softmax回归-原理理解

我们想要求得将优化参数以最大化观测数据的概率。 为了得到预测结果,我们将设置一个阈值,如选择具有最大概率的标签。

首先,我们知道概率有两个性质:

1)预测的概率为非负数;

2)各种预测结果概率之和等于1。

softmax就是将在负无穷到正无穷上的预测结果按照这两步转换为概率的。

1)将预测结果转化为非负数

我们知道指数函数的值域取值范围是零到正无穷。softmax第一步就是将模型的预测结果转化到指数函数上,这样保证了概率的非负性。

2)各种预测结果概率之和等于1

为了确保各个预测结果的概率之和等于1。我们只需要将转换后的结果进行归一化处理。方法就是将转化后的结果除以所有转化后结果之和,可以理解为转化后结果占总数的百分比。这样就得到近似的概率。
 

你可能感兴趣的:(跟李沐学AI,动手学深度学习pytorch版,机器学习,概率论,深度学习)