设计原则之接口隔离原则

1. 定义

客户端不应该被强迫依赖它不需要的接口。其中的“客户端”,可以理解为接口的调用者或者使用者。

在这条原则中,我们可以把“接口”理解为下面三种东西:

  • 一组 API 接口集合
  • 单个 API 接口或函数
  • OOP 中的接口概念

接下来,我就按照这三种理解方式来详细讲一下,在不同的场景下,这条原则具体是如何解读和应用的。

2. 一组 API 接口集合

我们还是结合一个例子来讲解。微服务用户系统提供了一组跟用户相关的 API 给其他系统使用,比如:注册、登录、获取用户信息等。具体代码如下所示:

public interface UserService {
  boolean register(String cellphone, String password);
  boolean login(String cellphone, String password);
  UserInfo getUserInfoById(long id);
  UserInfo getUserInfoByCellphone(String cellphone);
}

public class UserServiceImpl implements UserService {
  //...
}

现在,我们的后台管理系统要实现删除用户的功能,希望用户系统提供一个删除用户的接口。最简单粗暴的方法就是直接在UserService中新添加一个deleteUserByCellphone() 或 deleteUserById() 接口就可以了。但是这样做会有安全隐患。

删除用户是一个非常慎重的操作,我们只希望通过后台管理系统来执行,所以这个接口只限于给后台管理系统使用。如果我们把它放到 UserService 中,那所有使用到 UserService 的系统,都可以调用这个接口。不加限制地被其他业务系统调用,就有可能导致误删用户。

当然,最好的解决方案是从架构设计的层面,通过接口鉴权的方式来限制接口的调用。不过,如果暂时没有鉴权框架来支持,我们还可以从代码设计的层面,尽量避免接口被误用。我们参照接口隔离原则,调用者不应该强迫依赖它不需要的接口,将删除接口单独放到另外一个接口 RestrictedUserService 中,然后将 RestrictedUserService 只打包提供给后台管理系统来使用。具体的代码实现如下所示:

public interface UserService {
  boolean register(String cellphone, String password);
  boolean login(String cellphone, String password);
  UserInfo getUserInfoById(long id);
  UserInfo getUserInfoByCellphone(String cellphone);
}

public interface RestrictedUserService {
  boolean deleteUserByCellphone(String cellphone);
  boolean deleteUserById(long id);
}

public class UserServiceImpl implements UserService, RestrictedUserService {
  // ...省略实现代码...
}

在刚刚的这个例子中,我们把接口隔离原则中的接口,理解为一组接口集合,它可以是某个微服务的接口,也可以是某个类库的接口等等。在设计微服务或者类库接口的时候,如果部分接口只被部分调用者使用,那我们就需要将这部分接口隔离出来,单独给对应的调用者使用,而不是强迫其他调用者也依赖这部分不会被用到的接口。

3. 单个API接口或函数

现在我们再换一种理解方式,把接口理解为单个接口或函数(以下为了方便讲解,我都简称为“函数”)。那接口隔离原则就可以理解为:函数的设计要功能单一,不要将多个不同的功能逻辑在一个函数中实现。接下来,我们还是通过一个例子来解释一下。

public class Statistics {
  private Long max;
  private Long min;
  private Long average;
  private Long sum;
  private Long percentile99;
  private Long percentile999;
  //...省略constructor/getter/setter等方法...
}

public Statistics count(Collection dataSet) {
  Statistics statistics = new Statistics();
  //...省略计算逻辑...
  return statistics;
}

在上面的代码中,count() 函数的功能不够单一,包含很多不同的统计功能,比如,求最大值、最小值、平均值等等。按照接口隔离原则,我们应该把 count() 函数拆成几个更小粒度的函数,每个函数负责一个独立的统计功能。拆分之后的代码如下所示:

public Long max(Collection dataSet) { //... }
public Long min(Collection dataSet) { //... } 
public Long average(Colletion dataSet) { //... }
// ...省略其他统计函数...

4. OOP中的接口

除了刚讲过的两种理解方式,我们还可以把“接口”理解为 OOP 中的接口概念,比如 Java 中的 interface。

假设我们的项目中用到了三个外部系统:Redis、MySQL、Kafka。每个系统都对应一系列配置信息,比如地址、端口、访问超时时间等。为了在内存中存储这些配置信息,供项目中的其他模块来使用,我们分别设计实现了三个 Configuration 类:RedisConfig、MysqlConfig、KafkaConfig。具体的代码实现如下所示。注意,这里只给出了 RedisConfig 的代码实现,另外两个都是类似的,这里就不贴了。

public class RedisConfig {
    private ConfigSource configSource; //配置中心(比如zookeeper)
    private String address;
    private int timeout;
    private int maxTotal;
    //省略其他配置: maxWaitMillis,maxIdle,minIdle...

    public RedisConfig(ConfigSource configSource) {
        this.configSource = configSource;
    }

    public String getAddress() {
        return this.address;
    }
    //...省略其他get()、init()方法...

    public void update() {
      //从configSource加载配置到address/timeout/maxTotal...
    }
}

public class KafkaConfig { //...省略... }
public class MysqlConfig { //...省略... }

现在,我们有一个新的功能需求,希望支持 Redis 和 Kafka 配置信息的热更新。所谓“热更新(hot update)”就是,如果在配置中心中更改了配置信息,我们希望在不用重启系统的情况下,能将最新的配置信息加载到内存中(也就是 RedisConfig、KafkaConfig 类中)。但是,因为某些原因,我们并不希望对 MySQL 的配置信息进行热更新。

为了实现这样一个功能需求,我们设计实现了一个 ScheduledUpdater 类,以固定时间频率(periodInSeconds)来调用 RedisConfig、KafkaConfig 的 update() 方法更新配置信息。具体的代码实现如下所示:

public interface Updater {
  void update();
}

public class RedisConfig implemets Updater {
  //...省略其他属性和方法...
  @Override
  public void update() { //... }
}

public class KafkaConfig implements Updater {
  //...省略其他属性和方法...
  @Override
  public void update() { //... }
}

public class MysqlConfig { //...省略其他属性和方法... }

public class ScheduledUpdater {
    private final ScheduledExecutorService executor = Executors.newSingleThreadScheduledExecutor();;
    private long initialDelayInSeconds;
    private long periodInSeconds;
    private Updater updater;

    public ScheduleUpdater(Updater updater, long initialDelayInSeconds, long periodInSeconds) {
        this.updater = updater;
        this.initialDelayInSeconds = initialDelayInSeconds;
        this.periodInSeconds = periodInSeconds;
    }

    public void run() {
        executor.scheduleAtFixedRate(new Runnable() {
            @Override
            public void run() {
                updater.update();
            }
        }, this.initialDelayInSeconds, this.periodInSeconds, TimeUnit.SECONDS);
    }
}

public class Application {
  ConfigSource configSource = new ZookeeperConfigSource(/*省略参数*/);
  public static final RedisConfig redisConfig = new RedisConfig(configSource);
  public static final KafkaConfig kafkaConfig = new KakfaConfig(configSource);
  public static final MySqlConfig mysqlConfig = new MysqlConfig(configSource);

  public static void main(String[] args) {
    ScheduledUpdater redisConfigUpdater = new ScheduledUpdater(redisConfig, 300, 300);
    redisConfigUpdater.run();
    
    ScheduledUpdater kafkaConfigUpdater = new ScheduledUpdater(kafkaConfig, 60, 60);
    redisConfigUpdater.run();
  }
}

刚刚的热更新的需求我们已经搞定了。现在,我们又有了一个新的监控功能需求。通过命令行来查看 Zookeeper 中的配置信息是比较麻烦的。所以,我们希望能有一种更加方便的配置信息查看方式。

我们可以在项目中开发一个内嵌的 SimpleHttpServer,输出项目的配置信息到一个固定的 HTTP 地址,比如:http://127.0.0.1:2389/config 。我们只需要在浏览器中输入这个地址,就可以显示出系统的配置信息。不过,出于某些原因,我们只想暴露 MySQL 和 Redis 的配置信息,不想暴露 Kafka 的配置信息。

为了实现这样一个功能,我们还需要对上面的代码做进一步改造。改造之后的代码如下所示:

public interface Updater {
  void update();
}

public interface Viewer {
  String outputInPlainText();
  Map output();
}

public class RedisConfig implemets Updater, Viewer {
  //...省略其他属性和方法...
  @Override
  public void update() { //... }
  @Override
  public String outputInPlainText() { //... }
  @Override
  public Map output() { //...}
}

public class KafkaConfig implements Updater {
  //...省略其他属性和方法...
  @Override
  public void update() { //... }
}

public class MysqlConfig implements Viewer {
  //...省略其他属性和方法...
  @Override
  public String outputInPlainText() { //... }
  @Override
  public Map output() { //...}
}

public class SimpleHttpServer {
  private String host;
  private int port;
  private Map> viewers = new HashMap<>();
  
  public SimpleHttpServer(String host, int port) {//...}
  
  public void addViewers(String urlDirectory, Viewer viewer) {
    if (!viewers.containsKey(urlDirectory)) {
      viewers.put(urlDirectory, new ArrayList());
    }
    this.viewers.get(urlDirectory).add(viewer);
  }
  
  public void run() { //... }
}

public class Application {
    ConfigSource configSource = new ZookeeperConfigSource();
    public static final RedisConfig redisConfig = new RedisConfig(configSource);
    public static final KafkaConfig kafkaConfig = new KakfaConfig(configSource);
    public static final MySqlConfig mysqlConfig = new MySqlConfig(configSource);
    
    public static void main(String[] args) {
        ScheduledUpdater redisConfigUpdater =
            new ScheduledUpdater(redisConfig, 300, 300);
        redisConfigUpdater.run();
        
        ScheduledUpdater kafkaConfigUpdater =
            new ScheduledUpdater(kafkaConfig, 60, 60);
        redisConfigUpdater.run();
        
        SimpleHttpServer simpleHttpServer = new SimpleHttpServer(“127.0.0.1”, 2389);
        simpleHttpServer.addViewer("/config", redisConfig);
        simpleHttpServer.addViewer("/config", mysqlConfig);
        simpleHttpServer.run();
    }
}

至此,热更新和监控的需求我们就都实现了。我们来回顾一下这个例子的设计思想。我们设计了两个功能非常单一的接口:Updater 和 Viewer。ScheduledUpdater 只依赖 Updater 这个跟热更新相关的接口,不需要被强迫去依赖不需要的 Viewer 接口,满足接口隔离原则。同理,SimpleHttpServer 只依赖跟查看信息相关的 Viewer 接口,不依赖不需要的 Updater 接口,也满足接口隔离原则。

5. 与单一职责区别

单一职责原则针对的是模块、类、接口的设计。而接口隔离原则相对于单一职责原则,一方面它更侧重于接口的设计,另一方面它的思考的角度不同。它提供了一种判断接口是否职责单一的标准:通过调用者如何使用接口来间接地判定。如果调用者只使用部分接口或接口的部分功能,那接口的设计就不够职责单一。

你可能感兴趣的:(设计原则之接口隔离原则)