EventLoop是netty中负责处理Channel的IO事件的对象。从名称可以得知eventLoop是事件循环的意思,当一个Channel注册到一个EventLoop后,eventLoop就会接管这个Channel的IO事件,
从下方类关系图可以看到EventLoop继承于EventLoopGroup,而EventLoopGroup能够通过next()方法得到一个EventLoop。
今天要分析的是NioEventLoop
。
可以看到NioEventLoop继承于SingleThreadEventLoop, SingleThreadEventExecutor, AbstractScheduledEventExecutor, AbstractEventExecutor以及jdk的AbstactExecutorService。
AbstractEventExecutor
AbstractEventExecutor override了AbstractExecutorService的newTaskFor方法,这样submit返回的就是自定义的Future了,而netty中使用的Future比jdk原生的Future拥有更多的功能,例如addListener等。
protected final RunnableFuture newTaskFor(Runnable runnable, T value) {
return new PromiseTask(this, runnable, value);
}
PromiseTask继承自DefaultPromise实现了RunnableTask, Promise的意思是可以主动write的Future,值得是我们可以手动设置Future的结果、是否完成等。
另外AbstractEventExecutor中比较常用的一个方法是inEventLoop
这个是判断当前线程是否在事件循环线程中,因为为了保证一个Channel上的事件处理的线程安全,要把所有的IO事件等使用IO线程来处理,就需要判断当前线程是否是eventLoop线程,如果是则可以直接执行,否则需要提交给eventLoop线程去执行。
public boolean inEventLoop() {
return inEventLoop(Thread.currentThread());
}
inEventLoop(Thread)方法是EventExecutor中定义的抽象方法中,NioEventLoop继承的SingleThreadEventExecutor的实现是直接比较自己的线程,因为SingleThread只有一个线程。
public boolean inEventLoop(Thread thread) {
return thread == this.thread;
}
AbstractEventExecutor中剩余的方法是一些类似shutdown的辅助方法。
AbstractScheduledEventExecutor继承于AbstractEventExecutor,在其基础上增加了schedule相关的方法。
保存任务使用的是Heap堆结构的PriorityQueue, 队列中存储的是ScheduledFutureTask.
deadlineNanos表示任务应该执行的时间点,periodNanos表示是否重复执行,0表示不重复,大于0表示按照固定频率执行,小于0表示按照固定delay 执行。
private final long id = nextTaskId.getAndIncrement();
private long deadlineNanos;
/* 0 - no repeat, >0 - repeat at fixed rate, <0 - repeat with fixed delay */
private final long periodNanos;
private int queueIndex = INDEX_NOT_IN_QUEUE;
@Override
public int compareTo(Delayed o) {
if (this == o) {
return 0;
}
ScheduledFutureTask> that = (ScheduledFutureTask>) o;
long d = deadlineNanos() - that.deadlineNanos();
if (d < 0) {
return -1;
} else if (d > 0) {
return 1;
} else if (id < that.id) {
return -1;
} else if (id == that.id) {
throw new Error();
} else {
return 1;
}
}
@Override
public void run() {
assert executor().inEventLoop();
try {
if (periodNanos == 0) {
if (setUncancellableInternal()) {
V result = task.call();
setSuccessInternal(result);
}
} else {
// check if is done as it may was cancelled
if (!isCancelled()) {
task.call();
if (!executor().isShutdown()) {
long p = periodNanos;
if (p > 0) {
deadlineNanos += p;
} else {
deadlineNanos = nanoTime() - p;
}
if (!isCancelled()) {
// scheduledTaskQueue can never be null as we lazy init it before submit the task!
Queue> scheduledTaskQueue =
((AbstractScheduledEventExecutor) executor()).scheduledTaskQueue;
assert scheduledTaskQueue != null;
scheduledTaskQueue.add(this);
}
}
}
}
} catch (Throwable cause) {
setFailureInternal(cause);
}
}
另外AbstractScheduledEventExecutor还包括添加scheduledTask和获取scheduledTask等方法
protected final Runnable pollScheduledTask(long nanoTime) {
assert inEventLoop();
Queue> scheduledTaskQueue = this.scheduledTaskQueue;
ScheduledFutureTask> scheduledTask = scheduledTaskQueue == null ? null : scheduledTaskQueue.peek();
if (scheduledTask == null) {
return null;
}
if (scheduledTask.deadlineNanos() <= nanoTime) {
scheduledTaskQueue.remove();
return scheduledTask;
}
return null;
}
@Override
public ScheduledFuture schedule(Callable callable, long delay, TimeUnit unit) {
ObjectUtil.checkNotNull(callable, "callable");
ObjectUtil.checkNotNull(unit, "unit");
if (delay < 0) {
delay = 0;
}
validateScheduled0(delay, unit);
return schedule(new ScheduledFutureTask(
this, callable, ScheduledFutureTask.deadlineNanos(unit.toNanos(delay))));
}
ScheduledFuture schedule(final ScheduledFutureTask task) {
if (inEventLoop()) {
scheduledTaskQueue().add(task);
} else {
execute(new Runnable() {
@Override
public void run() {
scheduledTaskQueue().add(task);
}
});
}
return task;
}
SingleThreadEventExecutor
SingleThreadEventExecutor继承自AbstractScheduledEventExecutor, 从名字可以看出这个是一个单线程的实现。
public abstract class SingleThreadEventExecutor extends AbstractScheduledEventExecutor implements OrderedEventExecutor {
private static final int ST_NOT_STARTED = 1;
private static final int ST_STARTED = 2;
private static final int ST_SHUTTING_DOWN = 3;
private static final int ST_SHUTDOWN = 4;
private static final int ST_TERMINATED = 5;
private static final AtomicIntegerFieldUpdater STATE_UPDATER =
AtomicIntegerFieldUpdater.newUpdater(SingleThreadEventExecutor.class, "state");
private static final AtomicReferenceFieldUpdater PROPERTIES_UPDATER =
AtomicReferenceFieldUpdater.newUpdater(
SingleThreadEventExecutor.class, ThreadProperties.class, "threadProperties");
private volatile ThreadProperties threadProperties;
private volatile int state = ST_NOT_STARTED;
SingleThreadEventExecutor中定义了一个state变量,表示当前executor的状态,状态有NOT_STARTED, STARTED, SHUTTING_DOWN, SHUTDOWN, TERMINIATED。
SHUTDOWN是用户调用shutdown完成后进入的状态。
TERMINATED则是出现异常终止或者任务自然执行完后的状态。
注意到这里用到了AtomicIntegerFieldUpdater
和AtomicReferenceFieldUpdater
, 然后搭配volatile变量实现AtomicInteger和AtomicReference的原子操作功能,这样做的优点在于节省内存,因为一个对象需要对象头和一个实际数据存储以及padding等。
这里定义了一个taskQueue,用于保存从scheduledTaskQueue中取出的已经到期的task。
thread为这个SingleThreadEventExecutor的线程。
executor是线程池,对于NioEventLoop是一个ThreadPerTaskExecutor。
maxPendingTasks控制taskQueue的队列大小。
rejectedExecutionHandler控制队列满了如何处理。
private final Queue taskQueue;
private volatile Thread thread;
@SuppressWarnings("unused")
private volatile ThreadProperties threadProperties;
private final Executor executor;
private volatile boolean interrupted;
private final Semaphore threadLock = new Semaphore(0);
private final Set shutdownHooks = new LinkedHashSet();
private final boolean addTaskWakesUp;
private final int maxPendingTasks;
private final RejectedExecutionHandler rejectedExecutionHandler;
private long lastExecutionTime;
@SuppressWarnings({ "FieldMayBeFinal", "unused" })
private volatile int state = ST_NOT_STARTED;
private volatile long gracefulShutdownQuietPeriod;
private volatile long gracefulShutdownTimeout;
private long gracefulShutdownStartTime;
private final Promise> terminationFuture = new DefaultPromise(GlobalEventExecutor.INSTANCE);
runAllTasks会从ScheduledTaskQueue中取出到期的task,尝试放入taskQueue中,如果不成功则放回到scheduledTaskQueue里。
然后把所有的taskQueue执行完。
protected boolean runAllTasks() {
assert inEventLoop();
boolean fetchedAll;
boolean ranAtLeastOne = false;
do {
fetchedAll = fetchFromScheduledTaskQueue();
if (runAllTasksFrom(taskQueue)) {
ranAtLeastOne = true;
}
} while (!fetchedAll); // keep on processing until we fetched all scheduled tasks.
if (ranAtLeastOne) {
lastExecutionTime = ScheduledFutureTask.nanoTime();
}
afterRunningAllTasks();
return ranAtLeastOne;
}
private boolean fetchFromScheduledTaskQueue() {
long nanoTime = AbstractScheduledEventExecutor.nanoTime();
Runnable scheduledTask = pollScheduledTask(nanoTime);
while (scheduledTask != null) {
if (!taskQueue.offer(scheduledTask)) {
// No space left in the task queue add it back to the scheduledTaskQueue so we pick it up again.
scheduledTaskQueue().add((ScheduledFutureTask>) scheduledTask);
return false;
}
scheduledTask = pollScheduledTask(nanoTime);
}
return true;
}
NioEventLoop
NioEventLoop实现了nio相关的操作,将Channel注册到Selector上并且
通过eventLoop实现多路复用。并且这里通过特殊处理绕过了jdk的nio 循环bug。
ioRatio是控制io操作占用时间的比例
private final SelectStrategy selectStrategy;
private volatile int ioRatio = 50;
private int cancelledKeys;
private boolean needsToSelectAgain;
NioEventLoop(NioEventLoopGroup parent, Executor executor, SelectorProvider selectorProvider,
SelectStrategy strategy, RejectedExecutionHandler rejectedExecutionHandler) {
super(parent, executor, false, DEFAULT_MAX_PENDING_TASKS, rejectedExecutionHandler);
if (selectorProvider == null) {
throw new NullPointerException("selectorProvider");
}
if (strategy == null) {
throw new NullPointerException("selectStrategy");
}
provider = selectorProvider;
final SelectorTuple selectorTuple = openSelector();
selector = selectorTuple.selector;
unwrappedSelector = selectorTuple.unwrappedSelector;
selectStrategy = strategy;
}
前面SingleThreadEventExecutor的留给子类继承的run方法在NioEventLoop实现是
- 一个无限循环中
for (;;) {
try {
switch (selectStrategy.calculateStrategy(selectNowSupplier, hasTasks())) {
case SelectStrategy.CONTINUE:
continue;
case SelectStrategy.SELECT:
select(wakenUp.getAndSet(false));
// 'wakenUp.compareAndSet(false, true)' is always evaluated
// before calling 'selector.wakeup()' to reduce the wake-up
// overhead. (Selector.wakeup() is an expensive operation.)
//
// However, there is a race condition in this approach.
// The race condition is triggered when 'wakenUp' is set to
// true too early.
//
// 'wakenUp' is set to true too early if:
// 1) Selector is waken up between 'wakenUp.set(false)' and
// 'selector.select(...)'. (BAD)
// 2) Selector is waken up between 'selector.select(...)' and
// 'if (wakenUp.get()) { ... }'. (OK)
//
// In the first case, 'wakenUp' is set to true and the
// following 'selector.select(...)' will wake up immediately.
// Until 'wakenUp' is set to false again in the next round,
// 'wakenUp.compareAndSet(false, true)' will fail, and therefore
// any attempt to wake up the Selector will fail, too, causing
// the following 'selector.select(...)' call to block
// unnecessarily.
//
// To fix this problem, we wake up the selector again if wakenUp
// is true immediately after selector.select(...).
// It is inefficient in that it wakes up the selector for both
// the first case (BAD - wake-up required) and the second case
// (OK - no wake-up required).
if (wakenUp.get()) {
selector.wakeup();
}
// fall through
default:
}
cancelledKeys = 0;
needsToSelectAgain = false;
final int ioRatio = this.ioRatio;
if (ioRatio == 100) {
try {
processSelectedKeys();
} finally {
// Ensure we always run tasks.
runAllTasks();
}
} else {
final long ioStartTime = System.nanoTime();
try {
processSelectedKeys();
} finally {
// Ensure we always run tasks.
final long ioTime = System.nanoTime() - ioStartTime;
runAllTasks(ioTime * (100 - ioRatio) / ioRatio);
}
}
} catch (Throwable t) {
handleLoopException(t);
}
// Always handle shutdown even if the loop processing threw an exception.
try {
if (isShuttingDown()) {
closeAll();
if (confirmShutdown()) {
return;
}
}
} catch (Throwable t) {
handleLoopException(t);
}
}
select处理如下
- 记录入口当前时间,记录到最近一个task还有多少时间(如果没有默认一秒)
- 在一个for循环中select, 每次select都会有个计数器selectCnt加1.
- 如果select返回后发现超时时间没到,则判断selectCnt是否大于阈值了,如果是
则要rebuildSelect绕过jdk select阻塞失效的bug。
private void select(boolean oldWakenUp) throws IOException {
Selector selector = this.selector;
try {
int selectCnt = 0;
long currentTimeNanos = System.nanoTime();
long selectDeadLineNanos = currentTimeNanos + delayNanos(currentTimeNanos);
for (;;) {
long timeoutMillis = (selectDeadLineNanos - currentTimeNanos + 500000L) / 1000000L;
if (timeoutMillis <= 0) {
if (selectCnt == 0) {
selector.selectNow();
selectCnt = 1;
}
break;
}
// If a task was submitted when wakenUp value was true, the task didn't get a chance to call
// Selector#wakeup. So we need to check task queue again before executing select operation.
// If we don't, the task might be pended until select operation was timed out.
// It might be pended until idle timeout if IdleStateHandler existed in pipeline.
if (hasTasks() && wakenUp.compareAndSet(false, true)) {
selector.selectNow();
selectCnt = 1;
break;
}
int selectedKeys = selector.select(timeoutMillis);
selectCnt ++;
if (selectedKeys != 0 || oldWakenUp || wakenUp.get() || hasTasks() || hasScheduledTasks()) {
// - Selected something,
// - waken up by user, or
// - the task queue has a pending task.
// - a scheduled task is ready for processing
break;
}
if (Thread.interrupted()) {
// Thread was interrupted so reset selected keys and break so we not run into a busy loop.
// As this is most likely a bug in the handler of the user or it's client library we will
// also log it.
//
// See https://github.com/netty/netty/issues/2426
if (logger.isDebugEnabled()) {
logger.debug("Selector.select() returned prematurely because " +
"Thread.currentThread().interrupt() was called. Use " +
"NioEventLoop.shutdownGracefully() to shutdown the NioEventLoop.");
}
selectCnt = 1;
break;
}
long time = System.nanoTime();
if (time - TimeUnit.MILLISECONDS.toNanos(timeoutMillis) >= currentTimeNanos) {
// timeoutMillis elapsed without anything selected.
selectCnt = 1;
} else if (SELECTOR_AUTO_REBUILD_THRESHOLD > 0 &&
selectCnt >= SELECTOR_AUTO_REBUILD_THRESHOLD) {
// The selector returned prematurely many times in a row.
// Rebuild the selector to work around the problem.
logger.warn(
"Selector.select() returned prematurely {} times in a row; rebuilding Selector {}.",
selectCnt, selector);
rebuildSelector();
selector = this.selector;
// Select again to populate selectedKeys.
selector.selectNow();
selectCnt = 1;
break;
}
currentTimeNanos = time;
}
if (selectCnt > MIN_PREMATURE_SELECTOR_RETURNS) {
if (logger.isDebugEnabled()) {
logger.debug("Selector.select() returned prematurely {} times in a row for Selector {}.",
selectCnt - 1, selector);
}
}
} catch (CancelledKeyException e) {
if (logger.isDebugEnabled()) {
logger.debug(CancelledKeyException.class.getSimpleName() + " raised by a Selector {} - JDK bug?",
selector, e);
}
// Harmless exception - log anyway
}
}
select完成后就是执行处理selectionKey了,遍历SelectionKey集合,从key的attachment判断类型,然后继续Process
private void processSelectedKeysPlain(Set selectedKeys) {
// check if the set is empty and if so just return to not create garbage by
// creating a new Iterator every time even if there is nothing to process.
// See https://github.com/netty/netty/issues/597
if (selectedKeys.isEmpty()) {
return;
}
Iterator i = selectedKeys.iterator();
for (;;) {
final SelectionKey k = i.next();
final Object a = k.attachment();
i.remove();
if (a instanceof AbstractNioChannel) {
processSelectedKey(k, (AbstractNioChannel) a);
} else {
@SuppressWarnings("unchecked")
NioTask task = (NioTask) a;
processSelectedKey(k, task);
}
if (!i.hasNext()) {
break;
}
if (needsToSelectAgain) {
selectAgain();
selectedKeys = selector.selectedKeys();
// Create the iterator again to avoid ConcurrentModificationException
if (selectedKeys.isEmpty()) {
break;
} else {
i = selectedKeys.iterator();
}
}
}
}
判断如果当前可write,则通过AbstractNioChannel的unsafe 进行flush,如果可读,同样通过unsafe进行read。
unsafe的read、write操作设计到pipeline相关的代码,在之后的章节中会分析。
private void processSelectedKey(SelectionKey k, AbstractNioChannel ch) {
final AbstractNioChannel.NioUnsafe unsafe = ch.unsafe();
if (!k.isValid()) {
final EventLoop eventLoop;
try {
eventLoop = ch.eventLoop();
} catch (Throwable ignored) {
// If the channel implementation throws an exception because there is no event loop, we ignore this
// because we are only trying to determine if ch is registered to this event loop and thus has authority
// to close ch.
return;
}
// Only close ch if ch is still registered to this EventLoop. ch could have deregistered from the event loop
// and thus the SelectionKey could be cancelled as part of the deregistration process, but the channel is
// still healthy and should not be closed.
// See https://github.com/netty/netty/issues/5125
if (eventLoop != this || eventLoop == null) {
return;
}
// close the channel if the key is not valid anymore
unsafe.close(unsafe.voidPromise());
return;
}
try {
int readyOps = k.readyOps();
// We first need to call finishConnect() before try to trigger a read(...) or write(...) as otherwise
// the NIO JDK channel implementation may throw a NotYetConnectedException.
if ((readyOps & SelectionKey.OP_CONNECT) != 0) {
// remove OP_CONNECT as otherwise Selector.select(..) will always return without blocking
// See https://github.com/netty/netty/issues/924
int ops = k.interestOps();
ops &= ~SelectionKey.OP_CONNECT;
k.interestOps(ops);
unsafe.finishConnect();
}
// Process OP_WRITE first as we may be able to write some queued buffers and so free memory.
if ((readyOps & SelectionKey.OP_WRITE) != 0) {
// Call forceFlush which will also take care of clear the OP_WRITE once there is nothing left to write
ch.unsafe().forceFlush();
}
// Also check for readOps of 0 to workaround possible JDK bug which may otherwise lead
// to a spin loop
if ((readyOps & (SelectionKey.OP_READ | SelectionKey.OP_ACCEPT)) != 0 || readyOps == 0) {
unsafe.read();
}
} catch (CancelledKeyException ignored) {
unsafe.close(unsafe.voidPromise());
}
}
通过上面的分析,可以大概理清netty的nio eventLoop过程和实现了。