算法与数据结构-回溯算法

文章目录

  • 如何理解“回溯算法”?
  • 两个回溯算法的经典应用
    • 0-1 背包
    • 正则表达式


如何理解“回溯算法”?

笼统地讲,回溯算法很多时候都应用在“搜索”这类问题上。不过这里说的搜索,并不是狭义的指我们前面讲过的图的搜索算法,而是在一组可能的解中,搜索满足期望的解。

回溯的处理思想,有点类似枚举搜索。我们枚举所有的解,找到满足期望的解。为了有规律地枚举所有可能的解,避免遗漏和重复,我们把问题求解的过程分为多个阶段。每个阶段,我们都会面对一个岔路口,我们先随意选一条路走,当发现这条路走不通的时候(不符合期望的解),就回退到上一个岔路口,另选一种走法继续走。

理论的东西还是过于抽象,老规矩,我还是举例说明一下。我举一个经典的回溯例子,我想你可能已经猜到了,那就是八皇后问题。

我们有一个 8x8 的棋盘,希望往里放 8 个棋子(皇后),每个棋子所在的行、列、对角线都不能有另一个棋子。你可以看我画的图,第一幅图是满足条件的一种方法,第二幅图是不满足条件的。八皇后问题就是期望找到所有满足这种要求的放棋子方式。
算法与数据结构-回溯算法_第1张图片
我们把这个问题划分成 8 个阶段,依次将 8 个棋子放到第一行、第二行、第三行……第八行。在放置的过程中,我们不停地检查当前的方法,是否满足要求。如果满足,则跳到下一行继续放置棋子;如果不满足,那就再换一种方法,继续尝试。

回溯算法非常适合用递归代码实现,所以,我把八皇后的算法翻译成代码。我在代码里添加了详细的注释,你可以对比着看下。如果你之前没有接触过八皇后问题,建议你自己用熟悉的编程语言实现一遍,这对你理解回溯思想非常有帮助。

int[] result = new int[8];// 全局或成员变量, 下标表示行, 值表示 queen 存储在哪一列
public void cal8queens(int row) { // 调用方式:cal8queens(0);
  if (row == 8) { // 8 个棋子都放置好了,打印结果
    printQueens(result);
    return; // 8 行棋子都放好了,已经没法再往下递归了,所以就 return
  }
  for (int column = 0; column < 8; ++column) { // 每一行都有 8 中放法
    if (isOk(row, column)) { // 有些放法不满足要求
      result[row] = column; // 第 row 行的棋子放到了 column 列
      cal8queens(row+1); // 考察下一行
    }
  }
}
 
private boolean isOk(int row, int column) {// 判断 row 行 column 列放置是否合适
  int leftup = column - 1, rightup = column + 1;
  for (int i = row-1; i >= 0; --i) { // 逐行往上考察每一行
    if (result[i] == column) return false; // 第 i 行的 column 列有棋子吗?
    if (leftup >= 0) { // 考察左上对角线:第 i 行 leftup 列有棋子吗?
      if (result[i] == leftup) return false;
    }
    if (rightup < 8) { // 考察右上对角线:第 i 行 rightup 列有棋子吗?
      if (result[i] == rightup) return false;
    }
    --leftup; ++rightup;
  }
  return true;
}
 
private void printQueens(int[] result) { // 打印出一个二维矩阵
  for (int row = 0; row < 8; ++row) {
    for (int column = 0; column < 8; ++column) {
      if (result[row] == column) System.out.print("Q ");
      else System.out.print("* ");
    }
    System.out.println();
  }
  System.out.println();
}

两个回溯算法的经典应用

回溯算法的理论知识很容易弄懂。不过,对于新手来说,比较难的是用递归来实现。所以,我们再通过两个例子,来练习一下回溯算法的应用和实现。

0-1 背包

0-1 背包是非常经典的算法问题,很多场景都可以抽象成这个问题模型。这个问题的经典解法是动态规划,不过还有一种简单但没有那么高效的解法,那就是今天讲的回溯算法。

0-1 背包问题有很多变体,我这里介绍一种比较基础的。我们有一个背包,背包总的承载重量是 Wkg。现在我们有 n 个物品,每个物品的重量不等,并且不可分割。我们现在期望选择几件物品,装载到背包中。在不超过背包所能装载重量的前提下,如何让背包中物品的总重量最大?

实际上,背包问题我们在贪心算法那一节,已经讲过一个了,不过那里讲的物品是可以分割的,我可以装某个物品的一部分到背包里面。今天讲的这个背包问题,物品是不可分割的,要么装要么不装,所以叫 0-1 背包问题。显然,这个问题已经无法通过贪心算法来解决了。我们现在来看看,用回溯算法如何来解决。

对于每个物品来说,都有两种选择,装进背包或者不装进背包。对于 n 个物品来说,总的装法就有 2n 种,去掉总重量超过 Wkg 的,从剩下的装法中选择总重量最接近 Wkg 的。不过,我们如何才能不重复地穷举出这 2n 种装法呢?

这里就可以用回溯的方法。我们可以把物品依次排列,整个问题就分解为了 n 个阶段,每个阶段对应一个物品怎么选择。先对第一个物品进行处理,选择装进去或者不装进去,然后再递归地处理剩下的物品。描述起来很费劲,我们直接看代码,反而会更加清晰一些。

这里还稍微用到了一点搜索剪枝的技巧,就是当发现已经选择的物品的重量超过 Wkg 之后,我们就停止继续探测剩下的物品。你可以看我写的具体的代码。

public int maxW = Integer.MIN_VALUE; // 存储背包中物品总重量的最大值
// cw 表示当前已经装进去的物品的重量和;i 表示考察到哪个物品了;
// w 背包重量;items 表示每个物品的重量;n 表示物品个数
// 假设背包可承受重量 100,物品个数 10,物品重量存储在数组 a 中,那可以这样调用函数:
// f(0, 0, a, 10, 100)
public void f(int i, int cw, int[] items, int n, int w) {
  if (cw == w || i == n) { // cw==w 表示装满了 ;i==n 表示已经考察完所有的物品
    if (cw > maxW) maxW = cw;
    return;
  }
  f(i+1, cw, items, n, w);
  if (cw + items[i] <= w) {// 已经超过可以背包承受的重量的时候,就不要再装了
    f(i+1,cw + items[i], items, n, w);
  }
}

正则表达式

正则表达式中,最重要的就是通配符,通配符结合在一起,可以表达非常丰富的语义。为了方便讲解,我假设正表达式中只包含“”和“?”这两种通配符,并且对这两个通配符的语义稍微做些改变,其中,“”匹配任意多个(大于等于 0 个)任意字符,“?”匹配零个或者一个任意字符。基于以上背景假设,我们看下,如何用回溯算法,判断一个给定的文本,能否跟给定的正则表达式匹配?

我们依次考察正则表达式中的每个字符,当是非通配符时,我们就直接跟文本的字符进行匹配,如果相同,则继续往下处理;如果不同,则回溯。

如果遇到特殊字符的时候,我们就有多种处理方式了,也就是所谓的岔路口,比如“*”有多种匹配方案,可以匹配任意个文本串中的字符,我们就先随意的选择一种匹配方案,然后继续考察剩下的字符。如果中途发现无法继续匹配下去了,我们就回到这个岔路口,重新选择一种匹配方案,然后再继续匹配剩下的字符。

有了前面的基础,是不是这个问题就好懂多了呢?我把这个过程翻译成了代码,你可以结合着一块看下,应该有助于你理解。

public class Pattern {
  private boolean matched = false;
  private char[] pattern; // 正则表达式
  private int plen; // 正则表达式长度
 
  public Pattern(char[] pattern, int plen) {
    this.pattern = pattern;
    this.plen = plen;
  }
 
  public boolean match(char[] text, int tlen) { // 文本串及长度
    matched = false;
    rmatch(0, 0, text, tlen);
    return matched;
  }
 
  private void rmatch(int ti, int pj, char[] text, int tlen) {
    if (matched) return; // 如果已经匹配了,就不要继续递归了
    if (pj == plen) { // 正则表达式到结尾了
      if (ti == tlen) matched = true; // 文本串也到结尾了
      return;
    }
    if (pattern[pj] == '*') { // * 匹配任意个字符
      for (int k = 0; k <= tlen-ti; ++k) {
        rmatch(ti+k, pj+1, text, tlen);
      }
    } else if (pattern[pj] == '?') { // ? 匹配 0 个或者 1 个字符
      rmatch(ti, pj+1, text, tlen);
      rmatch(ti+1, pj+1, text, tlen);
    } else if (ti < tlen && pattern[pj] == text[ti]) { // 纯字符匹配才行
      rmatch(ti+1, pj+1, text, tlen);
    }
  }
}

你可能感兴趣的:(算法与数据结构,算法,数据结构)