netty-event-loop

EventLoop是netty中负责处理Channel的IO事件的对象。从名称可以得知eventLoop是事件循环的意思,当一个Channel注册到一个EventLoop后,eventLoop就会接管这个Channel的IO事件,
从下方类关系图可以看到EventLoop继承于EventLoopGroup,而EventLoopGroup能够通过next()方法得到一个EventLoop。

image.png

今天要分析的是NioEventLoop
可以看到NioEventLoop继承于SingleThreadEventLoop, SingleThreadEventExecutor, AbstractScheduledEventExecutor, AbstractEventExecutor以及jdk的AbstactExecutorService。

AbstractEventExecutor
AbstractEventExecutor override了AbstractExecutorService的newTaskFor方法,这样submit返回的就是自定义的Future了,而netty中使用的Future比jdk原生的Future拥有更多的功能,例如addListener等。

    protected final  RunnableFuture newTaskFor(Runnable runnable, T value) {
        return new PromiseTask(this, runnable, value);
    }

PromiseTask继承自DefaultPromise实现了RunnableTask, Promise的意思是可以主动write的Future,值得是我们可以手动设置Future的结果、是否完成等。

另外AbstractEventExecutor中比较常用的一个方法是inEventLoop
这个是判断当前线程是否在事件循环线程中,因为为了保证一个Channel上的事件处理的线程安全,要把所有的IO事件等使用IO线程来处理,就需要判断当前线程是否是eventLoop线程,如果是则可以直接执行,否则需要提交给eventLoop线程去执行。

    public boolean inEventLoop() {
        return inEventLoop(Thread.currentThread());
    }

inEventLoop(Thread)方法是EventExecutor中定义的抽象方法中,NioEventLoop继承的SingleThreadEventExecutor的实现是直接比较自己的线程,因为SingleThread只有一个线程。

    public boolean inEventLoop(Thread thread) {
        return thread == this.thread;
    }

AbstractEventExecutor中剩余的方法是一些类似shutdown的辅助方法。
AbstractScheduledEventExecutor继承于AbstractEventExecutor,在其基础上增加了schedule相关的方法。

保存任务使用的是Heap堆结构的PriorityQueue, 队列中存储的是ScheduledFutureTask.
deadlineNanos表示任务应该执行的时间点,periodNanos表示是否重复执行,0表示不重复,大于0表示按照固定频率执行,小于0表示按照固定delay 执行。

    private final long id = nextTaskId.getAndIncrement();
    private long deadlineNanos;
    /* 0 - no repeat, >0 - repeat at fixed rate, <0 - repeat with fixed delay */
    private final long periodNanos;

    private int queueIndex = INDEX_NOT_IN_QUEUE;

    @Override
    public int compareTo(Delayed o) {
        if (this == o) {
            return 0;
        }

        ScheduledFutureTask that = (ScheduledFutureTask) o;
        long d = deadlineNanos() - that.deadlineNanos();
        if (d < 0) {
            return -1;
        } else if (d > 0) {
            return 1;
        } else if (id < that.id) {
            return -1;
        } else if (id == that.id) {
            throw new Error();
        } else {
            return 1;
        }
    }

    @Override
    public void run() {
        assert executor().inEventLoop();
        try {
            if (periodNanos == 0) {
                if (setUncancellableInternal()) {
                    V result = task.call();
                    setSuccessInternal(result);
                }
            } else {
                // check if is done as it may was cancelled
                if (!isCancelled()) {
                    task.call();
                    if (!executor().isShutdown()) {
                        long p = periodNanos;
                        if (p > 0) {
                            deadlineNanos += p;
                        } else {
                            deadlineNanos = nanoTime() - p;
                        }
                        if (!isCancelled()) {
                            // scheduledTaskQueue can never be null as we lazy init it before submit the task!
                            Queue> scheduledTaskQueue =
                                    ((AbstractScheduledEventExecutor) executor()).scheduledTaskQueue;
                            assert scheduledTaskQueue != null;
                            scheduledTaskQueue.add(this);
                        }
                    }
                }
            }
        } catch (Throwable cause) {
            setFailureInternal(cause);
        }
    }

另外AbstractScheduledEventExecutor还包括添加scheduledTask和获取scheduledTask等方法

       protected final Runnable pollScheduledTask(long nanoTime) {
        assert inEventLoop();

        Queue> scheduledTaskQueue = this.scheduledTaskQueue;
        ScheduledFutureTask scheduledTask = scheduledTaskQueue == null ? null : scheduledTaskQueue.peek();
        if (scheduledTask == null) {
            return null;
        }

        if (scheduledTask.deadlineNanos() <= nanoTime) {
            scheduledTaskQueue.remove();
            return scheduledTask;
        }
        return null;
    }

    @Override
    public  ScheduledFuture schedule(Callable callable, long delay, TimeUnit unit) {
        ObjectUtil.checkNotNull(callable, "callable");
        ObjectUtil.checkNotNull(unit, "unit");
        if (delay < 0) {
            delay = 0;
        }
        validateScheduled0(delay, unit);

        return schedule(new ScheduledFutureTask(
                this, callable, ScheduledFutureTask.deadlineNanos(unit.toNanos(delay))));
    }

     ScheduledFuture schedule(final ScheduledFutureTask task) {
        if (inEventLoop()) {
            scheduledTaskQueue().add(task);
        } else {
            execute(new Runnable() {
                @Override
                public void run() {
                    scheduledTaskQueue().add(task);
                }
            });
        }

        return task;
    }

SingleThreadEventExecutor

SingleThreadEventExecutor继承自AbstractScheduledEventExecutor, 从名字可以看出这个是一个单线程的实现。

public abstract class SingleThreadEventExecutor extends AbstractScheduledEventExecutor implements OrderedEventExecutor {

    private static final int ST_NOT_STARTED = 1;
    private static final int ST_STARTED = 2;
    private static final int ST_SHUTTING_DOWN = 3;
    private static final int ST_SHUTDOWN = 4;
    private static final int ST_TERMINATED = 5;

    private static final AtomicIntegerFieldUpdater STATE_UPDATER =
            AtomicIntegerFieldUpdater.newUpdater(SingleThreadEventExecutor.class, "state");
    private static final AtomicReferenceFieldUpdater PROPERTIES_UPDATER =
            AtomicReferenceFieldUpdater.newUpdater(
                    SingleThreadEventExecutor.class, ThreadProperties.class, "threadProperties");

    private volatile ThreadProperties threadProperties;
    private volatile int state = ST_NOT_STARTED;

SingleThreadEventExecutor中定义了一个state变量,表示当前executor的状态,状态有NOT_STARTED, STARTED, SHUTTING_DOWN, SHUTDOWN, TERMINIATED。
SHUTDOWN是用户调用shutdown完成后进入的状态。
TERMINATED则是出现异常终止或者任务自然执行完后的状态。
注意到这里用到了AtomicIntegerFieldUpdaterAtomicReferenceFieldUpdater, 然后搭配volatile变量实现AtomicInteger和AtomicReference的原子操作功能,这样做的优点在于节省内存,因为一个对象需要对象头和一个实际数据存储以及padding等。

这里定义了一个taskQueue,用于保存从scheduledTaskQueue中取出的已经到期的task。
thread为这个SingleThreadEventExecutor的线程。
executor是线程池,对于NioEventLoop是一个ThreadPerTaskExecutor。
maxPendingTasks控制taskQueue的队列大小。
rejectedExecutionHandler控制队列满了如何处理。

 private final Queue taskQueue;

    private volatile Thread thread;
    @SuppressWarnings("unused")
    private volatile ThreadProperties threadProperties;
    private final Executor executor;
    private volatile boolean interrupted;

    private final Semaphore threadLock = new Semaphore(0);
    private final Set shutdownHooks = new LinkedHashSet();
    private final boolean addTaskWakesUp;
    private final int maxPendingTasks;
    private final RejectedExecutionHandler rejectedExecutionHandler;

    private long lastExecutionTime;

    @SuppressWarnings({ "FieldMayBeFinal", "unused" })
    private volatile int state = ST_NOT_STARTED;

    private volatile long gracefulShutdownQuietPeriod;
    private volatile long gracefulShutdownTimeout;
    private long gracefulShutdownStartTime;

    private final Promise terminationFuture = new DefaultPromise(GlobalEventExecutor.INSTANCE);

runAllTasks会从ScheduledTaskQueue中取出到期的task,尝试放入taskQueue中,如果不成功则放回到scheduledTaskQueue里。
然后把所有的taskQueue执行完。

     protected boolean runAllTasks() {
        assert inEventLoop();
        boolean fetchedAll;
        boolean ranAtLeastOne = false;

        do {
            fetchedAll = fetchFromScheduledTaskQueue();
            if (runAllTasksFrom(taskQueue)) {
                ranAtLeastOne = true;
            }
        } while (!fetchedAll); // keep on processing until we fetched all scheduled tasks.

        if (ranAtLeastOne) {
            lastExecutionTime = ScheduledFutureTask.nanoTime();
        }
        afterRunningAllTasks();
        return ranAtLeastOne;
    }

    private boolean fetchFromScheduledTaskQueue() {
        long nanoTime = AbstractScheduledEventExecutor.nanoTime();
        Runnable scheduledTask  = pollScheduledTask(nanoTime);
        while (scheduledTask != null) {
            if (!taskQueue.offer(scheduledTask)) {
                // No space left in the task queue add it back to the scheduledTaskQueue so we pick it up again.
                scheduledTaskQueue().add((ScheduledFutureTask) scheduledTask);
                return false;
            }
            scheduledTask  = pollScheduledTask(nanoTime);
        }
        return true;
    }

NioEventLoop

NioEventLoop实现了nio相关的操作,将Channel注册到Selector上并且
通过eventLoop实现多路复用。并且这里通过特殊处理绕过了jdk的nio 循环bug。
ioRatio是控制io操作占用时间的比例

private final SelectStrategy selectStrategy;

    private volatile int ioRatio = 50;
    private int cancelledKeys;
    private boolean needsToSelectAgain;

    NioEventLoop(NioEventLoopGroup parent, Executor executor, SelectorProvider selectorProvider,
                 SelectStrategy strategy, RejectedExecutionHandler rejectedExecutionHandler) {
        super(parent, executor, false, DEFAULT_MAX_PENDING_TASKS, rejectedExecutionHandler);
        if (selectorProvider == null) {
            throw new NullPointerException("selectorProvider");
        }
        if (strategy == null) {
            throw new NullPointerException("selectStrategy");
        }
        provider = selectorProvider;
        final SelectorTuple selectorTuple = openSelector();
        selector = selectorTuple.selector;
        unwrappedSelector = selectorTuple.unwrappedSelector;
        selectStrategy = strategy;
    }

前面SingleThreadEventExecutor的留给子类继承的run方法在NioEventLoop实现是

  1. 一个无限循环中
    for (;;) {
            try {
                switch (selectStrategy.calculateStrategy(selectNowSupplier, hasTasks())) {
                    case SelectStrategy.CONTINUE:
                        continue;
                    case SelectStrategy.SELECT:
                        select(wakenUp.getAndSet(false));

                        // 'wakenUp.compareAndSet(false, true)' is always evaluated
                        // before calling 'selector.wakeup()' to reduce the wake-up
                        // overhead. (Selector.wakeup() is an expensive operation.)
                        //
                        // However, there is a race condition in this approach.
                        // The race condition is triggered when 'wakenUp' is set to
                        // true too early.
                        //
                        // 'wakenUp' is set to true too early if:
                        // 1) Selector is waken up between 'wakenUp.set(false)' and
                        //    'selector.select(...)'. (BAD)
                        // 2) Selector is waken up between 'selector.select(...)' and
                        //    'if (wakenUp.get()) { ... }'. (OK)
                        //
                        // In the first case, 'wakenUp' is set to true and the
                        // following 'selector.select(...)' will wake up immediately.
                        // Until 'wakenUp' is set to false again in the next round,
                        // 'wakenUp.compareAndSet(false, true)' will fail, and therefore
                        // any attempt to wake up the Selector will fail, too, causing
                        // the following 'selector.select(...)' call to block
                        // unnecessarily.
                        //
                        // To fix this problem, we wake up the selector again if wakenUp
                        // is true immediately after selector.select(...).
                        // It is inefficient in that it wakes up the selector for both
                        // the first case (BAD - wake-up required) and the second case
                        // (OK - no wake-up required).

                        if (wakenUp.get()) {
                            selector.wakeup();
                        }
                        // fall through
                    default:
                }

                cancelledKeys = 0;
                needsToSelectAgain = false;
                final int ioRatio = this.ioRatio;
                if (ioRatio == 100) {
                    try {
                        processSelectedKeys();
                    } finally {
                        // Ensure we always run tasks.
                        runAllTasks();
                    }
                } else {
                    final long ioStartTime = System.nanoTime();
                    try {
                        processSelectedKeys();
                    } finally {
                        // Ensure we always run tasks.
                        final long ioTime = System.nanoTime() - ioStartTime;
                        runAllTasks(ioTime * (100 - ioRatio) / ioRatio);
                    }
                }
            } catch (Throwable t) {
                handleLoopException(t);
            }
            // Always handle shutdown even if the loop processing threw an exception.
            try {
                if (isShuttingDown()) {
                    closeAll();
                    if (confirmShutdown()) {
                        return;
                    }
                }
            } catch (Throwable t) {
                handleLoopException(t);
            }
        }

select处理如下

  1. 记录入口当前时间,记录到最近一个task还有多少时间(如果没有默认一秒)
  2. 在一个for循环中select, 每次select都会有个计数器selectCnt加1.
  3. 如果select返回后发现超时时间没到,则判断selectCnt是否大于阈值了,如果是
    则要rebuildSelect绕过jdk select阻塞失效的bug。
 private void select(boolean oldWakenUp) throws IOException {
        Selector selector = this.selector;
        try {
            int selectCnt = 0;
            long currentTimeNanos = System.nanoTime();
            long selectDeadLineNanos = currentTimeNanos + delayNanos(currentTimeNanos);

            for (;;) {
                long timeoutMillis = (selectDeadLineNanos - currentTimeNanos + 500000L) / 1000000L;
                if (timeoutMillis <= 0) {
                    if (selectCnt == 0) {
                        selector.selectNow();
                        selectCnt = 1;
                    }
                    break;
                }

                // If a task was submitted when wakenUp value was true, the task didn't get a chance to call
                // Selector#wakeup. So we need to check task queue again before executing select operation.
                // If we don't, the task might be pended until select operation was timed out.
                // It might be pended until idle timeout if IdleStateHandler existed in pipeline.
                if (hasTasks() && wakenUp.compareAndSet(false, true)) {
                    selector.selectNow();
                    selectCnt = 1;
                    break;
                }

                int selectedKeys = selector.select(timeoutMillis);
                selectCnt ++;

                if (selectedKeys != 0 || oldWakenUp || wakenUp.get() || hasTasks() || hasScheduledTasks()) {
                    // - Selected something,
                    // - waken up by user, or
                    // - the task queue has a pending task.
                    // - a scheduled task is ready for processing
                    break;
                }
                if (Thread.interrupted()) {
                    // Thread was interrupted so reset selected keys and break so we not run into a busy loop.
                    // As this is most likely a bug in the handler of the user or it's client library we will
                    // also log it.
                    //
                    // See https://github.com/netty/netty/issues/2426
                    if (logger.isDebugEnabled()) {
                        logger.debug("Selector.select() returned prematurely because " +
                                "Thread.currentThread().interrupt() was called. Use " +
                                "NioEventLoop.shutdownGracefully() to shutdown the NioEventLoop.");
                    }
                    selectCnt = 1;
                    break;
                }

                long time = System.nanoTime();
                if (time - TimeUnit.MILLISECONDS.toNanos(timeoutMillis) >= currentTimeNanos) {
                    // timeoutMillis elapsed without anything selected.
                    selectCnt = 1;
                } else if (SELECTOR_AUTO_REBUILD_THRESHOLD > 0 &&
                        selectCnt >= SELECTOR_AUTO_REBUILD_THRESHOLD) {
                    // The selector returned prematurely many times in a row.
                    // Rebuild the selector to work around the problem.
                    logger.warn(
                            "Selector.select() returned prematurely {} times in a row; rebuilding Selector {}.",
                            selectCnt, selector);

                    rebuildSelector();
                    selector = this.selector;

                    // Select again to populate selectedKeys.
                    selector.selectNow();
                    selectCnt = 1;
                    break;
                }

                currentTimeNanos = time;
            }

            if (selectCnt > MIN_PREMATURE_SELECTOR_RETURNS) {
                if (logger.isDebugEnabled()) {
                    logger.debug("Selector.select() returned prematurely {} times in a row for Selector {}.",
                            selectCnt - 1, selector);
                }
            }
        } catch (CancelledKeyException e) {
            if (logger.isDebugEnabled()) {
                logger.debug(CancelledKeyException.class.getSimpleName() + " raised by a Selector {} - JDK bug?",
                        selector, e);
            }
            // Harmless exception - log anyway
        }
    }

select完成后就是执行处理selectionKey了,遍历SelectionKey集合,从key的attachment判断类型,然后继续Process

private void processSelectedKeysPlain(Set selectedKeys) {
        // check if the set is empty and if so just return to not create garbage by
        // creating a new Iterator every time even if there is nothing to process.
        // See https://github.com/netty/netty/issues/597
        if (selectedKeys.isEmpty()) {
            return;
        }

        Iterator i = selectedKeys.iterator();
        for (;;) {
            final SelectionKey k = i.next();
            final Object a = k.attachment();
            i.remove();

            if (a instanceof AbstractNioChannel) {
                processSelectedKey(k, (AbstractNioChannel) a);
            } else {
                @SuppressWarnings("unchecked")
                NioTask task = (NioTask) a;
                processSelectedKey(k, task);
            }

            if (!i.hasNext()) {
                break;
            }

            if (needsToSelectAgain) {
                selectAgain();
                selectedKeys = selector.selectedKeys();

                // Create the iterator again to avoid ConcurrentModificationException
                if (selectedKeys.isEmpty()) {
                    break;
                } else {
                    i = selectedKeys.iterator();
                }
            }
        }
    }

判断如果当前可write,则通过AbstractNioChannel的unsafe 进行flush,如果可读,同样通过unsafe进行read。
unsafe的read、write操作设计到pipeline相关的代码,在之后的章节中会分析。

private void processSelectedKey(SelectionKey k, AbstractNioChannel ch) {
        final AbstractNioChannel.NioUnsafe unsafe = ch.unsafe();
        if (!k.isValid()) {
            final EventLoop eventLoop;
            try {
                eventLoop = ch.eventLoop();
            } catch (Throwable ignored) {
                // If the channel implementation throws an exception because there is no event loop, we ignore this
                // because we are only trying to determine if ch is registered to this event loop and thus has authority
                // to close ch.
                return;
            }
            // Only close ch if ch is still registered to this EventLoop. ch could have deregistered from the event loop
            // and thus the SelectionKey could be cancelled as part of the deregistration process, but the channel is
            // still healthy and should not be closed.
            // See https://github.com/netty/netty/issues/5125
            if (eventLoop != this || eventLoop == null) {
                return;
            }
            // close the channel if the key is not valid anymore
            unsafe.close(unsafe.voidPromise());
            return;
        }

        try {
            int readyOps = k.readyOps();
            // We first need to call finishConnect() before try to trigger a read(...) or write(...) as otherwise
            // the NIO JDK channel implementation may throw a NotYetConnectedException.
            if ((readyOps & SelectionKey.OP_CONNECT) != 0) {
                // remove OP_CONNECT as otherwise Selector.select(..) will always return without blocking
                // See https://github.com/netty/netty/issues/924
                int ops = k.interestOps();
                ops &= ~SelectionKey.OP_CONNECT;
                k.interestOps(ops);

                unsafe.finishConnect();
            }

            // Process OP_WRITE first as we may be able to write some queued buffers and so free memory.
            if ((readyOps & SelectionKey.OP_WRITE) != 0) {
                // Call forceFlush which will also take care of clear the OP_WRITE once there is nothing left to write
                ch.unsafe().forceFlush();
            }

            // Also check for readOps of 0 to workaround possible JDK bug which may otherwise lead
            // to a spin loop
            if ((readyOps & (SelectionKey.OP_READ | SelectionKey.OP_ACCEPT)) != 0 || readyOps == 0) {
                unsafe.read();
            }
        } catch (CancelledKeyException ignored) {
            unsafe.close(unsafe.voidPromise());
        }
    }

通过上面的分析,可以大概理清netty的nio eventLoop过程和实现了。

你可能感兴趣的:(netty-event-loop)