2023-简单点-yolox代码

yolox代码

  • yolox结构瞄一眼
  • net.py代码
  • 常规conv
  • DWConv
    • 第一步
    • 第二步
  • CBA一套
  • Focus
  • SPP
  • CSPDarknet
  • FPN
  • PAN
  • decoupled predict head
  • loss/training
  • ref

yolox结构瞄一眼

2023-简单点-yolox代码_第1张图片

net.py代码

#!/usr/bin/env python3
# -*- coding:utf-8 -*-
# Copyright (c) Megvii, Inc. and its affiliates.

import torch
from torch import nn

class SiLU(nn.Module):
    @staticmethod
    def forward(x):
    	#静态方法
        return x * torch.sigmoid(x)

def get_activation(name="silu", inplace=True):
	#根据name,构造module
    if name == "silu":
        module = SiLU()
    elif name == "relu":
        module = nn.ReLU(inplace=inplace)
    elif name == "lrelu":
        module = nn.LeakyReLU(0.1, inplace=inplace)
    else:
        raise AttributeError("Unsupported act type: {}".format(name))
    return module

class Focus(nn.Module):
    def __init__(self, in_channels, out_channels, ksize=1, stride=1, act="silu"):
        super().__init__()
        #标准卷积组合块CBA
        self.conv = BaseConv(in_channels * 4, out_channels, ksize, stride, act=act)

    def forward(self, x):
    	#4块区域,stride=2
        patch_top_left  = x[...,  ::2,  ::2]
        patch_bot_left  = x[..., 1::2,  ::2]
        patch_top_right = x[...,  ::2, 1::2]
        patch_bot_right = x[..., 1::2, 1::2]
        #cat 堆叠
        x = torch.cat((patch_top_left, patch_bot_left, patch_top_right, patch_bot_right,), dim=1,)
        return self.conv(x)

class BaseConv(nn.Module):
    def __init__(self, in_channels, out_channels, ksize, stride, groups=1, bias=False, act="silu"):
        super().__init__()
        pad         = (ksize - 1) // 2
        self.conv   = nn.Conv2d(in_channels, out_channels, kernel_size=ksize, stride=stride, padding=pad, groups=groups, bias=bias)
        self.bn     = nn.BatchNorm2d(out_channels, eps=0.001, momentum=0.03)
        self.act    = get_activation(act, inplace=True)

    def forward(self, x):
        return self.act(self.bn(self.conv(x)))

    def fuseforward(self, x):#不经过bn操作
        return self.act(self.conv(x))

class DWConv(nn.Module):
    def __init__(self, in_channels, out_channels, ksize, stride=1, act="silu"):
        super().__init__()
        self.dconv = BaseConv(in_channels, in_channels, ksize=ksize, stride=stride, groups=in_channels, act=act,) #不扩展通道,进行宽高信息混合
        self.pconv = BaseConv(in_channels, out_channels, ksize=1, stride=1, groups=1, act=act) #pointwise进行通道上的信息混合

    def forward(self, x):
        x = self.dconv(x)
        return self.pconv(x)

class SPPBottleneck(nn.Module):
    def __init__(self, in_channels, out_channels, kernel_sizes=(5, 9, 13), activation="silu"):
        super().__init__()
        hidden_channels = in_channels // 2
        self.conv1      = BaseConv(in_channels, hidden_channels, 1, stride=1, act=activation)
        self.m          = nn.ModuleList([nn.MaxPool2d(kernel_size=ks, stride=1, padding=ks // 2) for ks in kernel_sizes])
        conv2_channels  = hidden_channels * (len(kernel_sizes) + 1)
        self.conv2      = BaseConv(conv2_channels, out_channels, 1, stride=1, act=activation)

    def forward(self, x):
        x = self.conv1(x)
        x = torch.cat([x] + [m(x) for m in self.m], dim=1)
        x = self.conv2(x)
        return x

#--------------------------------------------------#
#   残差结构的构建,小的残差结构
#--------------------------------------------------#
class Bottleneck(nn.Module):
    # Standard bottleneck
    def __init__(self, in_channels, out_channels, shortcut=True, expansion=0.5, depthwise=False, act="silu",):
        super().__init__()
        hidden_channels = int(out_channels * expansion)
        Conv = DWConv if depthwise else BaseConv
        #--------------------------------------------------#
        #   利用1x1卷积进行通道数的缩减。缩减率一般是50%
        #--------------------------------------------------#
        self.conv1 = BaseConv(in_channels, hidden_channels, 1, stride=1, act=act)
        #--------------------------------------------------#
        #   利用3x3卷积进行通道数的拓张。并且完成特征提取
        #--------------------------------------------------#
        self.conv2 = Conv(hidden_channels, out_channels, 3, stride=1, act=act)
        self.use_add = shortcut and in_channels == out_channels

    def forward(self, x):
        y = self.conv2(self.conv1(x))
        if self.use_add:
            y = y + x
        return y

class CSPLayer(nn.Module):
    def __init__(self, in_channels, out_channels, n=1, shortcut=True, expansion=0.5, depthwise=False, act="silu",):
        # ch_in, ch_out, number, shortcut, groups, expansion
        super().__init__()
        hidden_channels = int(out_channels * expansion)  
        #--------------------------------------------------#
        #   主干部分的初次卷积
        #--------------------------------------------------#
        self.conv1  = BaseConv(in_channels, hidden_channels, 1, stride=1, act=act)
        #--------------------------------------------------#
        #   大的残差边部分的初次卷积
        #--------------------------------------------------#
        self.conv2  = BaseConv(in_channels, hidden_channels, 1, stride=1, act=act)
        #-----------------------------------------------#
        #   对堆叠的结果进行卷积的处理
        #-----------------------------------------------#
        self.conv3  = BaseConv(2 * hidden_channels, out_channels, 1, stride=1, act=act)

        #--------------------------------------------------#
        #   根据循环的次数构建上述Bottleneck残差结构
        #--------------------------------------------------#
        module_list = [Bottleneck(hidden_channels, hidden_channels, shortcut, 1.0, depthwise, act=act) for _ in range(n)]
        self.m      = nn.Sequential(*module_list)

    def forward(self, x):
        #-------------------------------#
        #   x_1是主干部分
        #-------------------------------#
        x_1 = self.conv1(x)
        #-------------------------------#
        #   x_2是大的残差边部分
        #-------------------------------#
        x_2 = self.conv2(x)

        #-----------------------------------------------#
        #   主干部分利用残差结构堆叠继续进行特征提取
        #-----------------------------------------------#
        x_1 = self.m(x_1)
        #-----------------------------------------------#
        #   主干部分和大的残差边部分进行堆叠
        #-----------------------------------------------#
        x = torch.cat((x_1, x_2), dim=1)
        #-----------------------------------------------#
        #   对堆叠的结果进行卷积的处理
        #-----------------------------------------------#
        return self.conv3(x)

class CSPDarknet(nn.Module):
    def __init__(self, dep_mul, wid_mul, out_features=("dark3", "dark4", "dark5"), depthwise=False, act="silu",):
        super().__init__()
        assert out_features, "please provide output features of Darknet"
        self.out_features = out_features
        Conv = DWConv if depthwise else BaseConv

        #-----------------------------------------------#
        #   输入图片是640, 640, 3
        #   初始的基本通道是64
        #-----------------------------------------------#
        base_channels   = int(wid_mul * 64)  # 64
        base_depth      = max(round(dep_mul * 3), 1)  # 3
        
        #-----------------------------------------------#
        #   利用focus网络结构进行特征提取
        #   640, 640, 3 -> 320, 320, 12 -> 320, 320, 64
        #-----------------------------------------------#
        self.stem = Focus(3, base_channels, ksize=3, act=act)

        #-----------------------------------------------#
        #   完成卷积之后,320, 320, 64 -> 160, 160, 128
        #   完成CSPlayer之后,160, 160, 128 -> 160, 160, 128
        #-----------------------------------------------#
        self.dark2 = nn.Sequential(
            Conv(base_channels, base_channels * 2, 3, 2, act=act),
            CSPLayer(base_channels * 2, base_channels * 2, n=base_depth, depthwise=depthwise, act=act),
        )

        #-----------------------------------------------#
        #   完成卷积之后,160, 160, 128 -> 80, 80, 256
        #   完成CSPlayer之后,80, 80, 256 -> 80, 80, 256
        #-----------------------------------------------#
        self.dark3 = nn.Sequential(
            Conv(base_channels * 2, base_channels * 4, 3, 2, act=act),
            CSPLayer(base_channels * 4, base_channels * 4, n=base_depth * 3, depthwise=depthwise, act=act),
        )

        #-----------------------------------------------#
        #   完成卷积之后,80, 80, 256 -> 40, 40, 512
        #   完成CSPlayer之后,40, 40, 512 -> 40, 40, 512
        #-----------------------------------------------#
        self.dark4 = nn.Sequential(
            Conv(base_channels * 4, base_channels * 8, 3, 2, act=act),
            CSPLayer(base_channels * 8, base_channels * 8, n=base_depth * 3, depthwise=depthwise, act=act),
        )

        #-----------------------------------------------#
        #   完成卷积之后,40, 40, 512 -> 20, 20, 1024
        #   完成SPP之后,20, 20, 1024 -> 20, 20, 1024
        #   完成CSPlayer之后,20, 20, 1024 -> 20, 20, 1024
        #-----------------------------------------------#
        self.dark5 = nn.Sequential(
            Conv(base_channels * 8, base_channels * 16, 3, 2, act=act),
            SPPBottleneck(base_channels * 16, base_channels * 16, activation=act),
            CSPLayer(base_channels * 16, base_channels * 16, n=base_depth, shortcut=False, depthwise=depthwise, act=act),
        )

    def forward(self, x):
        outputs = {}
        x = self.stem(x)
        outputs["stem"] = x
        x = self.dark2(x)
        outputs["dark2"] = x
        #-----------------------------------------------#
        #   dark3的输出为80, 80, 256,是一个有效特征层
        #-----------------------------------------------#
        x = self.dark3(x)
        outputs["dark3"] = x
        #-----------------------------------------------#
        #   dark4的输出为40, 40, 512,是一个有效特征层
        #-----------------------------------------------#
        x = self.dark4(x)
        outputs["dark4"] = x
        #-----------------------------------------------#
        #   dark5的输出为20, 20, 1024,是一个有效特征层
        #-----------------------------------------------#
        x = self.dark5(x)
        outputs["dark5"] = x
        return {k: v for k, v in outputs.items() if k in self.out_features}


if __name__ == '__main__':
    print(CSPDarknet(1, 1))

常规conv

height: h
width:w
stride: sd
padding :p
kernel size : ksize

卷积核大小为: h * w *1
卷积需要做多少次:nums = [(h - k + 2 * p) / sd ] * [(w - k + 2 * p) / sd]
2023-简单点-yolox代码_第2张图片
计算量:((in_channels * ksize * ksize) * nums ) * out_channels

DWConv

第一步

height: h
width:w
stride: sd
padding :p
kernel size : ksize

卷积核大小为: h * w *1
卷积需要做多少次:nums = [(h - k + 2 * p) / sd ] * [(w - k + 2 * p) / sd]

2023-简单点-yolox代码_第3张图片
in_channles = out_channels
计算量: in_channels * (ksize * ksize * 1) * nums

第二步

2023-简单点-yolox代码_第4张图片
一次整图卷积次数: nums1 = (h + 2 * p) * (w + 2 * p)
计算量: nums1 * (1 * 1 * in_channels) * out_channels

CBA一套

2023-简单点-yolox代码_第5张图片

Focus

降维提取 + 拓展通道
2023-简单点-yolox代码_第6张图片

SPP

不同pooling的堆叠,堆叠不同视野
2023-简单点-yolox代码_第7张图片
2023-简单点-yolox代码_第8张图片

CSPDarknet

通道分成部分+残差设计
2023-简单点-yolox代码_第9张图片

FPN

分辨率和语义的关系:
2023-简单点-yolox代码_第10张图片
2023-简单点-yolox代码_第11张图片

高层次低分辨率但是高语义

融合低分辨率位置信息和高语义信息

PAN

path segmentation network
多一条信息流路径,更短的流动路径
左边可能100层,右边可能<10层
2023-简单点-yolox代码_第12张图片
2023-简单点-yolox代码_第13张图片
不同层的信息参考度不同

2023-简单点-yolox代码_第14张图片
上述传送门

class YOLOPAFPN(nn.Module):
    def __init__(self, depth = 1.0, width = 1.0, in_features = ("dark3", "dark4", "dark5"), in_channels = [256, 512, 1024], depthwise = False, act = "silu"):
        super().__init__()
        Conv                = DWConv if depthwise else BaseConv
        self.backbone       = CSPDarknet(depth, width, depthwise = depthwise, act = act)
        self.in_features    = in_features

        self.upsample       = nn.Upsample(scale_factor=2, mode="nearest")

        #-------------------------------------------#
        #   20, 20, 1024 -> 20, 20, 512
        #-------------------------------------------#
        self.lateral_conv0  = BaseConv(int(in_channels[2] * width), int(in_channels[1] * width), 1, 1, act=act)
    
        #-------------------------------------------#
        #   40, 40, 1024 -> 40, 40, 512
        #-------------------------------------------#
        self.C3_p4 = CSPLayer(
            int(2 * in_channels[1] * width),
            int(in_channels[1] * width),
            round(3 * depth),
            False,
            depthwise = depthwise,
            act = act,
        )  

        #-------------------------------------------#
        #   40, 40, 512 -> 40, 40, 256
        #-------------------------------------------#
        self.reduce_conv1   = BaseConv(int(in_channels[1] * width), int(in_channels[0] * width), 1, 1, act=act)
        #-------------------------------------------#
        #   80, 80, 512 -> 80, 80, 256
        #-------------------------------------------#
        self.C3_p3 = CSPLayer(
            int(2 * in_channels[0] * width),
            int(in_channels[0] * width),
            round(3 * depth),
            False,
            depthwise = depthwise,
            act = act,
        )

        #-------------------------------------------#
        #   80, 80, 256 -> 40, 40, 256
        #-------------------------------------------#
        self.bu_conv2       = Conv(int(in_channels[0] * width), int(in_channels[0] * width), 3, 2, act=act)
        #-------------------------------------------#
        #   40, 40, 256 -> 40, 40, 512
        #-------------------------------------------#
        self.C3_n3 = CSPLayer(
            int(2 * in_channels[0] * width),
            int(in_channels[1] * width),
            round(3 * depth),
            False,
            depthwise = depthwise,
            act = act,
        )

        #-------------------------------------------#
        #   40, 40, 512 -> 20, 20, 512
        #-------------------------------------------#
        self.bu_conv1       = Conv(int(in_channels[1] * width), int(in_channels[1] * width), 3, 2, act=act)
        #-------------------------------------------#
        #   20, 20, 1024 -> 20, 20, 1024
        #-------------------------------------------#
        self.C3_n4 = CSPLayer(
            int(2 * in_channels[1] * width),
            int(in_channels[2] * width),
            round(3 * depth),
            False,
            depthwise = depthwise,
            act = act,
        )

    def forward(self, input):
        out_features            = self.backbone.forward(input)
        [feat1, feat2, feat3]   = [out_features[f] for f in self.in_features]

        #-------------------------------------------#
        #   20, 20, 1024 -> 20, 20, 512
        #-------------------------------------------#
        P5          = self.lateral_conv0(feat3)
        #-------------------------------------------#
        #  20, 20, 512 -> 40, 40, 512
        #-------------------------------------------#
        P5_upsample = self.upsample(P5)
        #-------------------------------------------#
        #  40, 40, 512 + 40, 40, 512 -> 40, 40, 1024
        #-------------------------------------------#
        P5_upsample = torch.cat([P5_upsample, feat2], 1)
        #-------------------------------------------#
        #   40, 40, 1024 -> 40, 40, 512
        #-------------------------------------------#
        P5_upsample = self.C3_p4(P5_upsample)

        #-------------------------------------------#
        #   40, 40, 512 -> 40, 40, 256
        #-------------------------------------------#
        P4          = self.reduce_conv1(P5_upsample) 
        #-------------------------------------------#
        #   40, 40, 256 -> 80, 80, 256
        #-------------------------------------------#
        P4_upsample = self.upsample(P4) 
        #-------------------------------------------#
        #   80, 80, 256 + 80, 80, 256 -> 80, 80, 512
        #-------------------------------------------#
        P4_upsample = torch.cat([P4_upsample, feat1], 1) 
        #-------------------------------------------#
        #   80, 80, 512 -> 80, 80, 256
        #-------------------------------------------#
        P3_out      = self.C3_p3(P4_upsample)  

        #-------------------------------------------#
        #   80, 80, 256 -> 40, 40, 256
        #-------------------------------------------#
        P3_downsample   = self.bu_conv2(P3_out) 
        #-------------------------------------------#
        #   40, 40, 256 + 40, 40, 256 -> 40, 40, 512
        #-------------------------------------------#
        P3_downsample   = torch.cat([P3_downsample, P4], 1) 
        #-------------------------------------------#
        #   40, 40, 256 -> 40, 40, 512
        #-------------------------------------------#
        P4_out          = self.C3_n3(P3_downsample) 

        #-------------------------------------------#
        #   40, 40, 512 -> 20, 20, 512
        #-------------------------------------------#
        P4_downsample   = self.bu_conv1(P4_out)
        #-------------------------------------------#
        #   20, 20, 512 + 20, 20, 512 -> 20, 20, 1024
        #-------------------------------------------#
        P4_downsample   = torch.cat([P4_downsample, P5], 1)
        #-------------------------------------------#
        #   20, 20, 1024 -> 20, 20, 1024
        #-------------------------------------------#
        P5_out          = self.C3_n4(P4_downsample)

        return (P3_out, P4_out, P5_out)

decoupled predict head

2023-简单点-yolox代码_第15张图片

#!/usr/bin/env python3
# -*- coding:utf-8 -*-
# Copyright (c) Megvii, Inc. and its affiliates.

import torch
import torch.nn as nn

from .darknet import BaseConv, CSPDarknet, CSPLayer, DWConv


class YOLOXHead(nn.Module):
	'''预测头类'''
    def __init__(self, num_classes, width = 1.0, in_channels = [256, 512, 1024], act = "silu", depthwise = False,):
        super().__init__()
        Conv            = DWConv if depthwise else BaseConv
        
        self.cls_convs  = nn.ModuleList()
        self.reg_convs  = nn.ModuleList()
        self.cls_preds  = nn.ModuleList()
        self.reg_preds  = nn.ModuleList()
        self.obj_preds  = nn.ModuleList()
        self.stems      = nn.ModuleList()

        for i in range(len(in_channels)):
            self.stems.append(BaseConv(in_channels = int(in_channels[i] * width), out_channels = int(256 * width), ksize = 1, stride = 1, act = act))
            self.cls_convs.append(nn.Sequential(*[
                Conv(in_channels = int(256 * width), out_channels = int(256 * width), ksize = 3, stride = 1, act = act), 
                Conv(in_channels = int(256 * width), out_channels = int(256 * width), ksize = 3, stride = 1, act = act), 
            ]))
            self.cls_preds.append(
                nn.Conv2d(in_channels = int(256 * width), out_channels = num_classes, kernel_size = 1, stride = 1, padding = 0)
            )
            

            self.reg_convs.append(nn.Sequential(*[
                Conv(in_channels = int(256 * width), out_channels = int(256 * width), ksize = 3, stride = 1, act = act), 
                Conv(in_channels = int(256 * width), out_channels = int(256 * width), ksize = 3, stride = 1, act = act)
            ]))
            self.reg_preds.append(
                nn.Conv2d(in_channels = int(256 * width), out_channels = 4, kernel_size = 1, stride = 1, padding = 0)
            )
            self.obj_preds.append(
                nn.Conv2d(in_channels = int(256 * width), out_channels = 1, kernel_size = 1, stride = 1, padding = 0)
            )

    def forward(self, inputs):
        #---------------------------------------------------#
        #   inputs输入
        #   P3_out  80, 80, 256
        #   P4_out  40, 40, 512
        #   P5_out  20, 20, 1024
        #---------------------------------------------------#
        outputs = []
        for k, x in enumerate(inputs):
            #---------------------------------------------------#
            #   利用1x1卷积进行通道整合
            #---------------------------------------------------#
            x       = self.stems[k](x)
            #---------------------------------------------------#
            #   利用两个卷积标准化激活函数来进行特征提取
            #---------------------------------------------------#
            cls_feat    = self.cls_convs[k](x)
            #---------------------------------------------------#
            #   判断特征点所属的种类
            #   80, 80, num_classes
            #   40, 40, num_classes
            #   20, 20, num_classes
            #---------------------------------------------------#
            cls_output  = self.cls_preds[k](cls_feat)

            #---------------------------------------------------#
            #   利用两个卷积标准化激活函数来进行特征提取
            #---------------------------------------------------#
            reg_feat    = self.reg_convs[k](x)
            #---------------------------------------------------#
            #   特征点的回归系数
            #   reg_pred 80, 80, 4
            #   reg_pred 40, 40, 4
            #   reg_pred 20, 20, 4
            #---------------------------------------------------#
            reg_output  = self.reg_preds[k](reg_feat)
            #---------------------------------------------------#
            #   判断特征点是否有对应的物体
            #   obj_pred 80, 80, 1
            #   obj_pred 40, 40, 1
            #   obj_pred 20, 20, 1
            #---------------------------------------------------#
            obj_output  = self.obj_preds[k](reg_feat)

            output      = torch.cat([reg_output, obj_output, cls_output], 1)
            outputs.append(output)
        return outputs





class YOLOPAFPN(nn.Module):
	'''fpn提取特征'''
    def __init__(self, depth = 1.0, width = 1.0, in_features = ("dark3", "dark4", "dark5"), in_channels = [256, 512, 1024], depthwise = False, act = "silu"):
        super().__init__()
        Conv                = DWConv if depthwise else BaseConv
        self.backbone       = CSPDarknet(depth, width, depthwise = depthwise, act = act)
        self.in_features    = in_features

        self.upsample       = nn.Upsample(scale_factor=2, mode="nearest")

        #-------------------------------------------#
        #   20, 20, 1024 -> 20, 20, 512
        #-------------------------------------------#
        self.lateral_conv0  = BaseConv(int(in_channels[2] * width), int(in_channels[1] * width), 1, 1, act=act)
    
        #-------------------------------------------#
        #   40, 40, 1024 -> 40, 40, 512
        #-------------------------------------------#
        self.C3_p4 = CSPLayer(
            int(2 * in_channels[1] * width),
            int(in_channels[1] * width),
            round(3 * depth),
            False,
            depthwise = depthwise,
            act = act,
        )  

        #-------------------------------------------#
        #   40, 40, 512 -> 40, 40, 256
        #-------------------------------------------#
        self.reduce_conv1   = BaseConv(int(in_channels[1] * width), int(in_channels[0] * width), 1, 1, act=act)
        #-------------------------------------------#
        #   80, 80, 512 -> 80, 80, 256
        #-------------------------------------------#
        self.C3_p3 = CSPLayer(
            int(2 * in_channels[0] * width),
            int(in_channels[0] * width),
            round(3 * depth),
            False,
            depthwise = depthwise,
            act = act,
        )

        #-------------------------------------------#
        #   80, 80, 256 -> 40, 40, 256
        #-------------------------------------------#
        self.bu_conv2       = Conv(int(in_channels[0] * width), int(in_channels[0] * width), 3, 2, act=act)
        #-------------------------------------------#
        #   40, 40, 256 -> 40, 40, 512
        #-------------------------------------------#
        self.C3_n3 = CSPLayer(
            int(2 * in_channels[0] * width),
            int(in_channels[1] * width),
            round(3 * depth),
            False,
            depthwise = depthwise,
            act = act,
        )

        #-------------------------------------------#
        #   40, 40, 512 -> 20, 20, 512
        #-------------------------------------------#
        self.bu_conv1       = Conv(int(in_channels[1] * width), int(in_channels[1] * width), 3, 2, act=act)
        #-------------------------------------------#
        #   20, 20, 1024 -> 20, 20, 1024
        #-------------------------------------------#
        self.C3_n4 = CSPLayer(
            int(2 * in_channels[1] * width),
            int(in_channels[2] * width),
            round(3 * depth),
            False,
            depthwise = depthwise,
            act = act,
        )

    def forward(self, input):
        out_features            = self.backbone.forward(input)
        [feat1, feat2, feat3]   = [out_features[f] for f in self.in_features]

        #-------------------------------------------#
        #   20, 20, 1024 -> 20, 20, 512
        #-------------------------------------------#
        P5          = self.lateral_conv0(feat3)
        #-------------------------------------------#
        #  20, 20, 512 -> 40, 40, 512
        #-------------------------------------------#
        P5_upsample = self.upsample(P5)
        #-------------------------------------------#
        #  40, 40, 512 + 40, 40, 512 -> 40, 40, 1024
        #-------------------------------------------#
        P5_upsample = torch.cat([P5_upsample, feat2], 1)
        #-------------------------------------------#
        #   40, 40, 1024 -> 40, 40, 512
        #-------------------------------------------#
        P5_upsample = self.C3_p4(P5_upsample)

        #-------------------------------------------#
        #   40, 40, 512 -> 40, 40, 256
        #-------------------------------------------#
        P4          = self.reduce_conv1(P5_upsample) 
        #-------------------------------------------#
        #   40, 40, 256 -> 80, 80, 256
        #-------------------------------------------#
        P4_upsample = self.upsample(P4) 
        #-------------------------------------------#
        #   80, 80, 256 + 80, 80, 256 -> 80, 80, 512
        #-------------------------------------------#
        P4_upsample = torch.cat([P4_upsample, feat1], 1) 
        #-------------------------------------------#
        #   80, 80, 512 -> 80, 80, 256
        #-------------------------------------------#
        P3_out      = self.C3_p3(P4_upsample)  

        #-------------------------------------------#
        #   80, 80, 256 -> 40, 40, 256
        #-------------------------------------------#
        P3_downsample   = self.bu_conv2(P3_out) 
        #-------------------------------------------#
        #   40, 40, 256 + 40, 40, 256 -> 40, 40, 512
        #-------------------------------------------#
        P3_downsample   = torch.cat([P3_downsample, P4], 1) 
        #-------------------------------------------#
        #   40, 40, 256 -> 40, 40, 512
        #-------------------------------------------#
        P4_out          = self.C3_n3(P3_downsample) 

        #-------------------------------------------#
        #   40, 40, 512 -> 20, 20, 512
        #-------------------------------------------#
        P4_downsample   = self.bu_conv1(P4_out)
        #-------------------------------------------#
        #   20, 20, 512 + 20, 20, 512 -> 20, 20, 1024
        #-------------------------------------------#
        P4_downsample   = torch.cat([P4_downsample, P5], 1)
        #-------------------------------------------#
        #   20, 20, 1024 -> 20, 20, 1024
        #-------------------------------------------#
        P5_out          = self.C3_n4(P4_downsample)

        return (P3_out, P4_out, P5_out)

class YoloBody(nn.Module):
    def __init__(self, num_classes, phi):
        super().__init__()
        depth_dict = {'nano': 0.33, 'tiny': 0.33, 's' : 0.33, 'm' : 0.67, 'l' : 1.00, 'x' : 1.33,}
        width_dict = {'nano': 0.25, 'tiny': 0.375, 's' : 0.50, 'm' : 0.75, 'l' : 1.00, 'x' : 1.25,}
        depth, width    = depth_dict[phi], width_dict[phi]
        depthwise       = True if phi == 'nano' else False 

        self.backbone   = YOLOPAFPN(depth, width, depthwise=depthwise)
        self.head       = YOLOXHead(num_classes, width, depthwise=depthwise)

    def forward(self, x):
        fpn_outs    = self.backbone.forward(x)
        outputs     = self.head.forward(fpn_outs)
        return outputs

loss/training

#!/usr/bin/env python3
# -*- coding:utf-8 -*-
# Copyright (c) Megvii, Inc. and its affiliates.
import math
from copy import deepcopy
from functools import partial

import torch
import torch.nn as nn
import torch.nn.functional as F


class IOUloss(nn.Module):
    def __init__(self, reduction="none", loss_type="iou"):
        super(IOUloss, self).__init__()
        self.reduction = reduction
        self.loss_type = loss_type

    def forward(self, pred, target):
        assert pred.shape[0] == target.shape[0]

        pred = pred.view(-1, 4)
        target = target.view(-1, 4)
        tl = torch.max(
            (pred[:, :2] - pred[:, 2:] / 2), (target[:, :2] - target[:, 2:] / 2)
        )
        br = torch.min(
            (pred[:, :2] + pred[:, 2:] / 2), (target[:, :2] + target[:, 2:] / 2)
        )

        area_p = torch.prod(pred[:, 2:], 1)
        area_g = torch.prod(target[:, 2:], 1)

        en = (tl < br).type(tl.type()).prod(dim=1)
        area_i = torch.prod(br - tl, 1) * en
        area_u = area_p + area_g - area_i
        iou = (area_i) / (area_u + 1e-16)

        if self.loss_type == "iou":
            loss = 1 - iou ** 2
        elif self.loss_type == "giou":
            c_tl = torch.min(
                (pred[:, :2] - pred[:, 2:] / 2), (target[:, :2] - target[:, 2:] / 2)
            )
            c_br = torch.max(
                (pred[:, :2] + pred[:, 2:] / 2), (target[:, :2] + target[:, 2:] / 2)
            )
            area_c = torch.prod(c_br - c_tl, 1)
            giou = iou - (area_c - area_u) / area_c.clamp(1e-16)
            loss = 1 - giou.clamp(min=-1.0, max=1.0)

        if self.reduction == "mean":
            loss = loss.mean()
        elif self.reduction == "sum":
            loss = loss.sum()

        return loss

class YOLOLoss(nn.Module):    
    def __init__(self, num_classes, fp16, strides=[8, 16, 32]):
        super().__init__()
        self.num_classes        = num_classes
        self.strides            = strides

        self.bcewithlog_loss    = nn.BCEWithLogitsLoss(reduction="none")
        self.iou_loss           = IOUloss(reduction="none")
        self.grids              = [torch.zeros(1)] * len(strides)
        self.fp16               = fp16

    def forward(self, inputs, labels=None):
        outputs             = []
        x_shifts            = []
        y_shifts            = []
        expanded_strides    = []

        #-----------------------------------------------#
        # inputs    [[batch_size, num_classes + 5, 20, 20]
        #            [batch_size, num_classes + 5, 40, 40]
        #            [batch_size, num_classes + 5, 80, 80]]
        # outputs   [[batch_size, 400, num_classes + 5]
        #            [batch_size, 1600, num_classes + 5]
        #            [batch_size, 6400, num_classes + 5]]
        # x_shifts  [[batch_size, 400]
        #            [batch_size, 1600]
        #            [batch_size, 6400]]
        #-----------------------------------------------#
        for k, (stride, output) in enumerate(zip(self.strides, inputs)):
            output, grid = self.get_output_and_grid(output, k, stride)
            x_shifts.append(grid[:, :, 0])
            y_shifts.append(grid[:, :, 1])
            expanded_strides.append(torch.ones_like(grid[:, :, 0]) * stride)
            outputs.append(output)

        return self.get_losses(x_shifts, y_shifts, expanded_strides, labels, torch.cat(outputs, 1))

    def get_output_and_grid(self, output, k, stride):
        grid            = self.grids[k]
        hsize, wsize    = output.shape[-2:]
        if grid.shape[2:4] != output.shape[2:4]:
            yv, xv          = torch.meshgrid([torch.arange(hsize), torch.arange(wsize)])
            grid            = torch.stack((xv, yv), 2).view(1, hsize, wsize, 2).type(output.type())
            self.grids[k]   = grid
        grid                = grid.view(1, -1, 2)

        output              = output.flatten(start_dim=2).permute(0, 2, 1)
        output[..., :2]     = (output[..., :2] + grid.type_as(output)) * stride
        output[..., 2:4]    = torch.exp(output[..., 2:4]) * stride
        return output, grid

    def get_losses(self, x_shifts, y_shifts, expanded_strides, labels, outputs):
        #-----------------------------------------------#
        #   [batch, n_anchors_all, 4]
        #-----------------------------------------------#
        bbox_preds  = outputs[:, :, :4]  
        #-----------------------------------------------#
        #   [batch, n_anchors_all, 1]
        #-----------------------------------------------#
        obj_preds   = outputs[:, :, 4:5]
        #-----------------------------------------------#
        #   [batch, n_anchors_all, n_cls]
        #-----------------------------------------------#
        cls_preds   = outputs[:, :, 5:]  

        total_num_anchors   = outputs.shape[1]
        #-----------------------------------------------#
        #   x_shifts            [1, n_anchors_all]
        #   y_shifts            [1, n_anchors_all]
        #   expanded_strides    [1, n_anchors_all]
        #-----------------------------------------------#
        x_shifts            = torch.cat(x_shifts, 1).type_as(outputs)
        y_shifts            = torch.cat(y_shifts, 1).type_as(outputs)
        expanded_strides    = torch.cat(expanded_strides, 1).type_as(outputs)

        cls_targets = []
        reg_targets = []
        obj_targets = []
        fg_masks    = []

        num_fg  = 0.0
        for batch_idx in range(outputs.shape[0]):
            num_gt          = len(labels[batch_idx])
            if num_gt == 0:
                cls_target  = outputs.new_zeros((0, self.num_classes))
                reg_target  = outputs.new_zeros((0, 4))
                obj_target  = outputs.new_zeros((total_num_anchors, 1))
                fg_mask     = outputs.new_zeros(total_num_anchors).bool()
            else:
                #-----------------------------------------------#
                #   gt_bboxes_per_image     [num_gt, num_classes]
                #   gt_classes              [num_gt]
                #   bboxes_preds_per_image  [n_anchors_all, 4]
                #   cls_preds_per_image     [n_anchors_all, num_classes]
                #   obj_preds_per_image     [n_anchors_all, 1]
                #-----------------------------------------------#
                gt_bboxes_per_image     = labels[batch_idx][..., :4].type_as(outputs)
                gt_classes              = labels[batch_idx][..., 4].type_as(outputs)
                bboxes_preds_per_image  = bbox_preds[batch_idx]
                cls_preds_per_image     = cls_preds[batch_idx]
                obj_preds_per_image     = obj_preds[batch_idx]

                gt_matched_classes, fg_mask, pred_ious_this_matching, matched_gt_inds, num_fg_img = self.get_assignments( 
                    num_gt, total_num_anchors, gt_bboxes_per_image, gt_classes, bboxes_preds_per_image, cls_preds_per_image, obj_preds_per_image,
                    expanded_strides, x_shifts, y_shifts, 
                )
                torch.cuda.empty_cache()
                num_fg      += num_fg_img
                cls_target  = F.one_hot(gt_matched_classes.to(torch.int64), self.num_classes).float() * pred_ious_this_matching.unsqueeze(-1)
                obj_target  = fg_mask.unsqueeze(-1)
                reg_target  = gt_bboxes_per_image[matched_gt_inds]
            cls_targets.append(cls_target)
            reg_targets.append(reg_target)
            obj_targets.append(obj_target.type(cls_target.type()))
            fg_masks.append(fg_mask)

        cls_targets = torch.cat(cls_targets, 0)
        reg_targets = torch.cat(reg_targets, 0)
        obj_targets = torch.cat(obj_targets, 0)
        fg_masks    = torch.cat(fg_masks, 0)

        num_fg      = max(num_fg, 1)
        loss_iou    = (self.iou_loss(bbox_preds.view(-1, 4)[fg_masks], reg_targets)).sum()
        loss_obj    = (self.bcewithlog_loss(obj_preds.view(-1, 1), obj_targets)).sum()
        loss_cls    = (self.bcewithlog_loss(cls_preds.view(-1, self.num_classes)[fg_masks], cls_targets)).sum()
        reg_weight  = 5.0
        loss = reg_weight * loss_iou + loss_obj + loss_cls

        return loss / num_fg

    @torch.no_grad()
    def get_assignments(self, num_gt, total_num_anchors, gt_bboxes_per_image, gt_classes, bboxes_preds_per_image, cls_preds_per_image, obj_preds_per_image, expanded_strides, x_shifts, y_shifts):
        #-------------------------------------------------------#
        #   fg_mask                 [n_anchors_all]
        #   is_in_boxes_and_center  [num_gt, len(fg_mask)]
        #-------------------------------------------------------#
        fg_mask, is_in_boxes_and_center = self.get_in_boxes_info(gt_bboxes_per_image, expanded_strides, x_shifts, y_shifts, total_num_anchors, num_gt)

        #-------------------------------------------------------#
        #   fg_mask                 [n_anchors_all]
        #   bboxes_preds_per_image  [fg_mask, 4]
        #   cls_preds_              [fg_mask, num_classes]
        #   obj_preds_              [fg_mask, 1]
        #-------------------------------------------------------#
        bboxes_preds_per_image  = bboxes_preds_per_image[fg_mask]
        cls_preds_              = cls_preds_per_image[fg_mask]
        obj_preds_              = obj_preds_per_image[fg_mask]
        num_in_boxes_anchor     = bboxes_preds_per_image.shape[0]

        #-------------------------------------------------------#
        #   pair_wise_ious      [num_gt, fg_mask]
        #-------------------------------------------------------#
        pair_wise_ious      = self.bboxes_iou(gt_bboxes_per_image, bboxes_preds_per_image, False)
        pair_wise_ious_loss = -torch.log(pair_wise_ious + 1e-8)
        
        #-------------------------------------------------------#
        #   cls_preds_          [num_gt, fg_mask, num_classes]
        #   gt_cls_per_image    [num_gt, fg_mask, num_classes]
        #-------------------------------------------------------#
        if self.fp16:
            with torch.cuda.amp.autocast(enabled=False):
                cls_preds_          = cls_preds_.float().unsqueeze(0).repeat(num_gt, 1, 1).sigmoid_() * obj_preds_.unsqueeze(0).repeat(num_gt, 1, 1).sigmoid_()
                gt_cls_per_image    = F.one_hot(gt_classes.to(torch.int64), self.num_classes).float().unsqueeze(1).repeat(1, num_in_boxes_anchor, 1)
                pair_wise_cls_loss  = F.binary_cross_entropy(cls_preds_.sqrt_(), gt_cls_per_image, reduction="none").sum(-1)
        else:
            cls_preds_          = cls_preds_.float().unsqueeze(0).repeat(num_gt, 1, 1).sigmoid_() * obj_preds_.unsqueeze(0).repeat(num_gt, 1, 1).sigmoid_()
            gt_cls_per_image    = F.one_hot(gt_classes.to(torch.int64), self.num_classes).float().unsqueeze(1).repeat(1, num_in_boxes_anchor, 1)
            pair_wise_cls_loss  = F.binary_cross_entropy(cls_preds_.sqrt_(), gt_cls_per_image, reduction="none").sum(-1)
            del cls_preds_

        cost = pair_wise_cls_loss + 3.0 * pair_wise_ious_loss + 100000.0 * (~is_in_boxes_and_center).float()

        num_fg, gt_matched_classes, pred_ious_this_matching, matched_gt_inds = self.dynamic_k_matching(cost, pair_wise_ious, gt_classes, num_gt, fg_mask)
        del pair_wise_cls_loss, cost, pair_wise_ious, pair_wise_ious_loss
        return gt_matched_classes, fg_mask, pred_ious_this_matching, matched_gt_inds, num_fg
    
    def bboxes_iou(self, bboxes_a, bboxes_b, xyxy=True):
        if bboxes_a.shape[1] != 4 or bboxes_b.shape[1] != 4:
            raise IndexError

        if xyxy:
            tl = torch.max(bboxes_a[:, None, :2], bboxes_b[:, :2])
            br = torch.min(bboxes_a[:, None, 2:], bboxes_b[:, 2:])
            area_a = torch.prod(bboxes_a[:, 2:] - bboxes_a[:, :2], 1)
            area_b = torch.prod(bboxes_b[:, 2:] - bboxes_b[:, :2], 1)
        else:
            tl = torch.max(
                (bboxes_a[:, None, :2] - bboxes_a[:, None, 2:] / 2),
                (bboxes_b[:, :2] - bboxes_b[:, 2:] / 2),
            )
            br = torch.min(
                (bboxes_a[:, None, :2] + bboxes_a[:, None, 2:] / 2),
                (bboxes_b[:, :2] + bboxes_b[:, 2:] / 2),
            )

            area_a = torch.prod(bboxes_a[:, 2:], 1)
            area_b = torch.prod(bboxes_b[:, 2:], 1)
        en = (tl < br).type(tl.type()).prod(dim=2)
        area_i = torch.prod(br - tl, 2) * en
        return area_i / (area_a[:, None] + area_b - area_i)

    def get_in_boxes_info(self, gt_bboxes_per_image, expanded_strides, x_shifts, y_shifts, total_num_anchors, num_gt, center_radius = 2.5):
        #-------------------------------------------------------#
        #   expanded_strides_per_image  [n_anchors_all]
        #   x_centers_per_image         [num_gt, n_anchors_all]
        #   x_centers_per_image         [num_gt, n_anchors_all]
        #-------------------------------------------------------#
        expanded_strides_per_image  = expanded_strides[0]
        x_centers_per_image         = ((x_shifts[0] + 0.5) * expanded_strides_per_image).unsqueeze(0).repeat(num_gt, 1)
        y_centers_per_image         = ((y_shifts[0] + 0.5) * expanded_strides_per_image).unsqueeze(0).repeat(num_gt, 1)

        #-------------------------------------------------------#
        #   gt_bboxes_per_image_x       [num_gt, n_anchors_all]
        #-------------------------------------------------------#
        gt_bboxes_per_image_l = (gt_bboxes_per_image[:, 0] - 0.5 * gt_bboxes_per_image[:, 2]).unsqueeze(1).repeat(1, total_num_anchors)
        gt_bboxes_per_image_r = (gt_bboxes_per_image[:, 0] + 0.5 * gt_bboxes_per_image[:, 2]).unsqueeze(1).repeat(1, total_num_anchors)
        gt_bboxes_per_image_t = (gt_bboxes_per_image[:, 1] - 0.5 * gt_bboxes_per_image[:, 3]).unsqueeze(1).repeat(1, total_num_anchors)
        gt_bboxes_per_image_b = (gt_bboxes_per_image[:, 1] + 0.5 * gt_bboxes_per_image[:, 3]).unsqueeze(1).repeat(1, total_num_anchors)

        #-------------------------------------------------------#
        #   bbox_deltas     [num_gt, n_anchors_all, 4]
        #-------------------------------------------------------#
        b_l = x_centers_per_image - gt_bboxes_per_image_l
        b_r = gt_bboxes_per_image_r - x_centers_per_image
        b_t = y_centers_per_image - gt_bboxes_per_image_t
        b_b = gt_bboxes_per_image_b - y_centers_per_image
        bbox_deltas = torch.stack([b_l, b_t, b_r, b_b], 2)

        #-------------------------------------------------------#
        #   is_in_boxes     [num_gt, n_anchors_all]
        #   is_in_boxes_all [n_anchors_all]
        #-------------------------------------------------------#
        is_in_boxes     = bbox_deltas.min(dim=-1).values > 0.0
        is_in_boxes_all = is_in_boxes.sum(dim=0) > 0

        gt_bboxes_per_image_l = (gt_bboxes_per_image[:, 0]).unsqueeze(1).repeat(1, total_num_anchors) - center_radius * expanded_strides_per_image.unsqueeze(0)
        gt_bboxes_per_image_r = (gt_bboxes_per_image[:, 0]).unsqueeze(1).repeat(1, total_num_anchors) + center_radius * expanded_strides_per_image.unsqueeze(0)
        gt_bboxes_per_image_t = (gt_bboxes_per_image[:, 1]).unsqueeze(1).repeat(1, total_num_anchors) - center_radius * expanded_strides_per_image.unsqueeze(0)
        gt_bboxes_per_image_b = (gt_bboxes_per_image[:, 1]).unsqueeze(1).repeat(1, total_num_anchors) + center_radius * expanded_strides_per_image.unsqueeze(0)

        #-------------------------------------------------------#
        #   center_deltas   [num_gt, n_anchors_all, 4]
        #-------------------------------------------------------#
        c_l = x_centers_per_image - gt_bboxes_per_image_l
        c_r = gt_bboxes_per_image_r - x_centers_per_image
        c_t = y_centers_per_image - gt_bboxes_per_image_t
        c_b = gt_bboxes_per_image_b - y_centers_per_image
        center_deltas       = torch.stack([c_l, c_t, c_r, c_b], 2)

        #-------------------------------------------------------#
        #   is_in_centers       [num_gt, n_anchors_all]
        #   is_in_centers_all   [n_anchors_all]
        #-------------------------------------------------------#
        is_in_centers       = center_deltas.min(dim=-1).values > 0.0
        is_in_centers_all   = is_in_centers.sum(dim=0) > 0

        #-------------------------------------------------------#
        #   is_in_boxes_anchor      [n_anchors_all]
        #   is_in_boxes_and_center  [num_gt, is_in_boxes_anchor]
        #-------------------------------------------------------#
        is_in_boxes_anchor      = is_in_boxes_all | is_in_centers_all
        is_in_boxes_and_center  = is_in_boxes[:, is_in_boxes_anchor] & is_in_centers[:, is_in_boxes_anchor]
        return is_in_boxes_anchor, is_in_boxes_and_center

    def dynamic_k_matching(self, cost, pair_wise_ious, gt_classes, num_gt, fg_mask):
        #-------------------------------------------------------#
        #   cost                [num_gt, fg_mask]
        #   pair_wise_ious      [num_gt, fg_mask]
        #   gt_classes          [num_gt]        
        #   fg_mask             [n_anchors_all]
        #   matching_matrix     [num_gt, fg_mask]
        #-------------------------------------------------------#
        matching_matrix         = torch.zeros_like(cost)

        #------------------------------------------------------------#
        #   选取iou最大的n_candidate_k个点
        #   然后求和,判断应该有多少点用于该框预测
        #   topk_ious           [num_gt, n_candidate_k]
        #   dynamic_ks          [num_gt]
        #   matching_matrix     [num_gt, fg_mask]
        #------------------------------------------------------------#
        n_candidate_k           = min(10, pair_wise_ious.size(1))
        topk_ious, _            = torch.topk(pair_wise_ious, n_candidate_k, dim=1)
        dynamic_ks              = torch.clamp(topk_ious.sum(1).int(), min=1)
        
        for gt_idx in range(num_gt):
            #------------------------------------------------------------#
            #   给每个真实框选取最小的动态k个点
            #------------------------------------------------------------#
            _, pos_idx = torch.topk(cost[gt_idx], k=dynamic_ks[gt_idx].item(), largest=False)
            matching_matrix[gt_idx][pos_idx] = 1.0
        del topk_ious, dynamic_ks, pos_idx

        #------------------------------------------------------------#
        #   anchor_matching_gt  [fg_mask]
        #------------------------------------------------------------#
        anchor_matching_gt = matching_matrix.sum(0)
        if (anchor_matching_gt > 1).sum() > 0:
            #------------------------------------------------------------#
            #   当某一个特征点指向多个真实框的时候
            #   选取cost最小的真实框。
            #------------------------------------------------------------#
            _, cost_argmin = torch.min(cost[:, anchor_matching_gt > 1], dim=0)
            matching_matrix[:, anchor_matching_gt > 1] *= 0.0
            matching_matrix[cost_argmin, anchor_matching_gt > 1] = 1.0
        #------------------------------------------------------------#
        #   fg_mask_inboxes  [fg_mask]
        #   num_fg为正样本的特征点个数
        #------------------------------------------------------------#
        fg_mask_inboxes = matching_matrix.sum(0) > 0.0
        num_fg          = fg_mask_inboxes.sum().item()

        #------------------------------------------------------------#
        #   对fg_mask进行更新
        #------------------------------------------------------------#
        fg_mask[fg_mask.clone()] = fg_mask_inboxes

        #------------------------------------------------------------#
        #   获得特征点对应的物品种类
        #------------------------------------------------------------#
        matched_gt_inds     = matching_matrix[:, fg_mask_inboxes].argmax(0)
        gt_matched_classes  = gt_classes[matched_gt_inds]

        pred_ious_this_matching = (matching_matrix * pair_wise_ious).sum(0)[fg_mask_inboxes]
        return num_fg, gt_matched_classes, pred_ious_this_matching, matched_gt_inds

def is_parallel(model):
    # Returns True if model is of type DP or DDP
    return type(model) in (nn.parallel.DataParallel, nn.parallel.DistributedDataParallel)

def de_parallel(model):
    # De-parallelize a model: returns single-GPU model if model is of type DP or DDP
    return model.module if is_parallel(model) else model
    
def copy_attr(a, b, include=(), exclude=()):
    # Copy attributes from b to a, options to only include [...] and to exclude [...]
    for k, v in b.__dict__.items():
        if (len(include) and k not in include) or k.startswith('_') or k in exclude:
            continue
        else:
            setattr(a, k, v)

class ModelEMA:
    """ Updated Exponential Moving Average (EMA) from https://github.com/rwightman/pytorch-image-models
    Keeps a moving average of everything in the model state_dict (parameters and buffers)
    For EMA details see https://www.tensorflow.org/api_docs/python/tf/train/ExponentialMovingAverage
    """

    def __init__(self, model, decay=0.9999, tau=2000, updates=0):
        # Create EMA
        self.ema = deepcopy(de_parallel(model)).eval()  # FP32 EMA
        # if next(model.parameters()).device.type != 'cpu':
        #     self.ema.half()  # FP16 EMA
        self.updates = updates  # number of EMA updates
        self.decay = lambda x: decay * (1 - math.exp(-x / tau))  # decay exponential ramp (to help early epochs)
        for p in self.ema.parameters():
            p.requires_grad_(False)

    def update(self, model):
        # Update EMA parameters
        with torch.no_grad():
            self.updates += 1
            d = self.decay(self.updates)

            msd = de_parallel(model).state_dict()  # model state_dict
            for k, v in self.ema.state_dict().items():
                if v.dtype.is_floating_point:
                    v *= d
                    v += (1 - d) * msd[k].detach()

    def update_attr(self, model, include=(), exclude=('process_group', 'reducer')):
        # Update EMA attributes
        copy_attr(self.ema, model, include, exclude)

def weights_init(net, init_type='normal', init_gain = 0.02):
    def init_func(m):
        classname = m.__class__.__name__
        if hasattr(m, 'weight') and classname.find('Conv') != -1:
            if init_type == 'normal':
                torch.nn.init.normal_(m.weight.data, 0.0, init_gain)
            elif init_type == 'xavier':
                torch.nn.init.xavier_normal_(m.weight.data, gain=init_gain)
            elif init_type == 'kaiming':
                torch.nn.init.kaiming_normal_(m.weight.data, a=0, mode='fan_in')
            elif init_type == 'orthogonal':
                torch.nn.init.orthogonal_(m.weight.data, gain=init_gain)
            else:
                raise NotImplementedError('initialization method [%s] is not implemented' % init_type)
        elif classname.find('BatchNorm2d') != -1:
            torch.nn.init.normal_(m.weight.data, 1.0, 0.02)
            torch.nn.init.constant_(m.bias.data, 0.0)
    print('initialize network with %s type' % init_type)
    net.apply(init_func)

def get_lr_scheduler(lr_decay_type, lr, min_lr, total_iters, warmup_iters_ratio = 0.05, warmup_lr_ratio = 0.1, no_aug_iter_ratio = 0.05, step_num = 10):
    def yolox_warm_cos_lr(lr, min_lr, total_iters, warmup_total_iters, warmup_lr_start, no_aug_iter, iters):
        if iters <= warmup_total_iters:
            # lr = (lr - warmup_lr_start) * iters / float(warmup_total_iters) + warmup_lr_start
            lr = (lr - warmup_lr_start) * pow(iters / float(warmup_total_iters), 2) + warmup_lr_start
        elif iters >= total_iters - no_aug_iter:
            lr = min_lr
        else:
            lr = min_lr + 0.5 * (lr - min_lr) * (
                1.0 + math.cos(math.pi* (iters - warmup_total_iters) / (total_iters - warmup_total_iters - no_aug_iter))
            )
        return lr

    def step_lr(lr, decay_rate, step_size, iters):
        if step_size < 1:
            raise ValueError("step_size must above 1.")
        n       = iters // step_size
        out_lr  = lr * decay_rate ** n
        return out_lr

    if lr_decay_type == "cos":
        warmup_total_iters  = min(max(warmup_iters_ratio * total_iters, 1), 3)
        warmup_lr_start     = max(warmup_lr_ratio * lr, 1e-6)
        no_aug_iter         = min(max(no_aug_iter_ratio * total_iters, 1), 15)
        func = partial(yolox_warm_cos_lr ,lr, min_lr, total_iters, warmup_total_iters, warmup_lr_start, no_aug_iter)
    else:
        decay_rate  = (min_lr / lr) ** (1 / (step_num - 1))
        step_size   = total_iters / step_num
        func = partial(step_lr, lr, decay_rate, step_size)

    return func

def set_optimizer_lr(optimizer, lr_scheduler_func, epoch):
    lr = lr_scheduler_func(epoch)
    for param_group in optimizer.param_groups:
        param_group['lr'] = lr

ref

1
2

你可能感兴趣的:(python,pytorch,深度学习)