源码:https://github.com/IDEA-Research/DINO
数据集:coco格式
COCODIR/
├── train2017/
├── val2017/
└── annotations/
├── instances_train2017.json
└── instances_val2017.json
git clone https://github.com/IDEA-Research/DINO.git
cd DINO
conda create -n dino python=3.7 -y # 新建环境
conda activate dino # 激活环境
# an example:
conda install -c pytorch pytorch torchvision
在pytorch.org上找到合适版本的pytorch安装即可,比如我是直接沿用的之前配的vit_adapter环境,版本和作者一样
pip install torch==1.9.0+cu111 torchvision==0.10.0+cu111 torchaudio==0.9.0 -f https://download.pytorch.org/whl/torch_stable.html
pip install -r requirements.txt
cd models/dino/ops
python setup.py build install
# unit test (should see all checking is True)
python test.py
cd ../../..
执行 test.py 后出现 out of memory是正常现象
到这里配置环境就over了
/config/DINO/DINO_4scale_swin.py 中
1. num_classes 调整为数据集类别数
2. 修改 dn_labelbook_size 满足 dn_labebook_size >= num_classes + 1
(此处建议复制一份作为自己的config文件进行修改,防止以后弄混出现问题,也方便自己管理,这里我复制了一份命名为 DINO_4scale_swin_custom.py)
下载预训练模型 and the checkpoint of Swin-L backbone
bash scripts/DINO_train_submitit_swin.sh /path/to/your/COCODIR /path/to/your/pretrained_backbone
train from scratch
bash scripts/DINO_train_swin.sh /path/to/your/COCODIR /path/to/your/pretrained_backbone_dir
或者
python main.py \
--output_dir logs/DINO/R50-MS4 -c ./config/DINO/DINO_4scale_swin_custom.py --coco_path ./coco_path \
--options dn_scalar=100 embed_init_tgt=TRUE \
dn_label_coef=1.0 dn_bbox_coef=1.0 use_ema=False \
dn_box_noise_scale=1.0 backbone_dir=./backbone_dir
finetune with pre-trained models
bash scripts/DINO_train_swin.sh /path/to/your/COCODIR /path/to/your/pretrained_backbone --pretrain_model_path /path/to/a/pretrianed/model --finetune_ignore label_enc.weight class_embed
指定GPU序号的话在 /path/to/your/pretrained_backbone后加上序号数即可,即第三个参数
ps. 如果是用的自己的config文件,那么需要修改 DINO_train_swin.sh 里面的参数,把里面的 DINO_4scale_swin.py 修改为自己的文件名即可
第一次train的时候出现报错 RuntimeError: No shared folder available dino
解决方法:在项目文件夹下新建一个名为comp_robot的文件夹,该文件夹内再新建一个名为experiments的文件夹,然后在根目录下的run_with_submitit.py中找到get_shared_folder()函数,将其中的 /comp_robot 换为自己的文件夹所在路径,/comp_robot/{user}/experiments 同理
占用现存好大,改天再跑,先记录一下我自己的指令(服务器103 环境名vit_adapter)
bash scripts/DINO_train_swin.sh /data/zy/dataset/project/Cooper001_withlabel/coco/ /data/zy/code/DINO-main/pretrained/ 2 --pretrain_model_path /data/zy/code/DINO-main/pretrained/checkpoint0011_4scale_swin.pth --finetune_ignore label_enc.weight class_embed