文章目录
-
- 1 Classical Planing
-
- Planning Domain Definition Language(PDDL)
- classical planning
- big three planning approaches
- 2 PDDL
- 3 PDDL+ (这一章节会进一步讲解上一章节的语法)
-
- what make it hybird? 为什么PDDL+是混合的呢
- interact with a process while it runs ==#t==
- 4 eXplainable Planning
- 5 planning with number
-
- TIL(timed initial literals)
- 6 planning with preferences
-
- LTL(linear time logic)
- RELAXING NUMERIC EFFECTS
- distance to go & cost to go
- 7 planning with motion
- 8 考试卷子中的知识点(重要)
- 9 heuristic search planning
- Relaxed planning Graph(RPG)
- state space
- STN and snap action
- local search
- goal preference
- RPG solution extraction
- abstract state space
- LP/COLIN
1 Classical Planing
Planning Domain Definition Language(PDDL)
classical planning
- Domain-Independence Automated Planning=GPS general problem solving: create one planning algorithm that preforms sufficiently well on many application domain.
- plan validation: use VAL plan to independently verify if the plan is correct.
- path finding in very large deterministic transition systems
< S , s 0 , S ∗ , A , c o s t , T > <S,s0,S∗,A,cost,T>
STRIPS:
< V a r i a b l e , I n i t i a l , G o a l , A c t i o n > <Variable,Initial,Goal,Action>
- optimal planning: only optimal plans are solutions
- satisficing planning: any plan is a solution, but cheaper plans are preferred
big three planning approaches
- Graph/SAT Planing
- Symbolic Search Planning
- Heuristic State-Space Search
2 PDDL
first-order logic:一阶逻辑里面使用了大量所谓“限量词变量”(Quantified variables),比如:∃x(意思是存在一个变量x),限量词符号“∃”是把字母“E”从左向右反转过来产生的,其原本的意思的“Exist”(存在);而限量词∀x(对所有的变量x),符号”∀“是将字母”A“从下向上反转而产生的,其原本意思是”All“(所有、全部)。在这里,逻辑符号”∃“和”∀“就是一阶逻辑的”限量词“(Quantifer)。
相关博文:什么是一阶逻辑
下面会介绍PDDL语言中可以使用的一些常见语法
- PDDL2.1: Comparisons between numeric expressions are allowed as logical atoms:
(>=(fuel)(*(dist ?x ?y)(consumption)))
- PDDL2.1: extended with action durations
(= ?duration(/ (dist ?x ?y) (speed)))
举个例子:
- compiled using unary type predicates
(:objects a - block)
等价于
(:objects a)
(:init (BLOCK a))
forall (?x - block) (when (not (painted ?x) (color ?x)))
(not(p))变成了(not-p)
- increase&decrease
- plan metric
(: metric minimize (+ (* 2 total-time) (* 4 total-fuel-consumed)))
接下来是PDDL2.2的内容
- derived predicates
if…then…
(:derived (fed ?x) (exists ?y (and (connected ?x ?y) (fed ?y))))
- timed initial literals(TIL)
独立于actions taken
(at 9 (shop-open))
(at 18 (not (shop-open)))
- PDDL+ with temporal numeric change
- NUPDDL:uncertainty with oneof and unknown
(oneof (open_door d1) (open_door d2) (open_door d3))
(forall (?e - element_no) (unknown (element_value ?e)))
3 PDDL+ (这一章节会进一步讲解上一章节的语法)
what make it hybird? 为什么PDDL+是混合的呢
- when actions or event are performed they cause instantaneous changes in the world;当执行动作的时候,世界立刻改变了。
- process are continuous changes. generate continuous updates in the world.
interact with a process while it runs #t
我们知道 这个球落地的时候,**(height ?b)**应该是全程大于零0的
我们来重新写一下这个球的过程,让球落下,弹起,接住。
- First drop it action
- watch it fall process
- bounce event
- catch it
这里有一个简单的例子
4 eXplainable Planning
这一章就讲了几个explainable questions,感觉不太重要。
这一章不考试
5 planning with number
TIL(timed initial literals)
- 这个概念在PDDL2.2的时候介绍过,就是上文
- Allow us to model facts that become true, or false, at a specific time.‘Can use them to model deadlines or time windows.
- 这个TIL允许我们设定一些在某些时刻会变成true或者false的事实
- 通过TIL,实现dealine:
就是初始状态这是a,然后action的condition中at end设置一个a,然后初始状态设置一个某个时刻not-a.
- 通过TIL,实现time windows
跟上面一样
6 planning with preferences
- 满足hard goals 然后尽可能地满足preference
- sometime-before
- sometime-after
- preference
(preference p1 (always(not(at B))))
cost(p1) 这个是放弃这个preference所需要支付的cost
LTL(linear time logic)
- 有点像是temporal logic
RELAXING NUMERIC EFFECTS
- Maintain bounds: upper and lower bound on each numeric variable
- 感觉好像是为了preference,为了主要的目的,有的时候可以放宽别的限制
distance to go & cost to go
- distance to go:minimum number of actions to call something a goal state
- cost to go:which forgo actions must be applied
- 这里提到的distance-cost pairsis not all. All combinations of preferences would take ages. So use a greedy algorithm.
7 planning with motion
- TSP:travelling salesman problem
- 这部分没看懂讲了啥
8 考试卷子中的知识点(重要)
9 heuristic search planning
- Delete relaxaion:Estimate cost to goal by considering simpler planning task without negative side effects of actions.
- Abstraction:Estimate cost by projecting the state space to a smaller space.
- critical paths: Estimate cost by critical path length of a concurrent solution for a simplified problem.
- landmarks: an action set A is a landmark if all plans include an action from A. Compute a set of landmarks and use It to derive a cost estimate.
这里提出了LP linear program:
LP with same objective value but role of constraints and variables interchanged.
one variable per operator
one constraint per landmark
minimum hitting set
Relaxed planning Graph(RPG)
state space
STN and snap action
local search
Local search is extremely prone to wandering down dead ends and having to backtrack a lot.
goal preference
RPG solution extraction
abstract state space
LP/COLIN