SurfaceFlinger合成流程(二)
SurfaceFlinger合成流程
MessageQueue中分发两个消息,一个INVALIDATE,一个REFRESH,SurfaceFlinger对这两个消息的响应过程,就是合成的过程。
消息INVALIDATE处理
在onFrameAvailable时,调用signalLayerUpdate,将触发INVALIDATE消息。SurfaceFlinger收到这个消息的处理如下:
void SurfaceFlinger::onMessageReceived(int32_t what) {
ATRACE_CALL();
switch (what) {
case MessageQueue::INVALIDATE: {
bool frameMissed = !mHadClientComposition &&
mPreviousPresentFence != Fence::NO_FENCE &&
(mPreviousPresentFence->getSignalTime() ==
Fence::SIGNAL_TIME_PENDING);
ATRACE_INT("FrameMissed", static_cast(frameMissed));
if (mPropagateBackpressure && frameMissed) {
signalLayerUpdate();
break;
}
updateVrFlinger();
bool refreshNeeded = handleMessageTransaction();
refreshNeeded |= handleMessageInvalidate();
refreshNeeded |= mRepaintEverything;
if (refreshNeeded) {
signalRefresh();
}
break;
}
case MessageQueue::REFRESH: {
handleMessageRefresh();
break;
}
}
}
在INVALIDATE过程中,主要做以下处理:
- 对丢帧的处理
如果丢帧,且mPropagateBackpressure为true,mPropagateBackpressure表示显示给压力了。显示说,太慢了,都丢帧了,给点压力,上层赶紧处理。mPropagateBackpressure是在SurfaceFlinger的构造函数中初始化的,受debug.sf.disable_backpressure
属性的控制。
property_get("debug.sf.disable_backpressure", value, "0");
mPropagateBackpressure = !atoi(value);
- 更新VR updateVrFlinger
这个只有在VR模式下才会起作用,我们这里先不管VR的事。
- 处理Transition
Transition的处理,前面我们已经说过,只是当时不清楚是什么时候触发的,现在清楚了。Vsync到来后,触发INVALIDATE消息时先去处理Transition。处理的过程就是前面已经说过的handleMessageTransaction,有需要可以回头去看看。这个过程就是处理应用传过来的各种Transition,需要记住的是在commit Transition时,又个状态的更替,mCurrentState赋值给了mDrawingState。
void SurfaceFlinger::commitTransaction()
{
... ...
mDrawingState = mCurrentState;
mDrawingState.traverseInZOrder([](Layer* layer) {
layer->commitChildList();
});
... ...
}
所以SurfaceFlinger两个状态:
mCurrentState状态, 准备数据,应用传过来的数据保存在mCurrentState中。
mDrawingState状态,进程合成状态,需要进行合成的数据保存在mDrawingState中。
也就是说,每次合成时,先更新一下状态数据。每一层Layer也需要去更新状态数据。
- 处理Invalidate
这是一个重要的流程,handleMessageInvalidate函数如下:
bool SurfaceFlinger::handleMessageInvalidate() {
ATRACE_CALL();
return handlePageFlip();
}
主要是调用handlePageFlip,做Page的Flip。
bool SurfaceFlinger::handlePageFlip()
{
ALOGV("handlePageFlip");
nsecs_t latchTime = systemTime();
bool visibleRegions = false;
bool frameQueued = false;
bool newDataLatched = false;
mDrawingState.traverseInZOrder([&](Layer* layer) {
if (layer->hasQueuedFrame()) {
frameQueued = true;
if (layer->shouldPresentNow(mPrimaryDispSync)) {
mLayersWithQueuedFrames.push_back(layer);
} else {
layer->useEmptyDamage();
}
} else {
layer->useEmptyDamage();
}
});
for (auto& layer : mLayersWithQueuedFrames) {
const Region dirty(layer->latchBuffer(visibleRegions, latchTime));
layer->useSurfaceDamage();
invalidateLayerStack(layer, dirty);
if (layer->isBufferLatched()) {
newDataLatched = true;
}
}
mVisibleRegionsDirty |= visibleRegions;
// If we will need to wake up at some time in the future to deal with a
// queued frame that shouldn't be displayed during this vsync period, wake
// up during the next vsync period to check again.
if (frameQueued && (mLayersWithQueuedFrames.empty() || !newDataLatched)) {
signalLayerUpdate();
}
// Only continue with the refresh if there is actually new work to do
return !mLayersWithQueuedFrames.empty() && newDataLatched;
}
mLayersWithQueuedFrames,用于标记那些已经有Frame的Layer,这得从Layer的onFrameAvailable说起。
void BufferLayer::onFrameAvailable(const BufferItem& item) {
// Add this buffer from our internal queue tracker
{ // Autolock scope
Mutex::Autolock lock(mQueueItemLock);
mFlinger->mInterceptor.saveBufferUpdate(this, item.mGraphicBuffer->getWidth(),
item.mGraphicBuffer->getHeight(),
item.mFrameNumber);
// Reset the frame number tracker when we receive the first buffer after
// a frame number reset
if (item.mFrameNumber == 1) {
mLastFrameNumberReceived = 0;
}
// Ensure that callbacks are handled in order
while (item.mFrameNumber != mLastFrameNumberReceived + 1) {
status_t result = mQueueItemCondition.waitRelative(mQueueItemLock,
ms2ns(500));
if (result != NO_ERROR) {
ALOGE("[%s] Timed out waiting on callback", mName.string());
}
}
mQueueItems.push_back(item);
android_atomic_inc(&mQueuedFrames);
// Wake up any pending callbacks
mLastFrameNumberReceived = item.mFrameNumber;
mQueueItemCondition.broadcast();
}
mFlinger->signalLayerUpdate();
}
onFrameAvailable时,先将Buffer的窗口属性保存在mInterceptor中,这里我们暂时不看,记得标记一下。然后对FrameNumber进行处理,一是确保FrameNumber被重置时,重置mLastFrameNumberReceived,二时,确保FrameNumber的顺序。之后,将新过来的BufferItem,push到mQueueItems中,对mQueuedFrames数进行+1。最后才触发SurfaceFlinger进行signalLayerUpdate。
回到handlePageFlip。所以,对于触发SurfaceFlinger进行signalLayerUpdate的Layer,hasQueuedFrame为true,是有Queued的Frame的。
但是mLayersWithQueuedFrames还要一个条件,shouldPresentNow。
bool BufferLayer::shouldPresentNow(const DispSync& dispSync) const {
if (mSidebandStreamChanged || mAutoRefresh) {
return true;
}
Mutex::Autolock lock(mQueueItemLock);
if (mQueueItems.empty()) {
return false;
}
auto timestamp = mQueueItems[0].mTimestamp;
nsecs_t expectedPresent = mConsumer->computeExpectedPresent(dispSync);
// Ignore timestamps more than a second in the future
bool isPlausible = timestamp < (expectedPresent + s2ns(1));
ALOGW_IF(!isPlausible,
"[%s] Timestamp %" PRId64 " seems implausible "
"relative to expectedPresent %" PRId64,
mName.string(), timestamp, expectedPresent);
bool isDue = timestamp < expectedPresent;
return isDue || !isPlausible;
}
在shouldPresentNow的判断逻辑中,首先根据DispSync,去计算期望显示的时间。再看看Buffer的时间戳和期望显示的时间,如果Buffer的时间还没有到,且和期望显示的时间之间差不到1秒,那么shouldPresentNow成立。该Layer标记为mLayersWithQueuedFrames;否则,Layer使用空的DamageRegion。记住这个DamageRegion。
void BufferLayer::useEmptyDamage() {
surfaceDamageRegion.clear();
}
继续handlePageFlip函数分析。
- 对mLayersWithQueuedFrames标记的Layer进行处理
首先,通过latchBuffer获取Layer的Buffer;再更新Surface的Damage;再通过invalidateLayerStack去刷新脏区域,验证LayerStack。记住LayerStack这个概念。处理这块稍后继续~~~
注意这里重新signalLayerUpdate的逻辑。
if (frameQueued && (mLayersWithQueuedFrames.empty() || !newDataLatched)) {
signalLayerUpdate();
}
有BufferQueue过来,但是还没有到显示时间(mLayersWithQueuedFrames为空),或者没有获取到Buffer。重新触发一次更新~
注意handlePageFlip的返回值,有Layer要显示,且获取到Buffer时,才返回true。注意这里的mVisibleRegionsDirty,mVisibleRegionsDirty,脏区域,表示可见区域有更新。
handlePageFlip获取Buffer
继续前面的Buffer的处理
for (auto& layer : mLayersWithQueuedFrames) {
const Region dirty(layer->latchBuffer(visibleRegions, latchTime));
layer->useSurfaceDamage();
invalidateLayerStack(layer, dirty);
if (layer->isBufferLatched()) {
newDataLatched = true;
}
}
- 获取 Buffer
Layer的latchBuffer函数比较长,这里将去获取Producer Queue过来的数据。我们分段来看:
* frameworks/native/services/surfaceflinger/BufferLayer.cpp
Region BufferLayer::latchBuffer(bool& recomputeVisibleRegions, nsecs_t latchTime) {
ATRACE_CALL();
if (android_atomic_acquire_cas(true, false, &mSidebandStreamChanged) == 0) {
// mSidebandStreamChanged was true
mSidebandStream = mConsumer->getSidebandStream();
// replicated in LayerBE until FE/BE is ready to be synchronized
getBE().compositionInfo.hwc.sidebandStream = mSidebandStream;
if (getBE().compositionInfo.hwc.sidebandStream != NULL) {
setTransactionFlags(eTransactionNeeded);
mFlinger->setTransactionFlags(eTraversalNeeded);
}
recomputeVisibleRegions = true;
const State& s(getDrawingState());
return getTransform().transform(Region(Rect(s.active.w, s.active.h)));
}
... ...
android_atomic_acquire_cas是比较-设置的原子操纵函数,如果变量第三个参数和第一个相等,那么将第二个参数赋值给第三个参数,成功返回0。mSidebandStreamChanged为true,说明Sideband流改变了,这里处理后,就返回了。
* frameworks/native/services/surfaceflinger/BufferLayer.cpp
... ...
Region outDirtyRegion;
... ... // 如果条件不满足,直接返回
const State& s(getDrawingState());
const bool oldOpacity = isOpaque(s);
sp oldBuffer = getBE().compositionInfo.mBuffer;
if (!allTransactionsSignaled()) {
mFlinger->signalLayerUpdate();
return outDirtyRegion;
}
oldBuffer,前一帧的Buffer~
allTransactionsSignaled,确保所有的Fence都已经Signal出来。记住这个点,Fence相关的知识。
* frameworks/native/services/surfaceflinger/BufferLayer.cpp
... ...
bool queuedBuffer = false;
LayerRejecter r(mDrawingState, getCurrentState(), recomputeVisibleRegions,
getProducerStickyTransform() != 0, mName.string(),
mOverrideScalingMode, mFreezeGeometryUpdates);
status_t updateResult =
mConsumer->updateTexImage(&r, mFlinger->mPrimaryDispSync,
&mAutoRefresh, &queuedBuffer,
mLastFrameNumberReceived);
if (updateResult == BufferQueue::PRESENT_LATER) {
mFlinger->signalLayerUpdate();
return outDirtyRegion;
} else if (updateResult == BufferLayerConsumer::BUFFER_REJECTED) {
if (queuedBuffer) {
Mutex::Autolock lock(mQueueItemLock);
mQueueItems.removeAt(0);
android_atomic_dec(&mQueuedFrames);
}
return outDirtyRegion;
} else if (updateResult != NO_ERROR || mUpdateTexImageFailed) {
if (queuedBuffer) {
Mutex::Autolock lock(mQueueItemLock);
mQueueItems.clear();
android_atomic_and(0, &mQueuedFrames);
}
mUpdateTexImageFailed = true;
return outDirtyRegion;
}
LayerRejecter顾名思义,用以决定是否拒绝这个Layer。updateTexImage 很关键,这里去获取的Buffer,将通过acquireBuffer函数去请求Buffer。前面我们已经说过BufferQueue的acquireBuffer流程。
updateTexImage有多种返回结果:
PRESENT_LATER:稍后显示,暂时不显示,触发SurfaceFlinger重新刷新signalLayerUpdate。
BUFFER_REJECTED: Buffer被Reject掉,这一帧数据将不再被显示,从mQueueItems中去掉这一帧的Buffer,mQueuedFrames也-1。
更新失败或出错:处理和BUFFER_REJECTED类似。
updateTexImage的流程稍后再看,我们将这个函数读完。
-
frameworks/native/services/surfaceflinger/BufferLayer.cpp
... ...if (queuedBuffer) {
// Autolock scope
auto currentFrameNumber = mConsumer->getFrameNumber();Mutex::Autolock lock(mQueueItemLock); // 删掉updateTexImage中已经被丢弃的Buffer while (mQueueItems[0].mFrameNumber != currentFrameNumber) { mQueueItems.removeAt(0); android_atomic_dec(&mQueuedFrames); } mQueueItems.removeAt(0);
}
if ((queuedBuffer && android_atomic_dec(&mQueuedFrames) > 1) ||
mAutoRefresh) {
mFlinger->signalLayerUpdate();
}
如果获取Buffer后,队列中还有其他的Buffer,触发SurfaceFlinger去再做一次刷新signalLayerUpdate,在下一个Vsync再处理。
* frameworks/native/services/surfaceflinger/BufferLayer.cpp
... ...
// update the active buffer
getBE().compositionInfo.mBuffer =
mConsumer->getCurrentBuffer(&getBE().compositionInfo.mBufferSlot);
// replicated in LayerBE until FE/BE is ready to be synchronized
mActiveBuffer = getBE().compositionInfo.mBuffer;
if (getBE().compositionInfo.mBuffer == NULL) {
// this can only happen if the very first buffer was rejected.
return outDirtyRegion;
}
更新Active的Buffer,mActiveBuffer就是我们这次合成,该Layer的数据。如果没有获取到,返回。
-
frameworks/native/services/surfaceflinger/BufferLayer.cpp
... ...mBufferLatched = true;
mPreviousFrameNumber = mCurrentFrameNumber;
mCurrentFrameNumber = mConsumer->getFrameNumber();{
Mutex::Autolock lock(mFrameEventHistoryMutex);
mFrameEventHistory.addLatch(mCurrentFrameNumber, latchTime);
}
mFrameEventHistory,记录Frame的历史,Producer和Consumer对Frame的处理。
* frameworks/native/services/surfaceflinger/BufferLayer.cpp
... ...
mRefreshPending = true;
mFrameLatencyNeeded = true;
if (oldBuffer == NULL) {
// the first time we receive a buffer, we need to trigger a
// geometry invalidation.
recomputeVisibleRegions = true;
}
setDataSpace(mConsumer->getCurrentDataSpace());
Rect crop(mConsumer->getCurrentCrop());
const uint32_t transform(mConsumer->getCurrentTransform());
const uint32_t scalingMode(mConsumer->getCurrentScalingMode());
if ((crop != mCurrentCrop) ||
(transform != mCurrentTransform) ||
(scalingMode != mCurrentScalingMode)) {
mCurrentCrop = crop;
mCurrentTransform = transform;
mCurrentScalingMode = scalingMode;
recomputeVisibleRegions = true;
}
if (oldBuffer != NULL) {
uint32_t bufWidth = getBE().compositionInfo.mBuffer->getWidth();
uint32_t bufHeight = getBE().compositionInfo.mBuffer->getHeight();
if (bufWidth != uint32_t(oldBuffer->width) ||
bufHeight != uint32_t(oldBuffer->height)) {
recomputeVisibleRegions = true;
}
}
mCurrentOpacity = getOpacityForFormat(getBE().compositionInfo.mBuffer->format);
if (oldOpacity != isOpaque(s)) {
recomputeVisibleRegions = true;
}
这里主要是根据新的Buffer的属性,和上一帧Buffer的的数据,做比较,看看是否需要重新去计算可见区域。
* frameworks/native/services/surfaceflinger/BufferLayer.cpp
... ...
{
Mutex::Autolock lock(mLocalSyncPointMutex);
auto point = mLocalSyncPoints.begin();
while (point != mLocalSyncPoints.end()) {
if (!(*point)->frameIsAvailable() || !(*point)->transactionIsApplied()) {
// This sync point must have been added since we started
// latching. Don't drop it yet.
++point;
continue;
}
if ((*point)->getFrameNumber() <= mCurrentFrameNumber) {
point = mLocalSyncPoints.erase(point);
} else {
++point;
}
}
}
// FIXME: postedRegion should be dirty & bounds
Region dirtyRegion(Rect(s.active.w, s.active.h));
// transform the dirty region to window-manager space
outDirtyRegion = (getTransform().transform(dirtyRegion));
return outDirtyRegion;
}
最后,是对SyncPoint进行处理,新latch的buffer相关的Syncpoint都删掉。返回的是outDirtyRegion,对dirtyRegion做了transform变换后的区域大小。
我们再回过头看updateTexImage,updateTexImage函数实现如下:
status_t BufferLayerConsumer::updateTexImage(BufferRejecter* rejecter, const DispSync& dispSync,
bool* autoRefresh, bool* queuedBuffer,
uint64_t maxFrameNumber) {
... ...
BufferItem item;
status_t err = acquireBufferLocked(&item, computeExpectedPresent(dispSync), maxFrameNumber);
if (err != NO_ERROR) {
if (err == BufferQueue::NO_BUFFER_AVAILABLE) {
err = NO_ERROR;
} else if (err == BufferQueue::PRESENT_LATER) {
// return the error, without logging
} else {
BLC_LOGE("updateTexImage: acquire failed: %s (%d)", strerror(-err), err);
}
return err;
}
if (autoRefresh) {
*autoRefresh = item.mAutoRefresh;
}
if (queuedBuffer) {
*queuedBuffer = item.mQueuedBuffer;
}
int slot = item.mSlot;
if (rejecter && rejecter->reject(mSlots[slot].mGraphicBuffer, item)) {
releaseBufferLocked(slot, mSlots[slot].mGraphicBuffer);
return BUFFER_REJECTED;
}
// Release the previous buffer.
err = updateAndReleaseLocked(item, &mPendingRelease);
if (err != NO_ERROR) {
return err;
}
if (!SyncFeatures::getInstance().useNativeFenceSync()) {
err = bindTextureImageLocked();
}
return err;
}
updateTexImage过程大致如下:
1.拿到一块Buffer,从BufferQueue中,acquireBufferLocked
status_t BufferLayerConsumer::acquireBufferLocked(BufferItem* item, nsecs_t presentWhen,
uint64_t maxFrameNumber) {
status_t err = ConsumerBase::acquireBufferLocked(item, presentWhen, maxFrameNumber);
if (err != NO_ERROR) {
return err;
}
// If item->mGraphicBuffer is not null, this buffer has not been acquired
// before, so any prior EglImage created is using a stale buffer. This
// replaces any old EglImage with a new one (using the new buffer).
if (item->mGraphicBuffer != NULL) {
mImages[item->mSlot] = new Image(item->mGraphicBuffer, mRE);
}
return NO_ERROR;
}
acquireBufferLocked通过父类,ConsumerBase的acquireBufferLocked函数去获取Buffer,如果Buffer不为空,创建Eglimage。
在ConsumerBase的acquireBufferLocked中,正式通过BufferQueue的BufferQueueConsumer去acquireBuffer。代码如下:
status_t ConsumerBase::acquireBufferLocked(BufferItem *item,
nsecs_t presentWhen, uint64_t maxFrameNumber) {
if (mAbandoned) {
CB_LOGE("acquireBufferLocked: ConsumerBase is abandoned!");
return NO_INIT;
}
status_t err = mConsumer->acquireBuffer(item, presentWhen, maxFrameNumber);
if (err != NO_ERROR) {
return err;
}
if (item->mGraphicBuffer != NULL) {
if (mSlots[item->mSlot].mGraphicBuffer != NULL) {
freeBufferLocked(item->mSlot);
}
mSlots[item->mSlot].mGraphicBuffer = item->mGraphicBuffer;
}
mSlots[item->mSlot].mFrameNumber = item->mFrameNumber;
mSlots[item->mSlot].mFence = item->mFence;
CB_LOGV("acquireBufferLocked: -> slot=%d/%" PRIu64,
item->mSlot, item->mFrameNumber);
return OK;
}
acquireBuffer的流程前面已经说过,拿到Buffer后,将Buffer保存在mSlots[item->mSlot].mGraphicBuffer
中。同时更新mFrameNumber和mFence。
2.检测Buffer可用不,不可用就Reject掉,rejecter->reject
相关的逻辑在类LayerRejecter中:
* frameworks/native/services/surfaceflinger/LayerRejecter.cpp
代码这里就不贴了,在reject逻辑中,其一是判断释放需要重新计算可见区域mRecomputeVisibleRegions;其二,看看Buffer的属性和状态描述中的属性释放吻合,不一直就reject掉;
3.更新Buffer,释放上一个Buffer,updateAndReleaseLocked
updateAndReleaseLocked函数实现如下:
status_t BufferLayerConsumer::updateAndReleaseLocked(const BufferItem& item,
PendingRelease* pendingRelease) {
status_t err = NO_ERROR;
int slot = item.mSlot;
// Do whatever sync ops we need to do before releasing the old slot.
if (slot != mCurrentTexture) {
err = syncForReleaseLocked();
if (err != NO_ERROR) {
// Release the buffer we just acquired. It's not safe to
// release the old buffer, so instead we just drop the new frame.
// As we are still under lock since acquireBuffer, it is safe to
// release by slot.
releaseBufferLocked(slot, mSlots[slot].mGraphicBuffer);
return err;
}
}
BLC_LOGV("updateAndRelease: (slot=%d buf=%p) -> (slot=%d buf=%p)", mCurrentTexture,
mCurrentTextureImage != NULL ? mCurrentTextureImage->graphicBufferHandle() : 0, slot,
mSlots[slot].mGraphicBuffer->handle);
// Hang onto the pointer so that it isn't freed in the call to
// releaseBufferLocked() if we're in shared buffer mode and both buffers are
// the same.
sp nextTextureImage = mImages[slot];
// release old buffer
if (mCurrentTexture != BufferQueue::INVALID_BUFFER_SLOT) {
if (pendingRelease == nullptr) {
status_t status =
releaseBufferLocked(mCurrentTexture, mCurrentTextureImage->graphicBuffer());
if (status < NO_ERROR) {
BLC_LOGE("updateAndRelease: failed to release buffer: %s (%d)", strerror(-status),
status);
err = status;
// keep going, with error raised [?]
}
} else {
pendingRelease->currentTexture = mCurrentTexture;
pendingRelease->graphicBuffer = mCurrentTextureImage->graphicBuffer();
pendingRelease->isPending = true;
}
}
// Update the BufferLayerConsumer state.
mCurrentTexture = slot;
mCurrentTextureImage = nextTextureImage;
mCurrentCrop = item.mCrop;
mCurrentTransform = item.mTransform;
mCurrentScalingMode = item.mScalingMode;
mCurrentTimestamp = item.mTimestamp;
mCurrentDataSpace = item.mDataSpace;
mCurrentHdrMetadata = item.mHdrMetadata;
mCurrentFence = item.mFence;
mCurrentFenceTime = item.mFenceTime;
mCurrentFrameNumber = item.mFrameNumber;
mCurrentTransformToDisplayInverse = item.mTransformToDisplayInverse;
mCurrentSurfaceDamage = item.mSurfaceDamage;
computeCurrentTransformMatrixLocked();
return err;
}
该函数中,处理Fence相关的逻辑比较多,后续我们将用专门的章节来讲述Android中Fence同步机制,这里先不要太关注它。该函数中主要作用如下:
- syncForReleaseLocked,mCurrentTexture是上一个Buffer的序号slot,我们需要给旧Buffer设置ReleaseFence。
- releaseBufferLocked,release掉旧的Buffer,先加到mPendingRelease中,待合成完成后release掉Pending的Buffer。
- 更新BufferLayerConsumer的状态,Buffer的属性都保存到mCurrent**定义的属性中。
到此updateTexImage函数完成。
latchBuffer中,再通过getCurrentBuffer去获取Consumer中已经更了Buffer。代码如下:
sp BufferLayerConsumer::getCurrentBuffer(int* outSlot) const {
Mutex::Autolock lock(mMutex);
if (outSlot != nullptr) {
*outSlot = mCurrentTexture;
}
return (mCurrentTextureImage == nullptr) ? NULL : mCurrentTextureImage->graphicBuffer();
}
mCurrentTextureImage,也是按照slot从mImages中获取的,前面acquireBuffer时,Buffer根据slot保存在mImages中。
到此,Layer中已经获取到Buffer的数据。需要注意的是,这不是对单个的Layer,而是所有的mLayersWithQueuedFrames都会走上面的流程,而每个Layer有自己的BufferLayerConsumer和BufferQueue。
我们先来看看看这里遇到的几个类间的相互关系:
还算比较清晰吧~这里我们只关心Buffer从哪儿来,到哪儿去就行了
拿到Buffer后,更新Layer的Damage,useSurfaceDamage,Damage表示Layer的那些区域被破坏了,被破坏的区域需要重新合成显示。
const Region& BufferLayerConsumer::getSurfaceDamage() const {
return mCurrentSurfaceDamage;
}
surfaceDamage就前面updateTexture时一起更新的mCurrentSurfaceDamage。
invalidateLayerStack的处理如下:
void SurfaceFlinger::invalidateLayerStack(const sp& layer, const Region& dirty) {
for (size_t dpy=0 ; dpy& hw(mDisplays[dpy]);
if (layer->belongsToDisplay(hw->getLayerStack(), hw->isPrimary())) {
hw->dirtyRegion.orSelf(dirty);
}
}
}
layerStack,Layer的栈,Android支持多个屏幕,layer可以定制化的只显示到某个显示屏幕上。其中就是靠layerStack来实现的。Layer的stack值如果和DisplayDevice的stack值一样,那说明这个layer是属于这个显示屏幕的。
INVALIDATE消息处理,基本完成。如果需要刷新,触发刷新的消息:
if (refreshNeeded) {
signalRefresh();
}
什么时候需要刷新?
- 有新的Transaction处理
- PageFlip时,有Buffer更新!~
- 有重新合成请求时mRepaintEverything,这是响应HWC的请求时触发的。
刷新消息REFRESH处理
signalRefresh函数如下:
void SurfaceFlinger::signalRefresh() {
mRefreshPending = true;
mEventQueue.refresh();
}
还是通过MessageQueue来进行分发~
void MessageQueue::refresh() {
mHandler->dispatchRefresh();
}
最终,还是会调回SurfaceFlinger的onMessageReceived函数,这是这里的massage为REFRESH。注意,这过程中不用去等Vsync的,INVALIDATE时,是需要等Vsync的。也就是说,INVALIDATE和REFRESH是在同一个Vsync周期内完成的。
SurfaceFlinger收到REFRESH请求后,在 handleMessageRefresh 函数中进行处理。
void SurfaceFlinger::handleMessageRefresh() {
ATRACE_CALL();
mRefreshPending = false;
nsecs_t refreshStartTime = systemTime(SYSTEM_TIME_MONOTONIC);
preComposition(refreshStartTime);
rebuildLayerStacks();
setUpHWComposer();
doDebugFlashRegions();
doTracing("handleRefresh");
doComposition();
postComposition(refreshStartTime);
mPreviousPresentFence = getBE().mHwc->getPresentFence(HWC_DISPLAY_PRIMARY);
mHadClientComposition = false;
for (size_t displayId = 0; displayId < mDisplays.size(); ++displayId) {
const sp& displayDevice = mDisplays[displayId];
mHadClientComposition = mHadClientComposition ||
getBE().mHwc->hasClientComposition(displayDevice->getHwcDisplayId());
}
mLayersWithQueuedFrames.clear();
}
handleMessageRefresh 函数中,包含了刷新一帧显示数据所有的流程。下面我们分别来进行说明。
合成前处理 preComposition
preComposition函数如下:
void SurfaceFlinger::preComposition(nsecs_t refreshStartTime)
{
ATRACE_CALL();
ALOGV("preComposition");
bool needExtraInvalidate = false;
mDrawingState.traverseInZOrder([&](Layer* layer) {
if (layer->onPreComposition(refreshStartTime)) {
needExtraInvalidate = true;
}
});
if (needExtraInvalidate) {
signalLayerUpdate();
}
}
在合成前,先遍历所有需要进行合成的Layer,调Layer的onPreComposition方法。
ColorLayer的onPreComposition,返回值是固定的,为true;BufferLayer的onPreComposition如下:
bool BufferLayer::onPreComposition(nsecs_t refreshStartTime) {
if (mBufferLatched) {
Mutex::Autolock lock(mFrameEventHistoryMutex);
mFrameEventHistory.addPreComposition(mCurrentFrameNumber,
refreshStartTime);
}
mRefreshPending = false;
return mQueuedFrames > 0 || mSidebandStreamChanged ||
mAutoRefresh;
}
onPreComposition中主要作用为:
- mFrameEventHistory记录PreComposition事件
- 判断是否需要再触发SurfaceFlinger继续接受Vsync进行合成
这3中情况需要:如果mQueuedFrames的值大于0,说明这个时候BufferQueue中还有Buffer,之前我们在acquireBuffer的时候,已经做了-1操纵;SidebandStream改变;或者是自动刷新模式。
如果需要再触发SurfaceFlinger工作,调signalLayerUpdate函数。
重构Layer的Stack rebuildLayerStacks
现在,我们需要合成显示的Layer数据,都保存在mDrawingState的layersSortedByZ中,且是按照z-order的顺序进行存放。那么rebuild Layer又是做什么呢?
void SurfaceFlinger::rebuildLayerStacks() {
ATRACE_CALL();
ALOGV("rebuildLayerStacks");
// rebuild the visible layer list per screen
if (CC_UNLIKELY(mVisibleRegionsDirty)) {
ATRACE_NAME("rebuildLayerStacks VR Dirty");
mVisibleRegionsDirty = false;
invalidateHwcGeometry();
for (size_t dpy=0 ; dpy> layersSortedByZ;
Vector> layersNeedingFences;
const sp& displayDevice(mDisplays[dpy]);
const Transform& tr(displayDevice->getTransform());
const Rect bounds(displayDevice->getBounds());
if (displayDevice->isDisplayOn()) {
computeVisibleRegions(displayDevice, dirtyRegion, opaqueRegion);
... ...
}
displayDevice->setVisibleLayersSortedByZ(layersSortedByZ);
displayDevice->setLayersNeedingFences(layersNeedingFences);
displayDevice->undefinedRegion.set(bounds);
displayDevice->undefinedRegion.subtractSelf(
tr.transform(opaqueRegion));
displayDevice->dirtyRegion.orSelf(dirtyRegion);
}
}
}
rebuild Layer的前提是存在脏区域,mVisibleRegionsDirty为true。invalidateHwcGeometry重置mGeometryInvalid标记,这个标识后面会用到。
Android支持多个屏幕,每个屏幕的显示数据并不是完全一样的,每个Display是分开合成的;也就是说,layersSortedByZ中的layer需要根据显示屏的特性,分别进行合成,合成后的数据,送给各自的显示屏。
mDisplays是当前系统中的显示屏,isDisplayOn判断屏幕是否是打开的。主屏幕是默认支持的,处于打开状态。
computeVisibleRegions,计算可见区域。Layer中有很多个区域,不太好理解。computeVisibleRegions函数实现如下:
void SurfaceFlinger::computeVisibleRegions(const sp& displayDevice,
Region& outDirtyRegion, Region& outOpaqueRegion)
{
ATRACE_CALL();
ALOGV("computeVisibleRegions");
Region aboveOpaqueLayers;
Region aboveCoveredLayers;
Region dirty;
outDirtyRegion.clear();
mDrawingState.traverseInReverseZOrder([&](Layer* layer) {
// start with the whole surface at its current location
const Layer::State& s(layer->getDrawingState());
// only consider the layers on the given layer stack
if (!layer->belongsToDisplay(displayDevice->getLayerStack(), displayDevice->isPrimary()))
return;
Region opaqueRegion;
Region visibleRegion;
Region coveredRegion;
Region transparentRegion;
我们先来看Display的几个关于区域的概念:
脏区域 dirtyRegion
计算脏区域时,outDirtyRegion先清空~ 然后遍历mDrawingState中的Layer,如果Layer不属于Display,那么就返回了,outDirtyRegion为空。非透明区域 opaqueRegion
Surface(Layer)完全不透明的区域可见区域 visibleRegion
Layer可以被看见的区域,包括不完全透明的区域。原则上,这就是整个Surface减去非透明区域。被覆盖区域 coveredRegion
Surface被上面的Surface覆盖的区域,包括被透明区域覆盖的区域。透明区域 transparentRegion
Surface完全透明的部分,如果没有可见的非透明区域,这个Layer就可以从Layer列表中删掉。它并不影响该Layer本身或其下方Layer的可见区域大小。这个区域可能不太准,如果App不遵守SurfaceView的限制,可悲的是,确实有不遵守的。
回到computeVisibleRegions函数,其是按照z-order进行反序号遍历的,所以从最上面开始遍历。
void SurfaceFlinger::computeVisibleRegions(const sp& displayDevice,
Region& outDirtyRegion, Region& outOpaqueRegion)
{
... ...
// handle hidden surfaces by setting the visible region to empty
if (CC_LIKELY(layer->isVisible())) {
const bool translucent = !layer->isOpaque(s);
Rect bounds(layer->computeScreenBounds());
visibleRegion.set(bounds);
Transform tr = layer->getTransform();
if (!visibleRegion.isEmpty()) {
// 将完全透明区域从可见区域中删掉
if (translucent) {
if (tr.preserveRects()) {
// transform 透明区域
transparentRegion = tr.transform(s.activeTransparentRegion);
} else {
// 太复杂了,做不了优化
transparentRegion.clear();
}
}
// compute the opaque region
const int32_t layerOrientation = tr.getOrientation();
if (layer->getAlpha() == 1.0f && !translucent &&
((layerOrientation & Transform::ROT_INVALID) == false)) {
// the opaque region is the layer's footprint
opaqueRegion = visibleRegion;
}
}
}
这里用到Layer的几个函数:
isOpaque 说明Layer是非透明的Layer,这个是上层应用设置的,注意,我们这里说的应用不只说App,也包括Android的Framework,是泛指。
computeScreenBounds 计算Layer的在屏幕上的大小
computeScreenBounds函数如下:
Rect Layer::computeScreenBounds(bool reduceTransparentRegion) const {
const Layer::State& s(getDrawingState());
Rect win(s.active.w, s.active.h);
if (!s.crop.isEmpty()) {
win.intersect(s.crop, &win);
}
Transform t = getTransform();
win = t.transform(win);
if (!s.finalCrop.isEmpty()) {
win.intersect(s.finalCrop, &win);
}
const sp& p = mDrawingParent.promote();
if (p != nullptr) {
Rect bounds = p->computeScreenBounds(false);
bounds.intersect(win, &win);
}
if (reduceTransparentRegion) {
auto const screenTransparentRegion = t.transform(s.activeTransparentRegion);
win = reduce(win, screenTransparentRegion);
}
return win;
}
s.active.w
和s.active.h
,是Layer本身的大小,用win表示。
crop是Layer的源剪截区域,由上层设置,表示该Layer只截取crop的区域进行合成显示,这个区域可以能比win大,也可能比win小,所以要和win做一个交集运算,截取两个区域重复的部分。
finalCrop和crop类似,只是这里的finalCrop是处理win做了变换后的,最终的区域。finalCrop也是上层设置的。
Layer本身的crop处理完后,还要和父Layer的区域做一个交集运算,子Layer不让超过父Layer的大小?
默认的需要减掉透明区域的,reduceTransparentRegion默认参数为true。
computeScreenBounds的返回值,就是Layer可见区域的大小,visibleRegion区域后续还会被裁剪。
- getTransform 获取 Layer的变换矩阵
屏幕有旋转,需要做变换,去适配显示屏幕
回到 computeVisibleRegions函数,计算完可见区域,计算非透明区域,一般情况下,如果layer是非透明的,非透明区域就是可见区域。
void SurfaceFlinger::computeVisibleRegions(const sp& displayDevice,
Region& outDirtyRegion, Region& outOpaqueRegion)
{
... ...
// 遍历时,第一层时,aboveCoveredLayers为空,coveredRegion也是为空,最上面一层是没有被覆盖的,当然为空。
coveredRegion = aboveCoveredLayers.intersect(visibleRegion);
// 更新aboveCoveredLayers,该层之下的Layer都被该层Layer覆盖,所以这里和可见区域做一个或操纵,最下面的区域被覆盖的越大
aboveCoveredLayers.orSelf(visibleRegion);
// 可见区域要减掉该层之上的非透明区域。
visibleRegion.subtractSelf(aboveOpaqueLayers);
上面部分的逻辑,都注释在代码中。继续看~
下面是计算Layer的脏区域:
void SurfaceFlinger::computeVisibleRegions(const sp& displayDevice,
Region& outDirtyRegion, Region& outOpaqueRegion)
{
... ...
// compute this layer's dirty region
if (layer->contentDirty) {
// we need to invalidate the whole region
dirty = visibleRegion;
// as well, as the old visible region
dirty.orSelf(layer->visibleRegion);
layer->contentDirty = false;
} else {
const Region newExposed = visibleRegion - coveredRegion;
const Region oldVisibleRegion = layer->visibleRegion;
const Region oldCoveredRegion = layer->coveredRegion;
const Region oldExposed = oldVisibleRegion - oldCoveredRegion;
dirty = (visibleRegion&oldCoveredRegion) | (newExposed-oldExposed);
}
dirty.subtractSelf(aboveOpaqueLayers);
contentDirty表示Layer的可见区域被修改了,这个是需要和layer的visibleRegion做一个与运算。确保可见的区域都能被刷新到。如果contentDirty没有被修改,开始计算暴露出来的区域 exposedRegion。exposedRegion包含两部分,之前被覆盖的区域,现在暴露了,直接暴露的区域,现在也是暴露的区域。dirty的区域,就是暴露的区域,再除去上面非透明的区域。
void SurfaceFlinger::computeVisibleRegions(const sp& displayDevice,
Region& outDirtyRegion, Region& outOpaqueRegion)
{
... ...
// accumulate to the screen dirty region
outDirtyRegion.orSelf(dirty);
// 更新之上非透明的区域,下面的Layer计算时会用到
aboveOpaqueLayers.orSelf(opaqueRegion);
// Store the visible region in screen space
layer->setVisibleRegion(visibleRegion);
layer->setCoveredRegion(coveredRegion);
layer->setVisibleNonTransparentRegion(
visibleRegion.subtract(transparentRegion));
});
outOpaqueRegion = aboveOpaqueLayers;
}
outDirtyRegion是屏幕的脏区域,它是每个Layer脏区域的合。最后将计算好的区域值设置到Layer中。outOpaqueRegion是屏幕的非透明区域。
- setVisibleRegion 设置可见区域
- setCoveredRegion 设置被覆盖的区域
- setVisibleNonTransparentRegion 设置可见的非透明区域,它是可见区域,减去透明区域。
回到rebuildLayerStacks函数~ computeVisibleRegions结束后,屏幕的脏区域得到了,每个Layer的可见区域,被覆盖的区域,以及可见非透明区域都计算出来了。
void SurfaceFlinger::rebuildLayerStacks() {
if (CC_UNLIKELY(mVisibleRegionsDirty)) {
...
for (size_t dpy=0 ; dpyisDisplayOn()) {
computeVisibleRegions(displayDevice, dirtyRegion, opaqueRegion);
mDrawingState.traverseInZOrder([&](Layer* layer) {
bool hwcLayerDestroyed = false;
if (layer->belongsToDisplay(displayDevice->getLayerStack(),
displayDevice->isPrimary())) {
Region drawRegion(tr.transform(
layer->visibleNonTransparentRegion));
drawRegion.andSelf(bounds);
if (!drawRegion.isEmpty()) {
layersSortedByZ.add(layer);
} else {
hwcLayerDestroyed = layer->destroyHwcLayer(
displayDevice->getHwcDisplayId());
}
} else {
hwcLayerDestroyed = layer->destroyHwcLayer(
displayDevice->getHwcDisplayId());
}
if (hwcLayerDestroyed) {
auto found = std::find(mLayersWithQueuedFrames.cbegin(),
mLayersWithQueuedFrames.cend(), layer);
if (found != mLayersWithQueuedFrames.cend()) {
layersNeedingFences.add(layer);
}
}
});
}
... ...
}
}
}
rebuildLayerStacks函数中对Layer再遍历一次,这次是正序,也就是从下往上。遍历时,主要做了一下处理:
- 计算Layer需要绘制的区域drawRegion,将Layer的可见区域和Display的大小做交集而得到
- 如果drawRegion不为空,将该Layer加到当前Display的Layer列表中,也是按照z-order进行存放layersSortedByZ。每个Display有自己的layersSortedByZ。
- 如果之前Layer是可见的,现在不可见,销毁掉hwc Layer。销毁的Layer放到layersNeedingFences中,它虽然不需要releaseFence,但是还是需要fence去释放旧的Buffer。
rebuildLayerStacks的最后,将数据更新到Display中。
void SurfaceFlinger::rebuildLayerStacks() {
... ...
for (size_t dpy=0 ; dpysetVisibleLayersSortedByZ(layersSortedByZ);
displayDevice->setLayersNeedingFences(layersNeedingFences);
displayDevice->undefinedRegion.set(bounds);
displayDevice->undefinedRegion.subtractSelf(
tr.transform(opaqueRegion));
displayDevice->dirtyRegion.orSelf(dirtyRegion);
}
}
}
Display中还有一个区域,叫未定义的区域。也就是屏幕的大小减去屏幕的非透明区域opaqueRegion余下的部分。
创建Layer栈完成,此时需要进行合成显示的数据已经被更新到每个Display各自的layersSortedByZ中。