在本文中,主要是对3D UNet
进行一个学习和梳理。对于3D UNet
网上的资料和GitHub
直接获取的代码很多,不需要自己从0
开始。那么本文的目的是啥呢?
本文就是想拆解下其中的结构,看看对于一个3D
的UNet
,和2D
的UNet
,究竟有什么不同?如果是你自己构建,有什么样的经验和技巧可以学习。
3D
的UNet
的论文地址:3D U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation
对于2D
的UNet
感兴趣的小伙伴,可以先跳转去这里:【BraTS】Brain Tumor Segmentation 脑部肿瘤分割2(UNet的复现);相信阅读完,你会对这个模型,心中已经有了结构。
对本系列的其他篇章,点击下面链接:
unet
无论是2D
,还是3D
,从整体结构上进行划分,大体可以分位以下两个阶段:
encoder
),负责对特征提取;decoder
),负责对预测恢复。其中:
concat
操作;conv+bn+relu
的组合;max pool
;up conv
;conv
,恢复了最终的输出特征图;对于模型构建这块,可以在论文中,看看作者是如何描述网络结构的:
Like the standard u-net, it has an analysis and a synthesis path each with four resolution steps.
In the analysis path, each layer contains two 3 × 3 × 3 convolutions each followed by a rectified linear unit (ReLu), and then a 2 × 2 × 2 max pooling with strides of two in each dimension.
In the synthesis path, each layer consists of an upconvolution of 2 × 2 × 2 by strides of two in each dimension, followed by two 3 × 3 × 3 convolutions each followed by a ReLu.
Shortcut connections from layers of equal resolution in the analysis path provide the essential high-resolution features to the synthesis path.
In the last layer a 1×1×1 convolution reduces the number of output channels to the number of labels which is 3 in our case.
从论文中的网络结构示意图也可以发现:
conv+bn+relu
的组合,最后一层除外;encoder
阶段,连接各个水平块的,是下采样;decoder
阶段,连接各个水平块的,是反卷积(upconvolution
);concat
,和最后的conv
输出特征图。复线在3D UNet
前,可以先参照下相对简单,且很深渊源的2D UNet
结构。其中被多次使用的一个水平块中,也是两个conv+bn+relu
的组合,2D UNet
的构建如下所示:
class ConvBlock2d(nn.Module):
def __init__(self, in_ch, out_ch):
super(ConvBlock2d, self).__init__()
# 第1个3*3的卷积层
self.conv1 = nn.Sequential(
nn.Conv2d(in_ch, out_ch, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(out_ch),
nn.ReLU(inplace=True),
)
# 第2个3*3的卷积层
self.conv2 = nn.Sequential(
nn.Conv2d(out_ch, out_ch, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(out_ch),
nn.ReLU(inplace=True),
)
# 定义数据前向流动形式
def forward(self, x):
x = self.conv1(x)
x = self.conv2(x)
return x
而在3D UNet
的一个水平块中,同样是两个conv+bn+relu
的组合,如下所示:
is_elu = False
def activateELU(is_elu, nchan):
if is_elu:
return nn.ELU(inplace=True)
else:
return nn.PReLU(nchan)
def ConvBnActivate(in_channels, middle_channels, out_channels):
# This is a block with 2 convolutions
# The first convolution goes from in_channels to middle_channels feature maps
# The second convolution goes from middle_channels to out_channels feature maps
conv = nn.Sequential(
nn.Conv3d(in_channels, middle_channels, stride=1, kernel_size=3, padding=1),
nn.BatchNorm3d(middle_channels),
activateELU(is_elu, middle_channels),
nn.Conv3d(middle_channels, out_channels, stride=1, kernel_size=3, padding=1),
nn.BatchNorm3d(out_channels),
activateELU(is_elu, out_channels),
)
return conv
可以发现,nn.Conv2d
变成了nn.Conv3d
,nn.BatchNorm2d
变成了nn.BatchNorm3d
。遵照这个规则,构建下采样MaxPool3d
、上采样反卷积ConvTranspose3d
,以及最后紫色一层卷积,输出特征层FinalConvolution
,如下:
def DownSample():
# It halves the spatial dimensions on every axes (x,y,z)
return nn.MaxPool3d(kernel_size=2, stride=2)
def UpSample(in_channels, out_channels):
# It doubles the spatial dimensions on every axes (x,y,z)
return nn.ConvTranspose3d(in_channels, out_channels, kernel_size=2, stride=2)
def FinalConvolution(in_channels, out_channels):
return nn.Conv3d(in_channels, out_channels, kernel_size=1)
除此之外,绿色长箭头,concat
操作,是在水平方向上,也就是列上进行组合,如下所示:
def CatBlock(x1, x2):
return torch.cat((x1, x2), 1)
至此,构建模型所需要的各个组块,都准备完毕了。接下来就是构建模型,将各个组块搭起来。其中有个规律:
encoder
中第一conv+bn+relu
外,每一次前都需要下采样;decoder
中,每一个conv+bn+relu
前,都需要上采样;decoder
中第一个conv
操作,需要进行concat
操作;DownSample
的channel
不变,特征图尺寸变小;UpSample
的channel
不变,特征图尺寸变大;那就把这些规则,根据图示给加上,组合后的一个类,就如下所示:
import torch
import torch.nn as nn
import torch.nn.functional as F
class UNet3D(nn.Module):
def __init__(self, num_out_classes=2, input_channels=1, init_feat_channels=32):
super().__init__()
# Encoder layers definitions
self.down_sample = DownSample()
self.init_conv = ConvBnActivate(input_channels, init_feat_channels, init_feat_channels*2)
self.down_conv1 = ConvBnActivate(init_feat_channels*2, init_feat_channels*2, init_feat_channels*4)
self.down_conv2 = ConvBnActivate(init_feat_channels*4, init_feat_channels*4, init_feat_channels*8)
self.down_conv3 = ConvBnActivate(init_feat_channels*8, init_feat_channels*8, init_feat_channels*16)
# Decoder layers definitions
self.up_sample1 = UpSample(init_feat_channels*16, init_feat_channels*16)
self.up_conv1 = ConvBnActivate(init_feat_channels*(16+8), init_feat_channels*8, init_feat_channels*8)
self.up_sample2 = UpSample(init_feat_channels*8, init_feat_channels*8)
self.up_conv2 = ConvBnActivate(init_feat_channels*(8+4), init_feat_channels*4, init_feat_channels*4)
self.up_sample3 = UpSample(init_feat_channels*4, init_feat_channels*4)
self.up_conv3 = ConvBnActivate(init_feat_channels*(4+2), init_feat_channels*2, init_feat_channels*2)
self.final_conv = FinalConvolution(init_feat_channels*2, num_out_classes)
# Softmax
self.softmax = F.softmax
def forward(self, image):
# Encoder Part #
# B x 1 x Z x Y x X
layer_init = self.init_conv(image)
# B x 64 x Z x Y x X
max_pool1 = self.down_sample(layer_init)
# B x 64 x Z//2 x Y//2 x X//2
layer_down2 = self.down_conv1(max_pool1)
# B x 128 x Z//2 x Y//2 x X//2
max_pool2 = self.down_sample(layer_down2)
# B x 128 x Z//4 x Y//4 x X//4
layer_down3 = self.down_conv2(max_pool2)
# B x 256 x Z//4 x Y//4 x X//4
max_pool_3 = self.down_sample(layer_down3)
# B x 256 x Z//8 x Y//8 x X//8
layer_down4 = self.down_conv3(max_pool_3)
# B x 512 x Z//8 x Y//8 x X//8
# Decoder part #
layer_up1 = self.up_sample1(layer_down4)
# B x 512 x Z//4 x Y//4 x X//4
cat_block1 = CatBlock(layer_down3, layer_up1)
# B x (256+512) x Z//4 x Y//4 x X//4
layer_conv_up1 = self.up_conv1(cat_block1)
# B x 256 x Z//4 x Y//4 x X//4
layer_up2 = self.up_sample2(layer_conv_up1)
# B x 256 x Z//2 x Y//2 x X//2
cat_block2 = CatBlock(layer_down2, layer_up2)
# B x (128+256) x Z//2 x Y//2 x X//2
layer_conv_up2 = self.up_conv2(cat_block2)
# B x 128 x Z//2 x Y//2 x X//2
layer_up3 = self.up_sample3(layer_conv_up2)
# B x 128 x Z x Y x X
cat_block3 = CatBlock(layer_init, layer_up3)
# B x (64+128) x Z x Y x X
layer_conv_up3 = self.up_conv3(cat_block3)
# B x 64 x Z x Y x X
final_layer = self.final_conv(layer_conv_up3)
# B x 2 x Z x Y x X
return self.softmax(final_layer, dim=1)
定义好了模型还不算完,分阶段测试下构建的网络是不是和我们所预想的一样。我们给他一个输入,测试下是否与我们最初的想法是一致的,是否报错等等问题,如下这样:
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu") # 没gpu就用cpu
print(DEVICE)
# Tensors for 3D Image Processing in PyTorch
# Batch x Channel x Z x Y x X
# Batch size BY x Number of channels x (BY Z dim) x (BY Y dim) x (BY X dim)
if __name__ == '__main__':
from torchsummary import summary
model = UNet3D(num_out_classes=3, input_channels=3, init_feat_channels=32)
# print(model)
summary(model, input_size=(3, 128, 128, 64), batch_size=-1, device='cpu')
打印的内容如下:
----------------------------------------------------------------
Layer (type) Output Shape Param #
================================================================
Conv3d-1 [-1, 32, 128, 128, 64] 2,624
BatchNorm3d-2 [-1, 32, 128, 128, 64] 64
PReLU-3 [-1, 32, 128, 128, 64] 32
Conv3d-4 [-1, 64, 128, 128, 64] 55,360
BatchNorm3d-5 [-1, 64, 128, 128, 64] 128
PReLU-6 [-1, 64, 128, 128, 64] 64
MaxPool3d-7 [-1, 64, 64, 64, 32] 0
Conv3d-8 [-1, 64, 64, 64, 32] 110,656
BatchNorm3d-9 [-1, 64, 64, 64, 32] 128
PReLU-10 [-1, 64, 64, 64, 32] 64
Conv3d-11 [-1, 128, 64, 64, 32] 221,312
BatchNorm3d-12 [-1, 128, 64, 64, 32] 256
PReLU-13 [-1, 128, 64, 64, 32] 128
MaxPool3d-14 [-1, 128, 32, 32, 16] 0
Conv3d-15 [-1, 128, 32, 32, 16] 442,496
BatchNorm3d-16 [-1, 128, 32, 32, 16] 256
PReLU-17 [-1, 128, 32, 32, 16] 128
Conv3d-18 [-1, 256, 32, 32, 16] 884,992
BatchNorm3d-19 [-1, 256, 32, 32, 16] 512
PReLU-20 [-1, 256, 32, 32, 16] 256
MaxPool3d-21 [-1, 256, 16, 16, 8] 0
Conv3d-22 [-1, 256, 16, 16, 8] 1,769,728
BatchNorm3d-23 [-1, 256, 16, 16, 8] 512
PReLU-24 [-1, 256, 16, 16, 8] 256
Conv3d-25 [-1, 512, 16, 16, 8] 3,539,456
BatchNorm3d-26 [-1, 512, 16, 16, 8] 1,024
PReLU-27 [-1, 512, 16, 16, 8] 512
ConvTranspose3d-28 [-1, 512, 32, 32, 16] 2,097,664
Conv3d-29 [-1, 256, 32, 32, 16] 5,308,672
BatchNorm3d-30 [-1, 256, 32, 32, 16] 512
PReLU-31 [-1, 256, 32, 32, 16] 256
Conv3d-32 [-1, 256, 32, 32, 16] 1,769,728
BatchNorm3d-33 [-1, 256, 32, 32, 16] 512
PReLU-34 [-1, 256, 32, 32, 16] 256
ConvTranspose3d-35 [-1, 256, 64, 64, 32] 524,544
Conv3d-36 [-1, 128, 64, 64, 32] 1,327,232
BatchNorm3d-37 [-1, 128, 64, 64, 32] 256
PReLU-38 [-1, 128, 64, 64, 32] 128
Conv3d-39 [-1, 128, 64, 64, 32] 442,496
BatchNorm3d-40 [-1, 128, 64, 64, 32] 256
PReLU-41 [-1, 128, 64, 64, 32] 128
ConvTranspose3d-42 [-1, 128, 128, 128, 64] 131,200
Conv3d-43 [-1, 64, 128, 128, 64] 331,840
BatchNorm3d-44 [-1, 64, 128, 128, 64] 128
PReLU-45 [-1, 64, 128, 128, 64] 64
Conv3d-46 [-1, 64, 128, 128, 64] 110,656
BatchNorm3d-47 [-1, 64, 128, 128, 64] 128
PReLU-48 [-1, 64, 128, 128, 64] 64
Conv3d-49 [-1, 3, 128, 128, 64] 195
================================================================
Total params: 19,077,859
Trainable params: 19,077,859
Non-trainable params: 0
----------------------------------------------------------------
Input size (MB): 12.00
Forward/backward pass size (MB): 8544.00
Params size (MB): 72.78
Estimated Total Size (MB): 8628.78
----------------------------------------------------------------
其中,我们测试的参数量是19,077,859
,论文中说的参数量:The architecture has 19069955 parameters in total.
有略微的差别。
后面再调用模型,进行一次前向传播,loss
运算和反向回归。如果这里都通过了,那么后面构建训练代码,就更简单了很多。如下:
if __name__ == '__main__':
input_channels = 3
num_out_classes = 2
init_feat_channels = 32
batch_size = 4
model = UNet3D(num_out_classes=num_out_classes, input_channels=input_channels, init_feat_channels=init_feat_channels)
# B x C x Z x Y x X
# 4 x 1 x 64 x 64 x 64
input_batch_size = (batch_size, input_channels, 128, 128, 64)
input_example = torch.rand(input_batch_size)
unet = model.to(DEVICE)
input_example = input_example.to(DEVICE)
output = unet(input_example)
# output = output.cpu().detach().numpy()
# Expected output shape
# B x N x Z x Y x X
# 4 x 2 x 64 x 64 x 64
expected_output_shape = (batch_size, num_out_classes, 128, 128, 64)
print("Output shape = {}".format(output.shape))
assert output.shape == expected_output_shape, "Unexpected output shape, check the architecture!"
expected_gt_shape = (batch_size, 128, 128, 64)
ground_truth = torch.ones(expected_gt_shape)
ground_truth = ground_truth.long().to(DEVICE)
# Defining loss fn
ce_layer = torch.nn.CrossEntropyLoss()
# Calculating loss
ce_loss = ce_layer(output, ground_truth)
print("CE Loss = {}".format(ce_loss))
# Back propagation
ce_loss.backward()
输出内容如下:
Output shape = torch.Size([4, 2, 128, 128, 64])
CE Loss = 0.6823387145996094
在GitHub
上,一篇关于3D UNet
的仓库,获得了1.6k 星星。链接地址在这里:pytorch-3dunet
在这个GitHub
里面,增加了很多的注释,也带来了一些心中的疑惑。
softmax
?什么时候使用sigmoid
?选择使用softmax
或sigmoid
作为输出层的依据取决于您的任务类型和具体情况。
如果您的任务是对每个像素进行多类别分类(语义分割),例如图像分割任务,那么您可以使用softmax
作为输出层。softmax
将为每个像素分配一个概率分布,表示该像素属于每个类别的概率,这样可以确保每个像素的预测结果归一化,并且所有通道的概率之和为1。这种方法通常用于分割器官或病变等结构。
如果您的任务是对每个像素进行二元分类,例如肿瘤检测任务,那么您可以使用sigmoid
作为输出层。sigmoid
将为每个像素分配一个0到1之间的值,表示该像素属于正类的概率。这种方法通常用于检测二元结构,如肿瘤。但是,二元分类任务,使用softmax
也是可以的。
总之,选择哪种输出层取决于您的任务类型和具体情况。
softmax/sigmoid
?只在推理阶段使用呢?if True applies the final normalization layer (sigmoid or softmax), otherwise the networks returns the output from the final convolution layer; use False for regression problems, e.g. de-noising
在训练阶段,输出层的特征图通常不需要经过sigmoid
或softmax
函数处理,因为在计算损失函数时,通常会使用原始的特征图和标签图进行比较。
在推理阶段,输出层的特征图需要经过sigmoid
或softmax
函数处理,以将特征图转换为像素级别的预测结果。对于分割一个类别的任务,您可以使用sigmoid
函数将特征图转换为像素级别的二进制掩码,表示每个像素属于结节的概率。对于分割多个类别的任务,您可以使用softmax
函数将特征图转换为像素级别的类别标签。
因此,在推理阶段,您需要将输出层的特征图通过sigmoid
或softmax
函数进行处理,以获得像素级别的预测结果。
在上面的GitHub有个训练的提示,如下这样:
Training loss shape of target
target data has to be 4D
(one target binary mask per channel).target dataset has to be 3D
, see also pytorch documentation for CE loss: https://pytorch.org/docs/master/generated/torch.nn.CrossEntropyLoss.htmlfinal_sigmoid in the model config section applies only to the inference time (validation, test):
BCEWithLogitsLoss, DiceLoss, BCEDiceLoss, GeneralizedDiceLoss
set final_sigmoid=True
;WeightedCrossEntropyLoss, CrossEntropyLoss, PixelWiseCrossEntropyLoss
) set final_sigmoid=False
,so that Softmax normalization is applied to the output.万事没有一个太绝对了。在训练阶段使用了sigmoid
或softmax
也是可以的,以获得类似于推理阶段的预测结果。这种方法称为“软标签”,可以帮助模型更好地学习特征和提高分割结果的质量。(因为sigmoid
或softmax
类似于一个规范化层,可以降低提高收敛效率)
使用软标签时,您需要将每个像素的标签从硬标签(0或1)转换为概率分布。对于分割一个类别的任务,您可以使用sigmoid
函数将标签转换为0到1之间的值,表示该像素属于结节的概率。对于分割多个类别的任务,您可以使用softmax
函数将标签转换为每个类别的概率分布。
请注意,使用软标签会增加模型的训练难度和计算复杂度。因此,
sigmoid
或softmax
;sigmoid
或softmax
。在论文:3D U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation,论文中第3.2
章节介绍了如何使用软标签。
out_channels (int)
: number of output segmentation masks; Note that the of out_channels might correspond to either different semantic classes or to different binary segmentation mask.
It’s up to the user of the class to interpret the out_channels and use the proper loss criterion during training (i.e. CrossEntropyLoss (multi-class) or BCEWithLogitsLoss (two-class) respectively)
我的理解是,有多少个目标类,out_channels
就是多少,不需要加背景类。但是,我也看到就只有一个类别,但是做了加1操作的。这点我再了解下。如果你有什么心得,欢迎评论区交流。
UNet
网络的结构,无论是二维的,还是三维的,都是比较容易理解的,这可能也是为什么那么受欢迎的原因之一吧。如果你看过之前那篇关于2D UNet
的过程,再看本篇应该就简单的很多。觉得本篇更简单一些呢。
我觉得本篇最大的价值,就是:
如果你阅读的过程中,发现了问题和疑问,欢迎评论区交流。