Artificial Intelligence Planing (AIP)考试知识点复习

文章目录

    • 1 Classical Planing
      • Planning Domain Definition Language(PDDL)
      • classical planning
      • big three planning approaches
    • 2 PDDL
    • 3 PDDL+ (这一章节会进一步讲解上一章节的语法)
      • what make it hybird? 为什么PDDL+是混合的呢
      • interact with a process while it runs ==#t==
    • 4 eXplainable Planning
    • 5 planning with number
      • TIL(timed initial literals)
    • 6 planning with preferences
      • LTL(linear time logic)
      • RELAXING NUMERIC EFFECTS
      • distance to go & cost to go
    • 7 planning with motion
    • 8 考试卷子中的知识点(重要)
    • 9 heuristic search planning
    • Relaxed planning Graph(RPG)
    • state space
    • STN and snap action
    • local search
    • goal preference
    • RPG solution extraction
    • abstract state space
    • LP/COLIN

1 Classical Planing

Planning Domain Definition Language(PDDL)


classical planning

  • Domain-Independence Automated Planning=GPS general problem solving: create one planning algorithm that preforms sufficiently well on many application domain.
  • plan validation: use VAL plan to independently verify if the plan is correct.
  • path finding in very large deterministic transition systems

< S , s 0 , S ∗ , A , c o s t , T > <S,s0,S,A,cost,T>
STRIPS:
< V a r i a b l e , I n i t i a l , G o a l , A c t i o n > <Variable,Initial,Goal,Action>

  • optimal planning: only optimal plans are solutions
  • satisficing planning: any plan is a solution, but cheaper plans are preferred

big three planning approaches

  • Graph/SAT Planing
  • Symbolic Search Planning
  • Heuristic State-Space Search

2 PDDL

first-order logic:一阶逻辑里面使用了大量所谓“限量词变量”(Quantified variables),比如:∃x(意思是存在一个变量x),限量词符号“∃”是把字母“E”从左向右反转过来产生的,其原本的意思的“Exist”(存在);而限量词∀x(对所有的变量x),符号”∀“是将字母”A“从下向上反转而产生的,其原本意思是”All“(所有、全部)。在这里,逻辑符号”∃“和”∀“就是一阶逻辑的”限量词“(Quantifer)。
相关博文:什么是一阶逻辑


下面会介绍PDDL语言中可以使用的一些常见语法

  • PDDL2.1: Comparisons between numeric expressions are allowed as logical atoms:
(>=(fuel)(*(dist ?x ?y)(consumption)))
  • PDDL2.1: extended with action durations
(= ?duration(/ (dist ?x ?y) (speed)))

举个例子:
Artificial Intelligence Planing (AIP)考试知识点复习_第1张图片

  • compiled using unary type predicates
(:objects a - block)
等价于
(:objects a)
(:init (BLOCK a))
  • Quantor
    量词forall 和 exists,可以用and 和or 来代替了。
    Artificial Intelligence Planing (AIP)考试知识点复习_第2张图片

  • Conditional effects “when”

forall (?x - block) (when (not (painted ?x) (color ?x)))
  • negated preconditions
(not(p))变成了(not-p)
  • increase&decrease
    Artificial Intelligence Planing (AIP)考试知识点复习_第3张图片
  • plan metric
(: metric minimize (+ (* 2 total-time) (* 4 total-fuel-consumed)))

接下来是PDDL2.2的内容

  • derived predicates
    if…then…
(:derived (fed ?x) (exists ?y (and (connected ?x ?y) (fed ?y))))
  • timed initial literals(TIL)
    独立于actions taken
(at 9 (shop-open)) 
(at 18 (not (shop-open)))

  • PDDL+ with temporal numeric change
  • NUPDDL:uncertainty with oneof and unknown
(oneof (open_door d1) (open_door d2) (open_door d3))
(forall (?e - element_no) (unknown (element_value ?e)))

Artificial Intelligence Planing (AIP)考试知识点复习_第4张图片

  • obsevation
    Artificial Intelligence Planing (AIP)考试知识点复习_第5张图片

  • PPDDL probabilistic
    Artificial Intelligence Planing (AIP)考试知识点复习_第6张图片
    Artificial Intelligence Planing (AIP)考试知识点复习_第7张图片
    Artificial Intelligence Planing (AIP)考试知识点复习_第8张图片
    至此,PDDL的代码应该是能看懂了。

3 PDDL+ (这一章节会进一步讲解上一章节的语法)

what make it hybird? 为什么PDDL+是混合的呢

  • when actions or event are performed they cause instantaneous changes in the world;当执行动作的时候,世界立刻改变了。
  • process are continuous changes. generate continuous updates in the world.
    Artificial Intelligence Planing (AIP)考试知识点复习_第9张图片

interact with a process while it runs #t

Artificial Intelligence Planing (AIP)考试知识点复习_第10张图片
我们知道 这个球落地的时候,**(height ?b)**应该是全程大于零0的
Artificial Intelligence Planing (AIP)考试知识点复习_第11张图片
我们来重新写一下这个球的过程,让球落下,弹起,接住。

  1. First drop it action
    Artificial Intelligence Planing (AIP)考试知识点复习_第12张图片
  2. watch it fall process
    Artificial Intelligence Planing (AIP)考试知识点复习_第13张图片
  3. bounce event
    Artificial Intelligence Planing (AIP)考试知识点复习_第14张图片
  4. catch it
    在这里插入图片描述

这里有一个简单的例子
Artificial Intelligence Planing (AIP)考试知识点复习_第15张图片

4 eXplainable Planning

这一章就讲了几个explainable questions,感觉不太重要。
这一章不考试

5 planning with number

TIL(timed initial literals)

  • 这个概念在PDDL2.2的时候介绍过,就是上文
  • Allow us to model facts that become true, or false, at a specific time.‘Can use them to model deadlines or time windows.
  • 这个TIL允许我们设定一些在某些时刻会变成true或者false的事实

  • 通过TIL,实现dealine:
    Artificial Intelligence Planing (AIP)考试知识点复习_第16张图片
    就是初始状态这是a,然后action的condition中at end设置一个a,然后初始状态设置一个某个时刻not-a.

  • 通过TIL,实现time windows
    Artificial Intelligence Planing (AIP)考试知识点复习_第17张图片
    跟上面一样

6 planning with preferences

  • 满足hard goals 然后尽可能地满足preference
  • sometime-before
  • sometime-after
  • preference
    (preference p1 (always(not(at B))))
    cost(p1) 这个是放弃这个preference所需要支付的cost
    Artificial Intelligence Planing (AIP)考试知识点复习_第18张图片

LTL(linear time logic)

  • 有点像是temporal logic
    Artificial Intelligence Planing (AIP)考试知识点复习_第19张图片

RELAXING NUMERIC EFFECTS

  • Maintain bounds: upper and lower bound on each numeric variable
  • 感觉好像是为了preference,为了主要的目的,有的时候可以放宽别的限制

distance to go & cost to go

  • distance to go:minimum number of actions to call something a goal state
  • cost to go:which forgo actions must be applied
  • Artificial Intelligence Planing (AIP)考试知识点复习_第20张图片
  • 这里提到的distance-cost pairsis not all. All combinations of preferences would take ages. So use a greedy algorithm.

7 planning with motion

  • TSP:travelling salesman problem
  • 这部分没看懂讲了啥

8 考试卷子中的知识点(重要)

Artificial Intelligence Planing (AIP)考试知识点复习_第21张图片

9 heuristic search planning

Artificial Intelligence Planing (AIP)考试知识点复习_第22张图片

  • Delete relaxaion:Estimate cost to goal by considering simpler planning task without negative side effects of actions.
  • Abstraction:Estimate cost by projecting the state space to a smaller space.
  • critical paths: Estimate cost by critical path length of a concurrent solution for a simplified problem.
  • landmarks: an action set A is a landmark if all plans include an action from A. Compute a set of landmarks and use It to derive a cost estimate.

这里提出了LP linear program
在这里插入图片描述
LP with same objective value but role of constraints and variables interchanged.
one variable per operator
Artificial Intelligence Planing (AIP)考试知识点复习_第23张图片
one constraint per landmark
Artificial Intelligence Planing (AIP)考试知识点复习_第24张图片
minimum hitting set
Artificial Intelligence Planing (AIP)考试知识点复习_第25张图片
Artificial Intelligence Planing (AIP)考试知识点复习_第26张图片


  • network flows

Relaxed planning Graph(RPG)

Artificial Intelligence Planing (AIP)考试知识点复习_第27张图片
在这里插入图片描述
Artificial Intelligence Planing (AIP)考试知识点复习_第28张图片

state space

Artificial Intelligence Planing (AIP)考试知识点复习_第29张图片

STN and snap action

Artificial Intelligence Planing (AIP)考试知识点复习_第30张图片

local search

Local search is extremely prone to wandering down dead ends and having to backtrack a lot.

goal preference

Artificial Intelligence Planing (AIP)考试知识点复习_第31张图片
Artificial Intelligence Planing (AIP)考试知识点复习_第32张图片

RPG solution extraction

Artificial Intelligence Planing (AIP)考试知识点复习_第33张图片
Artificial Intelligence Planing (AIP)考试知识点复习_第34张图片

Artificial Intelligence Planing (AIP)考试知识点复习_第35张图片

abstract state space

Artificial Intelligence Planing (AIP)考试知识点复习_第36张图片
Artificial Intelligence Planing (AIP)考试知识点复习_第37张图片

LP/COLIN

Artificial Intelligence Planing (AIP)考试知识点复习_第38张图片
Artificial Intelligence Planing (AIP)考试知识点复习_第39张图片
Artificial Intelligence Planing (AIP)考试知识点复习_第40张图片
Artificial Intelligence Planing (AIP)考试知识点复习_第41张图片

你可能感兴趣的:(课程笔记,逻辑回归,编程语言,正则表达式)