>
<dependency>
<groupId>org.apache.flinkgroupId>
<artifactId>flink-connector-jdbcartifactId>
<version>3.1.0-1.17version>
dependency>
<dependency>
<groupId>mysqlgroupId>
<artifactId>mysql-connector-javaartifactId>
<version>5.1.38version>
dependency>
<dependency>
<groupId>org.apache.flinkgroupId>
<artifactId>flink-connector-hive_2.12artifactId>
<version>1.17.0version>
dependency>
<dependency>
<groupId>org.apache.hivegroupId>
<artifactId>hive-execartifactId>
<version>3.1.2version>
dependency>
<dependency>
<groupId>org.apache.flinkgroupId>
<artifactId>flink-connector-kafkaartifactId>
<version>${flink.version}version>
dependency>
<dependency>
<groupId>org.apache.flinkgroupId>
<artifactId>flink-sql-connector-kafkaartifactId>
<version>${flink.version}version>
<scope>providedscope>
dependency>
<dependency>
<groupId>org.apache.commonsgroupId>
<artifactId>commons-compressartifactId>
<version>1.24.0version>
dependency>
<dependency>
<groupId>org.projectlombokgroupId>
<artifactId>lombokartifactId>
<version>1.18.2version>
dependency>
dependencies>
import static org.apache.flink.table.api.Expressions.$;
import static org.apache.flink.table.api.Expressions.and;
import static org.apache.flink.table.api.Expressions.lit;
import static org.apache.flink.table.expressions.ApiExpressionUtils.unresolvedCall;
import java.sql.Timestamp;
import java.time.Duration;
import java.util.Arrays;
import java.util.Collections;
import java.util.HashMap;
import java.util.List;
import org.apache.flink.api.common.eventtime.WatermarkStrategy;
import org.apache.flink.api.common.typeinfo.TypeHint;
import org.apache.flink.api.common.typeinfo.TypeInformation;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.api.java.tuple.Tuple3;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.connectors.kafka.table.KafkaConnectorOptions;
import org.apache.flink.table.api.DataTypes;
import org.apache.flink.table.api.EnvironmentSettings;
import org.apache.flink.table.api.Over;
import org.apache.flink.table.api.Schema;
import org.apache.flink.table.api.Table;
import org.apache.flink.table.api.TableDescriptor;
import org.apache.flink.table.api.TableEnvironment;
import org.apache.flink.table.api.Tumble;
import org.apache.flink.table.api.bridge.java.StreamTableEnvironment;
import org.apache.flink.table.catalog.CatalogDatabaseImpl;
import org.apache.flink.table.catalog.CatalogView;
import org.apache.flink.table.catalog.Column;
import org.apache.flink.table.catalog.ObjectPath;
import org.apache.flink.table.catalog.ResolvedCatalogView;
import org.apache.flink.table.catalog.ResolvedSchema;
import org.apache.flink.table.catalog.hive.HiveCatalog;
import org.apache.flink.table.functions.BuiltInFunctionDefinitions;
import org.apache.flink.types.Row;
import com.google.common.collect.Lists;
import lombok.AllArgsConstructor;
import lombok.Data;
import lombok.NoArgsConstructor;
/**
* @author alanchan
*
*/
public class TestTableAPIDemo {
/**
* @param args
* @throws Exception
*/
public static void main(String[] args) throws Exception {
testCreateTableBySQLAndAPI();
}
static void testCreateTableBySQLAndAPI() throws Exception {
// EnvironmentSettings env = EnvironmentSettings.newInstance().inStreamingMode().build();
// TableEnvironment tenv = TableEnvironment.create(env);
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
StreamTableEnvironment tenv = StreamTableEnvironment.create(env);
// SQL 创建输入表
// String sourceSql = "CREATE TABLE Alan_KafkaTable (\r\n" +
// " `event_time` TIMESTAMP(3) METADATA FROM 'timestamp',\r\n" +
// " `partition` BIGINT METADATA VIRTUAL,\r\n" +
// " `offset` BIGINT METADATA VIRTUAL,\r\n" +
// " `user_id` BIGINT,\r\n" +
// " `item_id` BIGINT,\r\n" +
// " `behavior` STRING\r\n" +
// ") WITH (\r\n" +
// " 'connector' = 'kafka',\r\n" +
// " 'topic' = 'user_behavior',\r\n" +
// " 'properties.bootstrap.servers' = '192.168.10.41:9092,192.168.10.42:9092,192.168.10.43:9092',\r\n" +
// " 'properties.group.id' = 'testGroup',\r\n" +
// " 'scan.startup.mode' = 'earliest-offset',\r\n" +
// " 'format' = 'csv'\r\n" +
// ");";
// tenv.executeSql(sourceSql);
//API创建表
Schema schema = Schema.newBuilder()
.columnByMetadata("event_time", DataTypes.TIME(3), "timestamp")
.columnByMetadata("partition", DataTypes.BIGINT(), true)
.columnByMetadata("offset", DataTypes.BIGINT(), true)
.column("user_id", DataTypes.BIGINT())
.column("item_id", DataTypes.BIGINT())
.column("behavior", DataTypes.STRING())
.build();
TableDescriptor kafkaDescriptor = TableDescriptor.forConnector("kafka")
.comment("kafka source table")
.schema(schema)
.option(KafkaConnectorOptions.TOPIC, Lists.newArrayList("user_behavior"))
.option(KafkaConnectorOptions.PROPS_BOOTSTRAP_SERVERS, "192.168.10.41:9092,192.168.10.42:9092,192.168.10.43:9092")
.option(KafkaConnectorOptions.PROPS_GROUP_ID, "testGroup")
.option("scan.startup.mode", "earliest-offset")
.format("csv")
.build();
tenv.createTemporaryTable("Alan_KafkaTable", kafkaDescriptor);
//查询
String sql = "select * from Alan_KafkaTable ";
Table resultQuery = tenv.sqlQuery(sql);
DataStream<Tuple2<Boolean, Row>> resultDS = tenv.toRetractStream(resultQuery, Row.class);
// 6、sink
resultDS.print();
// 7、执行
env.execute();
//kafka中输入测试数据
// 1,1001,login
// 1,2001,p_read
//程序运行控制台输入如下
// 11> (true,+I[16:32:19.923, 0, 0, 1, 1001, login])
// 11> (true,+I[16:32:32.258, 0, 1, 1, 2001, p_read])
}
@Data
@NoArgsConstructor
@AllArgsConstructor
public static class User {
private long id;
private String name;
private int age;
private Long rowtime;
}
}
上面例子是通过SQL和API两种方式创建一张名称为Alan_KafkaTable 的连接器为kafka的表,然后查询其数据。如需要需要进行聚合操作,直接编写sql即可。
程序的整体框架使用入门示例1的,此处仅仅列出创建视图的方法
static void testCreateViewByAPI() throws Exception {
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
StreamTableEnvironment tenv = StreamTableEnvironment.create(env);
// SQL 创建输入表
String sourceSql = "CREATE TABLE Alan_KafkaTable (\r\n" +
" `event_time` TIMESTAMP(3) METADATA FROM 'timestamp',\r\n" +
" `partition` BIGINT METADATA VIRTUAL,\r\n" +
" `offset` BIGINT METADATA VIRTUAL,\r\n" +
" `user_id` BIGINT,\r\n" +
" `item_id` BIGINT,\r\n" +
" `behavior` STRING\r\n" +
") WITH (\r\n" +
" 'connector' = 'kafka',\r\n" +
" 'topic' = 'user_behavior',\r\n" +
" 'properties.bootstrap.servers' = '192.168.10.41:9092,192.168.10.42:9092,192.168.10.43:9092',\r\n" +
" 'properties.group.id' = 'testGroup',\r\n" +
" 'scan.startup.mode' = 'earliest-offset',\r\n" +
" 'format' = 'csv'\r\n" +
");";
tenv.executeSql(sourceSql);
// 创建视图
String catalogName = "alan_hive";
String defaultDatabase = "default";
String databaseName = "viewtest_db";
String hiveConfDir = "/usr/local/bigdata/apache-hive-3.1.2-bin/conf";
HiveCatalog hiveCatalog = new HiveCatalog(catalogName, defaultDatabase, hiveConfDir);
tenv.registerCatalog(catalogName, hiveCatalog);
tenv.useCatalog(catalogName);
hiveCatalog.createDatabase(databaseName, new CatalogDatabaseImpl(new HashMap(), hiveConfDir) {
}, true);
tenv.useDatabase(databaseName);
String viewName = "Alan_KafkaView";
String originalQuery = "select user_id , behavior from Alan_KafkaTable group by user_id ,behavior ";
String expandedQuery = "SELECT user_id , behavior FROM "+databaseName+"."+"Alan_KafkaTable group by user_id ,behavior ";
String comment = "this is a comment";
ObjectPath path= new ObjectPath(databaseName, viewName);
createView(originalQuery,expandedQuery,comment,hiveCatalog,path);
// 查询视图
String queryViewSQL =" select * from Alan_KafkaView ";
Table queryViewResult = tenv.sqlQuery(queryViewSQL);
DataStream<Tuple2<Boolean, Row>> resultDS = tenv.toRetractStream(queryViewResult, Row.class);
// 6、sink
resultDS.print();
// 7、执行
env.execute();
//kafka中输入测试数据
// 1,1001,login
// 1,2001,p_read
//程序运行控制台输入如下
// 3> (true,+I[1, login])
// 14> (true,+I[1, p_read])
}
static void createView(String originalQuery,String expandedQuery,String comment,HiveCatalog hiveCatalog,ObjectPath path) throws Exception {
ResolvedSchema resolvedSchema = new ResolvedSchema(
Arrays.asList(
Column.physical("user_id", DataTypes.INT()),
Column.physical("behavior", DataTypes.STRING())
),
Collections.emptyList(),
null);
CatalogView origin = CatalogView.of(
Schema.newBuilder().fromResolvedSchema(resolvedSchema).build(),
comment,
originalQuery,
expandedQuery,
Collections.emptyMap());
CatalogView view = new ResolvedCatalogView(origin, resolvedSchema);
hiveCatalog.createTable(path, view, false);
}
static void testCreateViewBySQL() throws Exception {
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
StreamTableEnvironment tenv = StreamTableEnvironment.create(env);
// SQL 创建输入表
String sourceSql = "CREATE TABLE Alan_KafkaTable (\r\n" +
" `event_time` TIMESTAMP(3) METADATA FROM 'timestamp',\r\n" +
" `partition` BIGINT METADATA VIRTUAL,\r\n" +
" `offset` BIGINT METADATA VIRTUAL,\r\n" +
" `user_id` BIGINT,\r\n" +
" `item_id` BIGINT,\r\n" +
" `behavior` STRING\r\n" +
") WITH (\r\n" +
" 'connector' = 'kafka',\r\n" +
" 'topic' = 'user_behavior',\r\n" +
" 'properties.bootstrap.servers' = '192.168.10.41:9092,192.168.10.42:9092,192.168.10.43:9092',\r\n" +
" 'properties.group.id' = 'testGroup',\r\n" +
" 'scan.startup.mode' = 'earliest-offset',\r\n" +
" 'format' = 'csv'\r\n" +
");";
tenv.executeSql(sourceSql);
//
String sql = "select user_id , behavior from Alan_KafkaTable group by user_id ,behavior ";
Table resultQuery = tenv.sqlQuery(sql);
tenv.createTemporaryView("Alan_KafkaView", resultQuery);
String queryViewSQL =" select * from Alan_KafkaView ";
Table queryViewResult = tenv.sqlQuery(queryViewSQL);
DataStream<Tuple2<Boolean, Row>> resultDS = tenv.toRetractStream(queryViewResult, Row.class);
// 6、sink
resultDS.print();
// 7、执行
env.execute();
//kafka中输入测试数据
// 1,1001,login
// 1,2001,p_read
//程序运行控制台输入如下
// 3> (true,+I[1, login])
// 14> (true,+I[1, p_read])
}
本示例通过sql和api创建视图,视图是user_id和behavior分组的结果,如果需要聚合直接使用sql即可。
本示例实现了Tumble和Over窗口。
如果使用sql的窗口函数参考:
27、Flink 的SQL之SELECT (Group Aggregation分组聚合、Over Aggregation Over聚合 和 Window Join 窗口关联)介绍及详细示例(5)
static void testQueryTableWithWindwosByAPI() throws Exception {
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
StreamTableEnvironment tenv = StreamTableEnvironment.create(env);
DataStream<User> users = env.fromCollection(userList)
.assignTimestampsAndWatermarks(
WatermarkStrategy
.<User>forBoundedOutOfOrderness(Duration.ofSeconds(1))
.withTimestampAssigner((user, recordTimestamp) -> user.getRowtime())
)
;
Table usersTable = tenv.fromDataStream(users, $("id"), $("name"), $("age"),$("rt").rowtime());
// tumble
Table result = usersTable
.filter(
and(
// $("name").equals("alanchan"),
// $("age").between(1, 20),
$("name").isNotNull(),
$("age").isGreaterOrEqual(19)
)
)
.window(Tumble.over(lit(1).hours()).on($("rt")).as("hourlyWindow"))// 定义滚动窗口并给窗口起一个别名
.groupBy($("name"),$("hourlyWindow"))// 窗口必须出现的分组字段中
.select($("name"),$("name").count().as("count(*)"), $("hourlyWindow").start(), $("hourlyWindow").end())
;
result.printSchema();
DataStream<Tuple2<Boolean, Row>> resultDS = tenv.toRetractStream(result, Row.class);
resultDS.print();
// over
usersTable
.window(Over.partitionBy($("name")).orderBy($("rt")).preceding(unresolvedCall(BuiltInFunctionDefinitions.UNBOUNDED_RANGE)).as("hourlyWindow"))
.select($("id"), $("rt"), $("id").count().over($("hourlyWindow")).as("count_t"))
.execute()
.print()
;
env.execute();
}
Table API 支持 Scala, Java 和 Python 语言。Scala 语言的 Table API 利用了 Scala 表达式,Java 语言的 Table API 支持 DSL 表达式和解析并转换为等价表达式的字符串,Python 语言的 Table API 仅支持解析并转换为等价表达式的字符串。
整体来看,使用API操作Flink 的表,可能会比较麻烦,大多数还是使用sql比较简单,如果sql不满足的情况下,api是一个补充。
Table API支持如下操作。请注意不是所有的操作都可以既支持流也支持批;这些操作都具有相应的标记。
具体示例如下,运行结果在源文件中
import static org.apache.flink.table.api.Expressions.$;
import static org.apache.flink.table.api.Expressions.row;
import static org.apache.flink.table.api.Expressions.and;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.table.api.DataTypes;
import org.apache.flink.table.api.Table;
import org.apache.flink.table.api.bridge.java.StreamTableEnvironment;
import org.apache.flink.types.Row;
/**
* @author alanchan
*
*/
public class TestTableAPIOperationDemo {
static String sourceSql = "CREATE TABLE Alan_KafkaTable (\r\n"
+ " `event_time` TIMESTAMP(3) METADATA FROM 'timestamp',\r\n"
+ " `partition` BIGINT METADATA VIRTUAL,\r\n"
+ " `offset` BIGINT METADATA VIRTUAL,\r\n"
+ " `user_id` BIGINT,\r\n"
+ " `item_id` BIGINT,\r\n"
+ " `behavior` STRING\r\n"
+ ") WITH (\r\n"
+ " 'connector' = 'kafka',\r\n"
+ " 'topic' = 'user_behavior',\r\n"
+ " 'properties.bootstrap.servers' = '192.168.10.41:9092,192.168.10.42:9092,192.168.10.43:9092',\r\n"
+ " 'properties.group.id' = 'testGroup',\r\n"
+ " 'scan.startup.mode' = 'earliest-offset',\r\n"
+ " 'format' = 'csv'\r\n"
+ ");";
/**
* @param args
* @throws Exception
*/
public static void main(String[] args) throws Exception {
// test1();
// test2();
test3();
}
static void test3() throws Exception {
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
StreamTableEnvironment tenv = StreamTableEnvironment.create(env);
// 建表
tenv.executeSql(sourceSql);
Table table1 = tenv.from("Alan_KafkaTable");
// 重命名字段。
Table result = table1.as("a","b","c","d","e","f");
DataStream<Tuple2<Boolean, Row>> resultDS = tenv.toRetractStream(result, Row.class);
resultDS.print();
//11> (true,+I[2023-11-01T11:00:30.183, 0, 2, 1, 1002, login])
//和 SQL 的 WHERE 子句类似。 过滤掉未验证通过过滤谓词的行。
Table table2 = result.where($("f").isEqual("login"));
DataStream<Tuple2<Boolean, Row>> result2DS = tenv.toRetractStream(table2, Row.class);
result2DS.print();
//11> (true,+I[2023-11-01T11:00:30.183, 0, 2, 1, 1002, login])
Table table3 = result.where($("f").isNotEqual("login"));
DataStream<Tuple2<Boolean, Row>> result3DS = tenv.toRetractStream(table3, Row.class);
result3DS.print();
// 没有匹配条件的记录,无输出
Table table4 = result
.filter(
and(
$("f").isNotNull(),
// $("d").isGreater(1)
$("e").isNotNull()
)
);
DataStream<Tuple2<Boolean, Row>> result4DS = tenv.toRetractStream(table4, Row.class);
result4DS.print("test filter:");
//test filter::11> (true,+I[2023-11-01T11:00:30.183, 0, 2, 1, 1002, login])
env.execute();
}
/**
* 和 SQL 查询中的 VALUES 子句类似。 基于提供的行生成一张内联表。
*
* 你可以使用 row(...) 表达式创建复合行:
*
* @throws Exception
*/
static void test2() throws Exception {
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
StreamTableEnvironment tenv = StreamTableEnvironment.create(env);
Table table = tenv.fromValues(row(1, "ABC"), row(2L, "ABCDE"));
table.printSchema();
// (
// `f0` BIGINT NOT NULL,
// `f1` VARCHAR(5) NOT NULL
// )
DataStream<Tuple2<Boolean, Row>> resultDS = tenv.toRetractStream(table, Row.class);
resultDS.print();
// 1> (true,+I[2, ABCDE])
// 2> (true,+I[1, ABC])
Table table2 = tenv.fromValues(
DataTypes.ROW(
DataTypes.FIELD("id", DataTypes.DECIMAL(10, 2)),
DataTypes.FIELD("name", DataTypes.STRING())
),
row(1, "ABCD"),
row(2L, "ABCDEF")
);
table2.printSchema();
// (
// `id` DECIMAL(10, 2),
// `name` STRING
// )
DataStream<Tuple2<Boolean, Row>> result2DS = tenv.toRetractStream(table2, Row.class);
result2DS.print();
// 15> (true,+I[2.00, ABCDEF])
// 14> (true,+I[1.00, ABCD])
env.execute();
}
/**
* 和 SQL 查询的 FROM 子句类似。 执行一个注册过的表的扫描。
*
* @throws Exception
*/
static void test1() throws Exception {
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
StreamTableEnvironment tenv = StreamTableEnvironment.create(env);
// 建表
tenv.executeSql(sourceSql);
// 查询
// tenv.from("Alan_KafkaTable").execute().print();
// kafka输入数据
// 1,1002,login
// 应用程序控制台输出如下
// +----+-------------------------+----------------------+----------------------+----------------------+----------------------+--------------------------------+
// | op | event_time | partition | offset | user_id | item_id | behavior |
// +----+-------------------------+----------------------+----------------------+----------------------+----------------------+--------------------------------+
// | +I | 2023-11-01 11:00:30.183 | 0 | 2 | 1 | 1002 | login |
Table temp = tenv.from("Alan_KafkaTable");
//和 SQL 的 SELECT 子句类似。 执行一个 select 操作
Table result1 = temp.select($("user_id"), $("item_id").as("behavior"), $("event_time"));
DataStream<Tuple2<Boolean, Row>> result1DS = tenv.toRetractStream(result1, Row.class);
// result1DS.print();
// 11> (true,+I[1, 1002, 2023-11-01T11:00:30.183])
//选择星号(*)作为通配符,select 表中的所有列。
Table result2 = temp.select($("*"));
DataStream<Tuple2<Boolean, Row>> result2DS = tenv.toRetractStream(result2, Row.class);
result2DS.print();
// 11> (true,+I[2023-11-01T11:00:30.183, 0, 2, 1, 1002, login])
env.execute();
}
}
具体示例如下,运行结果在源文件中
import static org.apache.flink.table.api.Expressions.$;
import static org.apache.flink.table.api.Expressions.row;
import static org.apache.flink.table.api.Expressions.and;
import static org.apache.flink.table.api.Expressions.concat;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.table.api.DataTypes;
import org.apache.flink.table.api.Table;
import org.apache.flink.table.api.bridge.java.StreamTableEnvironment;
import org.apache.flink.types.Row;
/**
* @author alanchan
*
*/
public class TestTableAPIOperationDemo {
static String sourceSql = "CREATE TABLE Alan_KafkaTable (\r\n"
+ " `event_time` TIMESTAMP(3) METADATA FROM 'timestamp',\r\n"
+ " `partition` BIGINT METADATA VIRTUAL,\r\n"
+ " `offset` BIGINT METADATA VIRTUAL,\r\n"
+ " `user_id` BIGINT,\r\n"
+ " `item_id` BIGINT,\r\n"
+ " `behavior` STRING\r\n"
+ ") WITH (\r\n"
+ " 'connector' = 'kafka',\r\n"
+ " 'topic' = 'user_behavior',\r\n"
+ " 'properties.bootstrap.servers' = '192.168.10.41:9092,192.168.10.42:9092,192.168.10.43:9092',\r\n"
+ " 'properties.group.id' = 'testGroup',\r\n"
+ " 'scan.startup.mode' = 'earliest-offset',\r\n"
+ " 'format' = 'csv'\r\n"
+ ");";
/**
* @param args
* @throws Exception
*/
public static void main(String[] args) throws Exception {
// test1();
// test2();
test3();
}
static void test3() throws Exception {
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
StreamTableEnvironment tenv = StreamTableEnvironment.create(env);
// 建表
tenv.executeSql(sourceSql);
Table table1 = tenv.from("Alan_KafkaTable");
// 重命名字段。
Table result = table1.as("a","b","c","d","e","f");
DataStream<Tuple2<Boolean, Row>> resultDS = tenv.toRetractStream(result, Row.class);
resultDS.print();
//11> (true,+I[2023-11-01T11:00:30.183, 0, 2, 1, 1002, login])
//和 SQL 的 WHERE 子句类似。 过滤掉未验证通过过滤谓词的行。
Table table2 = result.where($("f").isEqual("login"));
DataStream<Tuple2<Boolean, Row>> result2DS = tenv.toRetractStream(table2, Row.class);
result2DS.print();
//11> (true,+I[2023-11-01T11:00:30.183, 0, 2, 1, 1002, login])
Table table3 = result.where($("f").isNotEqual("login"));
DataStream<Tuple2<Boolean, Row>> result3DS = tenv.toRetractStream(table3, Row.class);
result3DS.print();
// 没有匹配条件的记录,无输出
Table table4 = result
.filter(
and(
$("f").isNotNull(),
// $("d").isGreater(1)
$("e").isNotNull()
)
);
DataStream<Tuple2<Boolean, Row>> result4DS = tenv.toRetractStream(table4, Row.class);
result4DS.print("test filter:");
//test filter::11> (true,+I[2023-11-01T11:00:30.183, 0, 2, 1, 1002, login])
env.execute();
}
/**
* 和 SQL 查询中的 VALUES 子句类似。 基于提供的行生成一张内联表。
*
* 你可以使用 row(...) 表达式创建复合行:
*
* @throws Exception
*/
static void test2() throws Exception {
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
StreamTableEnvironment tenv = StreamTableEnvironment.create(env);
Table table = tenv.fromValues(row(1, "ABC"), row(2L, "ABCDE"));
table.printSchema();
// (
// `f0` BIGINT NOT NULL,
// `f1` VARCHAR(5) NOT NULL
// )
DataStream<Tuple2<Boolean, Row>> resultDS = tenv.toRetractStream(table, Row.class);
resultDS.print();
// 1> (true,+I[2, ABCDE])
// 2> (true,+I[1, ABC])
Table table2 = tenv.fromValues(
DataTypes.ROW(
DataTypes.FIELD("id", DataTypes.DECIMAL(10, 2)),
DataTypes.FIELD("name", DataTypes.STRING())
),
row(1, "ABCD"),
row(2L, "ABCDEF")
);
table2.printSchema();
// (
// `id` DECIMAL(10, 2),
// `name` STRING
// )
DataStream<Tuple2<Boolean, Row>> result2DS = tenv.toRetractStream(table2, Row.class);
result2DS.print();
// 15> (true,+I[2.00, ABCDEF])
// 14> (true,+I[1.00, ABCD])
env.execute();
}
/**
* 和 SQL 查询的 FROM 子句类似。 执行一个注册过的表的扫描。
*
* @throws Exception
*/
static void test1() throws Exception {
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
StreamTableEnvironment tenv = StreamTableEnvironment.create(env);
// 建表
tenv.executeSql(sourceSql);
// 查询
// tenv.from("Alan_KafkaTable").execute().print();
// kafka输入数据
// 1,1002,login
// 应用程序控制台输出如下
// +----+-------------------------+----------------------+----------------------+----------------------+----------------------+--------------------------------+
// | op | event_time | partition | offset | user_id | item_id | behavior |
// +----+-------------------------+----------------------+----------------------+----------------------+----------------------+--------------------------------+
// | +I | 2023-11-01 11:00:30.183 | 0 | 2 | 1 | 1002 | login |
Table temp = tenv.from("Alan_KafkaTable");
//和 SQL 的 SELECT 子句类似。 执行一个 select 操作
Table result1 = temp.select($("user_id"), $("item_id").as("behavior"), $("event_time"));
DataStream<Tuple2<Boolean, Row>> result1DS = tenv.toRetractStream(result1, Row.class);
// result1DS.print();
// 11> (true,+I[1, 1002, 2023-11-01T11:00:30.183])
//选择星号(*)作为通配符,select 表中的所有列。
Table result2 = temp.select($("*"));
DataStream<Tuple2<Boolean, Row>> result2DS = tenv.toRetractStream(result2, Row.class);
result2DS.print();
// 11> (true,+I[2023-11-01T11:00:30.183, 0, 2, 1, 1002, login])
env.execute();
}
static void test5() throws Exception {
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
StreamTableEnvironment tenv = StreamTableEnvironment.create(env);
// 建表
tenv.executeSql(sourceSql);
Table table = tenv.from("Alan_KafkaTable");
//和 SQL 的 GROUP BY 子句类似。 使用分组键对行进行分组,使用伴随的聚合算子来按照组进行聚合行。
Table result = table.groupBy($("user_id")).select($("user_id"), $("user_id").count().as("count(user_id)"));
DataStream<Tuple2<Boolean, Row>> resultDS = tenv.toRetractStream(result, Row.class);
resultDS.print();
// 12> (true,+I[1, 1])
env.execute();
}
static void test4() throws Exception {
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
StreamTableEnvironment tenv = StreamTableEnvironment.create(env);
// 建表
tenv.executeSql(sourceSql);
Table table = tenv.from("Alan_KafkaTable");
//执行字段添加操作。 如果所添加的字段已经存在,将抛出异常。
Table result2 = table.addColumns($("behavior").plus(1).as("t_col1"));
result2.printSchema();
// (
// `event_time` TIMESTAMP(3),
// `partition` BIGINT,
// `offset` BIGINT,
// `user_id` BIGINT,
// `item_id` BIGINT,
// `behavior` STRING,
// `t_col1` STRING
// )
Table result = table.addColumns($("behavior").plus(1).as("t_col3"), concat($("behavior"), "alanchan").as("t_col4"));
result.printSchema();
// (
// `event_time` TIMESTAMP(3),
// `partition` BIGINT,
// `offset` BIGINT,
// `user_id` BIGINT,
// `item_id` BIGINT,
// `behavior` STRING,
// `t_col3` STRING,
// `t_col4` STRING
// )
Table result3 = table.addColumns(concat($("behavior"), "alanchan").as("t_col4"));
result3.printSchema();
// (
// `event_time` TIMESTAMP(3),
// `partition` BIGINT,
// `offset` BIGINT,
// `user_id` BIGINT,
// `item_id` BIGINT,
// `behavior` STRING,
// `t_col4` STRING
// )
//执行字段添加操作。 如果添加的列名称和已存在的列名称相同,则已存在的字段将被替换。 此外,如果添加的字段里面有重复的字段名,则会使用最后一个字段。
Table result4 = result3.addOrReplaceColumns(concat($("t_col4"), "alanchan").as("t_col"));
result4.printSchema();
// (
// `event_time` TIMESTAMP(3),
// `partition` BIGINT,
// `offset` BIGINT,
// `user_id` BIGINT,
// `item_id` BIGINT,
// `behavior` STRING,
// `t_col4` STRING,
// `t_col` STRING
// )
Table result5 = result4.dropColumns($("t_col4"), $("t_col"));
result5.printSchema();
// (
// `event_time` TIMESTAMP(3),
// `partition` BIGINT,
// `offset` BIGINT,
// `user_id` BIGINT,
// `item_id` BIGINT,
// `behavior` STRING
// )
//执行字段重命名操作。 字段表达式应该是别名表达式,并且仅当字段已存在时才能被重命名。
Table result6 = result4.renameColumns($("t_col4").as("col1"), $("t_col").as("col2"));
result6.printSchema();
// (
// `event_time` TIMESTAMP(3),
// `partition` BIGINT,
// `offset` BIGINT,
// `user_id` BIGINT,
// `item_id` BIGINT,
// `behavior` STRING,
// `col1` STRING,
// `col2` STRING
// )
DataStream<Tuple2<Boolean, Row>> resultDS = tenv.toRetractStream(table, Row.class);
resultDS.print();
// 11> (true,+I[2023-11-01T11:00:30.183, 0, 2, 1, 1002, login])
env.execute();
}
}
本部分仅仅就是用的公共对象,比如User的定义,和需要引入的包
import static org.apache.flink.table.api.Expressions.$;
import static org.apache.flink.table.api.Expressions.lit;
import static org.apache.flink.table.expressions.ApiExpressionUtils.unresolvedCall;
import java.time.Duration;
import java.util.Arrays;
import java.util.List;
import org.apache.flink.api.common.eventtime.WatermarkStrategy;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.table.api.Over;
import org.apache.flink.table.api.Table;
import org.apache.flink.table.api.Tumble;
import org.apache.flink.table.api.bridge.java.StreamTableEnvironment;
import org.apache.flink.table.functions.BuiltInFunctionDefinitions;
import org.apache.flink.types.Row;
import lombok.AllArgsConstructor;
import lombok.Data;
import lombok.NoArgsConstructor;
/**
* @author alanchan
*
*/
public class TestTableAPIOperationDemo2 {
final static List<User> userList = Arrays.asList(
new User(1L, "alan", 18, 1698742358391L),
new User(2L, "alan", 19, 1698742359396L),
new User(3L, "alan", 25, 1698742360407L),
new User(4L, "alanchan", 28, 1698742361409L),
new User(5L, "alanchan", 29, 1698742362424L)
);
/**
* @param args
* @throws Exception
*/
public static void main(String[] args) throws Exception {
// test1();
// test2();
// test3();
test4();
}
@Data
@NoArgsConstructor
@AllArgsConstructor
public static class User {
private long id;
private String name;
private int balance;
private Long rowtime;
}
}
本示例仅仅展示了group by操作,比较简单。
static void test2() throws Exception {
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
StreamTableEnvironment tenv = StreamTableEnvironment.create(env);
// 建表
tenv.executeSql(sourceSql);
Table table = tenv.from("Alan_KafkaTable");
//和 SQL 的 GROUP BY 子句类似。 使用分组键对行进行分组,使用伴随的聚合算子来按照组进行聚合行。
Table result = table.groupBy($("user_id")).select($("user_id"), $("user_id").count().as("count(user_id)"));
DataStream<Tuple2<Boolean, Row>> resultDS = tenv.toRetractStream(result, Row.class);
resultDS.print();
// 12> (true,+I[1, 1])
env.execute();
}
使用分组窗口结合单个或者多个分组键对表进行分组和聚合。
static void test2() throws Exception {
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
StreamTableEnvironment tenv = StreamTableEnvironment.create(env);
DataStream<User> users = env.fromCollection(userList)
.assignTimestampsAndWatermarks(
WatermarkStrategy
.<User>forBoundedOutOfOrderness(Duration.ofSeconds(1))
.withTimestampAssigner((user, recordTimestamp) -> user.getRowtime())
)
;
Table usersTable = tenv.fromDataStream(users, $("id"), $("name"), $("balance"),$("rowtime").rowtime());
//使用分组窗口结合单个或者多个分组键对表进行分组和聚合。
Table result = usersTable
.window(Tumble.over(lit(5).minutes()).on($("rowtime")).as("w")) // 定义窗口
.groupBy($("name"), $("w")) // 按窗口和键分组
// 访问窗口属性并聚合
.select(
$("name"),
$("w").start(),
$("w").end(),
$("w").rowtime(),
$("balance").sum().as("sum(balance)")
);
DataStream<Tuple2<Boolean, Row>> resultDS = tenv.toRetractStream(result, Row.class);
resultDS.print();
// 2> (true,+I[alan, 2023-10-31T08:50, 2023-10-31T08:55, 2023-10-31T08:54:59.999, 62])
// 16> (true,+I[alanchan, 2023-10-31T08:50, 2023-10-31T08:55, 2023-10-31T08:54:59.999, 57])
env.execute();
}
和 SQL 的 OVER 子句类似。
static void test3() throws Exception {
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
StreamTableEnvironment tenv = StreamTableEnvironment.create(env);
DataStream<User> users = env.fromCollection(userList)
.assignTimestampsAndWatermarks(
WatermarkStrategy
.<User>forBoundedOutOfOrderness(Duration.ofSeconds(1))
.withTimestampAssigner((user, recordTimestamp) -> user.getRowtime())
);
Table usersTable = tenv.fromDataStream(users, $("id"), $("name"), $("balance"),$("rowtime").rowtime());
// 所有的聚合必须定义在同一个窗口上,比如同一个分区、排序和范围内。目前只支持 PRECEDING 到当前行范围(无界或有界)的窗口。
//尚不支持 FOLLOWING 范围的窗口。ORDER BY 操作必须指定一个单一的时间属性。
Table result = usersTable
// 定义窗口
.window(
Over
.partitionBy($("name"))
.orderBy($("rowtime"))
.preceding(unresolvedCall(BuiltInFunctionDefinitions.UNBOUNDED_RANGE))
.following(unresolvedCall(BuiltInFunctionDefinitions.CURRENT_RANGE))
.as("w"))
// 滑动聚合
.select(
$("id"),
$("balance").avg().over($("w")),
$("balance").max().over($("w")),
$("balance").min().over($("w"))
);
DataStream<Tuple2<Boolean, Row>> resultDS = tenv.toRetractStream(result, Row.class);
resultDS.print();
// 2> (true,+I[1, 18, 18, 18])
// 16> (true,+I[4, 28, 28, 28])
// 2> (true,+I[2, 18, 19, 18])
// 16> (true,+I[5, 28, 29, 28])
// 2> (true,+I[3, 20, 25, 18])
env.execute();
}
/**
* 和 SQL DISTINCT 聚合子句类似,例如 COUNT(DISTINCT a)。
* Distinct 聚合声明的聚合函数(内置或用户定义的)仅应用于互不相同的输入值。
* Distinct 可以应用于 GroupBy Aggregation、GroupBy Window Aggregation 和 Over Window Aggregation。
* @throws Exception
*/
static void test4() throws Exception {
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
StreamTableEnvironment tenv = StreamTableEnvironment.create(env);
DataStream<User> users = env.fromCollection(userList)
.assignTimestampsAndWatermarks(
WatermarkStrategy
.<User>forBoundedOutOfOrderness(Duration.ofSeconds(1))
.withTimestampAssigner((user, recordTimestamp) -> user.getRowtime())
);
Table usersTable = tenv.fromDataStream(users, $("id"), $("name"), $("balance"),$("rowtime").rowtime());
// 按属性分组后的的互异(互不相同、去重)聚合
Table groupByDistinctResult = usersTable
.groupBy($("name"))
.select($("name"), $("balance").sum().distinct().as("sum_balance"));
DataStream<Tuple2<Boolean, Row>> resultDS = tenv.toRetractStream(groupByDistinctResult, Row.class);
// resultDS.print();
// 2> (true,+I[alan, 18])
// 16> (true,+I[alanchan, 28])
// 16> (false,-U[alanchan, 28])
// 2> (false,-U[alan, 18])
// 16> (true,+U[alanchan, 57])
// 2> (true,+U[alan, 37])
// 2> (false,-U[alan, 37])
// 2> (true,+U[alan, 62])
//按属性、时间窗口分组后的互异(互不相同、去重)聚合
Table groupByWindowDistinctResult = usersTable
.window(Tumble
.over(lit(5).minutes())
.on($("rowtime"))
.as("w")
)
.groupBy($("name"), $("w"))
.select($("name"), $("balance").sum().distinct().as("sum_balance"));
DataStream<Tuple2<Boolean, Row>> result2DS = tenv.toRetractStream(groupByDistinctResult, Row.class);
// result2DS.print();
// 16> (true,+I[alanchan, 28])
// 2> (true,+I[alan, 18])
// 16> (false,-U[alanchan, 28])
// 2> (false,-U[alan, 18])
// 16> (true,+U[alanchan, 57])
// 2> (true,+U[alan, 37])
// 2> (false,-U[alan, 37])
// 2> (true,+U[alan, 62])
//over window 上的互异(互不相同、去重)聚合
Table result = usersTable
.window(Over
.partitionBy($("name"))
.orderBy($("rowtime"))
.preceding(unresolvedCall(BuiltInFunctionDefinitions.UNBOUNDED_RANGE))
.as("w"))
.select(
$("name"), $("balance").avg().distinct().over($("w")),
$("balance").max().over($("w")),
$("balance").min().over($("w"))
);
DataStream<Tuple2<Boolean, Row>> result3DS = tenv.toRetractStream(result, Row.class);
result3DS.print();
// 16> (true,+I[alanchan, 28, 28, 28])
// 2> (true,+I[alan, 18, 18, 18])
// 2> (true,+I[alan, 18, 19, 18])
// 16> (true,+I[alanchan, 28, 29, 28])
// 2> (true,+I[alan, 20, 25, 18])
env.execute();
}
用户定义的聚合函数也可以与 DISTINCT 修饰符一起使用。如果计算不同(互异、去重的)值的聚合结果,则只需向聚合函数添加 distinct 修饰符即可。
Table orders = tEnv.from("Orders");
// 对 user-defined aggregate functions 使用互异(互不相同、去重)聚合
tEnv.registerFunction("myUdagg", new MyUdagg());
orders.groupBy("users")
.select(
$("users"),
call("myUdagg", $("points")).distinct().as("myDistinctResult")
);
和 SQL 的 DISTINCT 子句类似。 返回具有不同组合值的记录。
static void test5() throws Exception {
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
StreamTableEnvironment tenv = StreamTableEnvironment.create(env);
List<User> userList = Arrays.asList(
new User(1L, "alan", 18, 1698742358391L),
new User(2L, "alan", 19, 1698742359396L),
new User(3L, "alan", 25, 1698742360407L),
new User(4L, "alanchan", 28, 1698742361409L),
new User(5L, "alanchan", 29, 1698742362424L),
new User(5L, "alanchan", 29, 1698742362424L)
);
DataStream<User> users = env.fromCollection(userList)
.assignTimestampsAndWatermarks(
WatermarkStrategy
.<User>forBoundedOutOfOrderness(Duration.ofSeconds(1))
.withTimestampAssigner((user, recordTimestamp) -> user.getRowtime())
);
Table usersTable = tenv.fromDataStream(users, $("id"), $("name"), $("balance"),$("rowtime").rowtime());
// Table orders = tableEnv.from("Orders");
Table result = usersTable.distinct();
DataStream<Tuple2<Boolean, Row>> resultDS = tenv.toRetractStream(result, Row.class);
resultDS.print();
// 数据集有6条记录,并且有一条是重复的,故只输出5条
// 9> (true,+I[2, alan, 19, 2023-10-31T08:52:39.396])
// 1> (true,+I[1, alan, 18, 2023-10-31T08:52:38.391])
// 13> (true,+I[3, alan, 25, 2023-10-31T08:52:40.407])
// 7> (true,+I[4, alanchan, 28, 2023-10-31T08:52:41.409])
// 13> (true,+I[5, alanchan, 29, 2023-10-31T08:52:42.424])
env.execute();
}
本部分介绍了表的join主要操作,比如内联接、外联接以及联接自定义函数等,其中时态表的联接以scala的示例进行说明。
关于自定义函数的联接将在flink 自定义函数中介绍,因为使用函数和联接本身关系不是非常密切。
19、Flink 的Table API 和 SQL 中的自定义函数(2)
import static org.apache.flink.table.api.Expressions.$;
import static org.apache.flink.table.api.Expressions.and;
import static org.apache.flink.table.api.Expressions.call;
import java.util.Arrays;
import java.util.List;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.api.java.tuple.Tuple3;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.table.api.Table;
import org.apache.flink.table.api.bridge.java.StreamTableEnvironment;
import org.apache.flink.table.functions.TableFunction;
import org.apache.flink.table.functions.TemporalTableFunction;
import org.apache.flink.types.Row;
import lombok.AllArgsConstructor;
import lombok.Data;
import lombok.NoArgsConstructor;
/**
* @author alanchan
*
*/
public class TestTableAPIJoinOperationDemo {
@Data
@NoArgsConstructor
@AllArgsConstructor
public static class User {
private long id;
private String name;
private double balance;
private Long rowtime;
}
@Data
@NoArgsConstructor
@AllArgsConstructor
public static class Order {
private long id;
private long user_id;
private double amount;
private Long rowtime;
}
final static List<User> userList = Arrays.asList(
new User(1L, "alan", 18, 1698742358391L),
new User(2L, "alan", 19, 1698742359396L),
new User(3L, "alan", 25, 1698742360407L),
new User(4L, "alanchan", 28, 1698742361409L),
new User(5L, "alanchan", 29, 1698742362424L)
);
final static List<Order> orderList = Arrays.asList(
new Order(1L, 1, 18, 1698742358391L),
new Order(2L, 2, 19, 1698742359396L),
new Order(3L, 1, 25, 1698742360407L),
new Order(4L, 3, 28, 1698742361409L),
new Order(5L, 1, 29, 1698742362424L),
new Order(6L, 4, 49, 1698742362424L)
);
static void testInnerJoin() throws Exception {
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
StreamTableEnvironment tenv = StreamTableEnvironment.create(env);
DataStream<User> users = env.fromCollection(userList);
Table usersTable = tenv.fromDataStream(users, $("id"), $("name"),$("balance"),$("rowtime"));
DataStream<Order> orders = env.fromCollection(orderList);
Table ordersTable = tenv.fromDataStream(orders, $("id"), $("user_id"), $("amount"),$("rowtime"));
Table left = usersTable.select($("id").as("userId"), $("name"), $("balance"),$("rowtime").as("u_rowtime"));
Table right = ordersTable.select($("id").as("orderId"), $("user_id"), $("amount"),$("rowtime").as("o_rowtime"));
Table result = left.join(right)
.where($("user_id").isEqual($("userId")))
.select($("orderId"), $("user_id"), $("amount"),$("o_rowtime"),$("name"),$("balance"));
DataStream<Tuple2<Boolean, Row>> resultDS = tenv.toRetractStream(result, Row.class);
resultDS.print();
// 15> (true,+I[4, 3, 28.0, 1698742361409, alan, 25])
// 12> (true,+I[1, 1, 18.0, 1698742358391, alan, 18])
// 3> (true,+I[6, 4, 49.0, 1698742362424, alanchan, 28])
// 12> (true,+I[2, 2, 19.0, 1698742359396, alan, 19])
// 12> (true,+I[3, 1, 25.0, 1698742360407, alan, 18])
// 12> (true,+I[5, 1, 29.0, 1698742362424, alan, 18])
env.execute();
}
/**
* 和 SQL LEFT/RIGHT/FULL OUTER JOIN 子句类似。 关联两张表。 两张表必须有不同的字段名,并且必须定义至少一个等式连接谓词。
* @throws Exception
*/
static void testOuterJoin() throws Exception {
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
StreamTableEnvironment tenv = StreamTableEnvironment.create(env);
DataStream<User> users = env.fromCollection(userList);
Table usersTable = tenv.fromDataStream(users, $("id"), $("name"),$("balance"),$("rowtime"));
DataStream<Order> orders = env.fromCollection(orderList);
Table ordersTable = tenv.fromDataStream(orders, $("id"), $("user_id"), $("amount"),$("rowtime"));
Table left = usersTable.select($("id").as("userId"), $("name"), $("balance"),$("rowtime").as("u_rowtime"));
Table right = ordersTable.select($("id").as("orderId"), $("user_id"), $("amount"),$("rowtime").as("o_rowtime"));
Table leftOuterResult = left.leftOuterJoin(right, $("user_id").isEqual($("userId")))
.select($("orderId"), $("user_id"), $("amount"),$("o_rowtime"),$("name"),$("balance"));
DataStream<Tuple2<Boolean, Row>> leftOuterResultDS = tenv.toRetractStream(leftOuterResult, Row.class);
// leftOuterResultDS.print();
// 12> (true,+I[null, null, null, null, alan, 18])
// 3> (true,+I[null, null, null, null, alanchan, 28])
// 12> (false,-D[null, null, null, null, alan, 18])
// 12> (true,+I[1, 1, 18.0, 1698742358391, alan, 18])
// 15> (true,+I[4, 3, 28.0, 1698742361409, alan, 25])
// 12> (true,+I[null, null, null, null, alan, 19])
// 3> (false,-D[null, null, null, null, alanchan, 28])
// 12> (false,-D[null, null, null, null, alan, 19])
// 3> (true,+I[6, 4, 49.0, 1698742362424, alanchan, 28])
// 12> (true,+I[2, 2, 19.0, 1698742359396, alan, 19])
// 12> (true,+I[3, 1, 25.0, 1698742360407, alan, 18])
// 3> (true,+I[null, null, null, null, alanchan, 29])
// 12> (true,+I[5, 1, 29.0, 1698742362424, alan, 18])
Table rightOuterResult = left.rightOuterJoin(right, $("user_id").isEqual($("userId")))
.select($("orderId"), $("user_id"), $("amount"),$("o_rowtime"),$("name"),$("balance"));
DataStream<Tuple2<Boolean, Row>> rightOuterResultDS = tenv.toRetractStream(rightOuterResult, Row.class);
// rightOuterResultDS.print();
// 12> (true,+I[1, 1, 18.0, 1698742358391, alan, 18])
// 3> (true,+I[6, 4, 49.0, 1698742362424, alanchan, 28])
// 15> (true,+I[4, 3, 28.0, 1698742361409, alan, 25])
// 12> (true,+I[2, 2, 19.0, 1698742359396, alan, 19])
// 12> (true,+I[3, 1, 25.0, 1698742360407, alan, 18])
// 12> (true,+I[5, 1, 29.0, 1698742362424, alan, 18])
Table fullOuterResult = left.fullOuterJoin(right, $("user_id").isEqual($("userId")))
.select($("orderId"), $("user_id"), $("amount"),$("o_rowtime"),$("name"),$("balance"));
DataStream<Tuple2<Boolean, Row>> fullOuterResultDS = tenv.toRetractStream(fullOuterResult, Row.class);
fullOuterResultDS.print();
// 3> (true,+I[6, 4, 49.0, 1698742362424, null, null])
// 12> (true,+I[1, 1, 18.0, 1698742358391, null, null])
// 15> (true,+I[4, 3, 28.0, 1698742361409, null, null])
// 12> (false,-D[1, 1, 18.0, 1698742358391, null, null])
// 3> (false,-D[6, 4, 49.0, 1698742362424, null, null])
// 12> (true,+I[1, 1, 18.0, 1698742358391, alan, 18])
// 3> (true,+I[6, 4, 49.0, 1698742362424, alanchan, 28])
// 3> (true,+I[null, null, null, null, alanchan, 29])
// 12> (true,+I[2, 2, 19.0, 1698742359396, null, null])
// 12> (false,-D[2, 2, 19.0, 1698742359396, null, null])
// 12> (true,+I[2, 2, 19.0, 1698742359396, alan, 19])
// 15> (false,-D[4, 3, 28.0, 1698742361409, null, null])
// 12> (true,+I[3, 1, 25.0, 1698742360407, alan, 18])
// 15> (true,+I[4, 3, 28.0, 1698742361409, alan, 25])
// 12> (true,+I[5, 1, 29.0, 1698742362424, alan, 18])
env.execute();
}
/**
* Interval join 是可以通过流模式处理的常规 join 的子集。
* Interval join 至少需要一个 equi-join 谓词和一个限制双方时间界限的 join 条件。
* 这种条件可以由两个合适的范围谓词(<、<=、>=、>)或一个比较两个输入表相同时间属性(即处理时间或事件时间)的等值谓词来定义。
* @throws Exception
*/
static void testIntervalJoin() throws Exception {
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
StreamTableEnvironment tenv = StreamTableEnvironment.create(env);
DataStream<User> users = env.fromCollection(userList);
Table usersTable = tenv.fromDataStream(users, $("id"), $("name"),$("balance"),$("rowtime"));
DataStream<Order> orders = env.fromCollection(orderList);
Table ordersTable = tenv.fromDataStream(orders, $("id"), $("user_id"), $("amount"),$("rowtime"));
Table left = usersTable.select($("id").as("userId"), $("name"), $("balance"),$("rowtime").as("u_rowtime"));
Table right = ordersTable.select($("id").as("orderId"), $("user_id"), $("amount"),$("rowtime").as("o_rowtime"));
Table result = left.join(right)
.where(
and(
$("user_id").isEqual($("userId")),
$("user_id").isLess(3)
// $("u_rowtime").isGreaterOrEqual($("o_rowtime").minus(lit(5).minutes())),
// $("u_rowtime").isLess($("o_rowtime").plus(lit(10).minutes()))
)
)
.select($("orderId"), $("user_id"), $("amount"),$("o_rowtime"),$("name"),$("balance"))
;
result.printSchema();
DataStream<Tuple2<Boolean, Row>> resultDS = tenv.toRetractStream(result, Row.class);
resultDS.print();
// 12> (true,+I[1, 1, 18.0, 1698742358391, alan, 18.0])
// 12> (true,+I[2, 2, 19.0, 1698742359396, alan, 19.0])
// 12> (true,+I[3, 1, 25.0, 1698742360407, alan, 18.0])
// 12> (true,+I[5, 1, 29.0, 1698742362424, alan, 18.0])
env.execute();
}
/**
* join 表和表函数的结果。左(外部)表的每一行都会 join 表函数相应调用产生的所有行。
* 如果表函数调用返回空结果,则删除左侧(外部)表的一行。
* 该示例为示例性的,具体的验证将在自定义函数中进行说明
*
* @throws Exception
*/
static void testInnerJoinWithUDTF() throws Exception {
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
StreamTableEnvironment tenv = StreamTableEnvironment.create(env);
// 注册 User-Defined Table Function
TableFunction<Tuple3<String,String,String>> split = new SplitFunction();
tenv.registerFunction("split", split);
// join
DataStream<Order> orders = env.fromCollection(orderList);
Table ordersTable = tenv.fromDataStream(orders, $("id"), $("user_id"), $("amount"),$("rowtime"));
Table result = ordersTable
.joinLateral(call("split", $("c")).as("s", "t", "v"))
.select($("a"), $("b"), $("s"), $("t"), $("v"));
env.execute();
}
/**
* join 表和表函数的结果。左(外部)表的每一行都会 join 表函数相应调用产生的所有行。
* 如果表函数调用返回空结果,则保留相应的 outer(外部连接)行并用空值填充右侧结果。
* 目前,表函数左外连接的谓词只能为空或字面(常量)真。
* 该示例为示例性的,具体的验证将在自定义函数中进行说明
*
* @throws Exception
*/
static void testLeftOuterJoinWithUDTF() throws Exception {
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
StreamTableEnvironment tenv = StreamTableEnvironment.create(env);
// 注册 User-Defined Table Function
TableFunction<Tuple3<String,String,String>> split = new SplitFunction();
tenv.registerFunction("split", split);
// join
DataStream<Order> orders = env.fromCollection(orderList);
Table ordersTable = tenv.fromDataStream(orders, $("id"), $("user_id"), $("amount"),$("rowtime"));
Table result = ordersTable
.leftOuterJoinLateral(call("split", $("c")).as("s", "t", "v"))
.select($("a"), $("b"), $("s"), $("t"), $("v"));
env.execute();
}
/**
* Temporal table 是跟踪随时间变化的表。
* Temporal table 函数提供对特定时间点 temporal table 状态的访问。
* 表与 temporal table 函数进行 join 的语法和使用表函数进行 inner join 的语法相同。
* 目前仅支持与 temporal table 的 inner join。
*
* @throws Exception
*/
static void testJoinWithTemporalTable() throws Exception {
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
StreamTableEnvironment tenv = StreamTableEnvironment.create(env);
Table ratesHistory = tenv.from("RatesHistory");
// 注册带有时间属性和主键的 temporal table function
TemporalTableFunction rates = ratesHistory.createTemporalTableFunction(
$("r_proctime"),
$("r_currency")
);
tenv.registerFunction("rates", rates);
// 基于时间属性和键与“Orders”表关联
Table orders = tenv.from("Orders");
Table result = orders
.joinLateral(call("rates", $("o_proctime")), $("o_currency").isEqual($("r_currency")));
env.execute();
}
/**
* @param args
* @throws Exception
*/
public static void main(String[] args) throws Exception {
// testInnerJoin();
// testOuterJoin();
// testIntervalJoin();
testInnerJoinWithUDTF();
}
static class SplitFunction extends TableFunction<Tuple3<String,String,String>>{
public void eval(Tuple3<String,String,String> tp) {
// for (String s : str.split(",")) {
// // use collect(...) to emit a row
collect(Row.of(s, s.length()));
// }
}
}
}
该示例来源于:https://developer.aliyun.com/article/679659
假设有一张订单表Orders和一张汇率表Rates,那么订单来自于不同的地区,所以支付的币种各不一样,那么假设需要统计每个订单在下单时候Yen币种对应的金额。
SELECT o.currency, o.amount, r.rate
o.amount * r.rate AS yen_amount
FROM
Orders AS o,
LATERAL TABLE (Rates(o.rowtime)) AS r
WHERE r.currency = o.currency
object TemporalTableJoinTest {
def main(args: Array[String]): Unit = {
val env = StreamExecutionEnvironment.getExecutionEnvironment
val tEnv = TableEnvironment.getTableEnvironment(env)
env.setParallelism(1)
// 设置时间类型是 event-time env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime)
// 构造订单数据
val ordersData = new mutable.MutableList[(Long, String, Timestamp)]
ordersData.+=((2L, "Euro", new Timestamp(2L)))
ordersData.+=((1L, "US Dollar", new Timestamp(3L)))
ordersData.+=((50L, "Yen", new Timestamp(4L)))
ordersData.+=((3L, "Euro", new Timestamp(5L)))
//构造汇率数据
val ratesHistoryData = new mutable.MutableList[(String, Long, Timestamp)]
ratesHistoryData.+=(("US Dollar", 102L, new Timestamp(1L)))
ratesHistoryData.+=(("Euro", 114L, new Timestamp(1L)))
ratesHistoryData.+=(("Yen", 1L, new Timestamp(1L)))
ratesHistoryData.+=(("Euro", 116L, new Timestamp(5L)))
ratesHistoryData.+=(("Euro", 119L, new Timestamp(7L)))
// 进行订单表 event-time 的提取
val orders = env
.fromCollection(ordersData)
.assignTimestampsAndWatermarks(new OrderTimestampExtractor[Long, String]())
.toTable(tEnv, 'amount, 'currency, 'rowtime.rowtime)
// 进行汇率表 event-time 的提取
val ratesHistory = env
.fromCollection(ratesHistoryData)
.assignTimestampsAndWatermarks(new OrderTimestampExtractor[String, Long]())
.toTable(tEnv, 'currency, 'rate, 'rowtime.rowtime)
// 注册订单表和汇率表
tEnv.registerTable("Orders", orders)
tEnv.registerTable("RatesHistory", ratesHistory)
val tab = tEnv.scan("RatesHistory");
// 创建TemporalTableFunction
val temporalTableFunction = tab.createTemporalTableFunction('rowtime, 'currency)
//注册TemporalTableFunction
tEnv.registerFunction("Rates",temporalTableFunction)
val SQLQuery =
"""
|SELECT o.currency, o.amount, r.rate,
| o.amount * r.rate AS yen_amount
|FROM
| Orders AS o,
| LATERAL TABLE (Rates(o.rowtime)) AS r
|WHERE r.currency = o.currency
|""".stripMargin
tEnv.registerTable("TemporalJoinResult", tEnv.SQLQuery(SQLQuery))
val result = tEnv.scan("TemporalJoinResult").toAppendStream[Row]
// 打印查询结果
result.print()
env.execute()
}
}
OrderTimestampExtractor 实现如下
import java.SQL.Timestamp
import org.apache.flink.streaming.api.functions.timestamps.BoundedOutOfOrdernessTimestampExtractor
import org.apache.flink.streaming.api.windowing.time.Time
class OrderTimestampExtractor[T1, T2]
extends BoundedOutOfOrdernessTimestampExtractor[(T1, T2, Timestamp)](Time.seconds(10)) {
override def extractTimestamp(element: (T1, T2, Timestamp)): Long = {
element._3.getTime
}
}
在实际的生产开发中,都需要实际的Connector的定义,下面我们以CSV格式的Connector定义来开发Temporal Table JOIN Demo。
1、genEventRatesHistorySource
def genEventRatesHistorySource: CsvTableSource = {
val csvRecords = Seq(
"ts#currency#rate",
"1#US Dollar#102",
"1#Euro#114",
"1#Yen#1",
"3#Euro#116",
"5#Euro#119",
"7#Pounds#108"
)
// 测试数据写入临时文件
val tempFilePath =
FileUtils.writeToTempFile(csvRecords.mkString(CommonUtils.line), "csv_source_rate", "tmp")
// 创建Source connector
new CsvTableSource(
tempFilePath,
Array("ts","currency","rate"),
Array(
Types.LONG,Types.STRING,Types.LONG
),
fieldDelim = "#",
rowDelim = CommonUtils.line,
ignoreFirstLine = true,
ignoreComments = "%"
)
}
2、genRatesOrderSource
def genRatesOrderSource: CsvTableSource = {
val csvRecords = Seq(
"ts#currency#amount",
"2#Euro#10",
"4#Euro#10"
)
// 测试数据写入临时文件
val tempFilePath =
FileUtils.writeToTempFile(csvRecords.mkString(CommonUtils.line), "csv_source_order", "tmp")
// 创建Source connector
new CsvTableSource(
tempFilePath,
Array("ts","currency", "amount"),
Array(
Types.LONG,Types.STRING,Types.LONG
),
fieldDelim = "#",
rowDelim = CommonUtils.line,
ignoreFirstLine = true,
ignoreComments = "%"
)
}
3、主程序
import java.io.File
import org.apache.flink.api.common.typeinfo.{TypeInformation, Types}
import org.apache.flink.book.utils.{CommonUtils, FileUtils}
import org.apache.flink.table.sinks.{CsvTableSink, TableSink}
import org.apache.flink.table.sources.CsvTableSource
import org.apache.flink.types.Row
object CsvTableSourceUtils {
def genWordCountSource: CsvTableSource = {
val csvRecords = Seq(
"words",
"Hello Flink",
"Hi, Apache Flink",
"Apache FlinkBook"
)
// 测试数据写入临时文件
val tempFilePath =
FileUtils.writeToTempFile(csvRecords.mkString("$"), "csv_source_", "tmp")
// 创建Source connector
new CsvTableSource(
tempFilePath,
Array("words"),
Array(
Types.STRING
),
fieldDelim = "#",
rowDelim = "$",
ignoreFirstLine = true,
ignoreComments = "%"
)
}
def genRatesHistorySource: CsvTableSource = {
val csvRecords = Seq(
"rowtime ,currency ,rate",
"09:00:00 ,US Dollar , 102",
"09:00:00 ,Euro , 114",
"09:00:00 ,Yen , 1",
"10:45:00 ,Euro , 116",
"11:15:00 ,Euro , 119",
"11:49:00 ,Pounds , 108"
)
// 测试数据写入临时文件
val tempFilePath =
FileUtils.writeToTempFile(csvRecords.mkString("$"), "csv_source_", "tmp")
// 创建Source connector
new CsvTableSource(
tempFilePath,
Array("rowtime","currency","rate"),
Array(
Types.STRING,Types.STRING,Types.STRING
),
fieldDelim = ",",
rowDelim = "$",
ignoreFirstLine = true,
ignoreComments = "%"
)
}
def genEventRatesHistorySource: CsvTableSource = {
val csvRecords = Seq(
"ts#currency#rate",
"1#US Dollar#102",
"1#Euro#114",
"1#Yen#1",
"3#Euro#116",
"5#Euro#119",
"7#Pounds#108"
)
// 测试数据写入临时文件
val tempFilePath =
FileUtils.writeToTempFile(csvRecords.mkString(CommonUtils.line), "csv_source_rate", "tmp")
// 创建Source connector
new CsvTableSource(
tempFilePath,
Array("ts","currency","rate"),
Array(
Types.LONG,Types.STRING,Types.LONG
),
fieldDelim = "#",
rowDelim = CommonUtils.line,
ignoreFirstLine = true,
ignoreComments = "%"
)
}
def genRatesOrderSource: CsvTableSource = {
val csvRecords = Seq(
"ts#currency#amount",
"2#Euro#10",
"4#Euro#10"
)
// 测试数据写入临时文件
val tempFilePath =
FileUtils.writeToTempFile(csvRecords.mkString(CommonUtils.line), "csv_source_order", "tmp")
// 创建Source connector
new CsvTableSource(
tempFilePath,
Array("ts","currency", "amount"),
Array(
Types.LONG,Types.STRING,Types.LONG
),
fieldDelim = "#",
rowDelim = CommonUtils.line,
ignoreFirstLine = true,
ignoreComments = "%"
)
}
/**
* Example:
* genCsvSink(
* Array[String]("word", "count"),
* Array[TypeInformation[_] ](Types.STRING, Types.LONG))
*/
def genCsvSink(fieldNames: Array[String], fieldTypes: Array[TypeInformation[_]]): TableSink[Row] = {
val tempFile = File.createTempFile("csv_sink_", "tem")
if (tempFile.exists()) {
tempFile.delete()
}
new CsvTableSink(tempFile.getAbsolutePath).configure(fieldNames, fieldTypes)
}
}
以上,通过示例介绍了如何使用table api进行表、视图、窗口函数的操作,同时也介绍了table api对表的查询、过滤、列、聚合以及join操作。关于表的set、order by、insert、group window、over window等相关操作详见下篇文章:17、Flink 之Table API: Table API 支持的操作(2)