算法描述
基础知识
+生成树: 一个连通图的生成树是它的极小连通子图,在n个顶点的情形下,有n-1条边。生成树是对连通图而言的,是连通图的极小连通子图,包含途中所有顶点,有且仅有n-1条边。非连通图的生成树则组成一个声称森林;若图中有n个顶点,m个连通分量,则生成森林中有n-m条边。
+图的遍历: 和树的遍历相似,若从图中某顶点出发,访问遍途中每个顶点,且每个顶点仅访问一次,此过程称为图的遍历。图的遍历算法是求解图的连通性问题、拓扑排序和求关键路径等算法的基础。图的常用遍历顺序有两种:深度优先搜索(DFS)和广度优先搜索(BFS),对每种搜索顺序,访问各顶点的顺序也不是唯一的。
+在一个无向连通图G中,其所有顶点和遍历该图经过的所有边所构成的子图G',称作图G的生成树。一个图可以有多个生成树,从不同的顶点除法,采用不同的遍历顺序,遍历时所经过的边也就不同。
+最小生成树:在图论中,常常将树定义为一个无回路连通图。对于一个带权的无向连通图,其每个生成树所有边上的权值之和可能不同,我们把所有边上权值之和最小的生成树成为图的最小生成树(MST)。
+MST性质:MST性质:假设G=(V,E)是一个连通网,U是顶点V的一个非空子集。若(u,v)是一条具有最小权值的边,其中u∈U,v∈V-U,则必存在一棵包含边(u,v)的最小生成树。
算法介绍
- 基本思想:假设G=(V,E)是连通的,TE是G上最小生成树中边的集合。算法从U={u0}(u0∈V)、TE={}开始。重复执行下列操作:
- 在所有u∈U,v∈V-U的边(u,v)∈E中找一条权值最小的边(u0,v0)并入集合TE中,同时v0并入U,直到V=U为止。此时,TE中必有n-1条边,T=(V,TE)为G的最小生成树。
- Prim算法的核心:始终保持TE中的边集构成一棵生成树。
题目
下图所示的赋权图表示某七个城市及预先算出它们之间的通信线路造价(单位:万元),试给出一个设计方案,使得各城市之间既能够通信又使总造价最小并计算其最小值.
编程求解以上问题(Kruslcal算法或Prim算法)
结果展示
代码
#include
#include
// #include
#include
#define MAX 100 // 矩阵最大容量
#define INF (~(0x1<<31)) // 最大值(即0X7FFFFFFF)
#define isLetter(a) ((((a)>='a')&&((a)<='z')) || (((a)>='A')&&((a)<='Z')))
#define LENGTH(a) (sizeof(a)/sizeof(a[0]))
// 邻接矩阵
typedef struct _graph
{
char vexs[MAX]; // 顶点集合
int vexnum; // 顶点数
int edgnum; // 边数
int matrix[MAX][MAX]; // 邻接矩阵
}Graph, *PGraph;
/*
* 返回ch在matrix矩阵中的位置
*/
static int get_position(Graph g, char ch)
{
int i;
for (i = 0; i(v * (v - 1))))
{
printf("input error: invalid parameters!\n");
return NULL;
}
if ((pG = (Graph*)malloc(sizeof(Graph))) == NULL)
return NULL;
memset(pG, 0, sizeof(Graph));
// 初始化"顶点数"和"边数"
pG->vexnum = v;
pG->edgnum = e;
// 初始化"顶点"
for (i = 0; i < pG->vexnum; i++)
{
printf("vertex(%d): ", i);
pG->vexs[i] = getchar();
}
// 1. 初始化"边"的权值
for (i = 0; i < pG->vexnum; i++)
{
for (j = 0; j < pG->vexnum; j++)
{
if (i == j)
pG->matrix[i][j] = 0;
else
pG->matrix[i][j] = INF;
}
}
// 2. 初始化"边"的权值: 根据用户的输入进行初始化
for (i = 0; i < pG->edgnum; i++)
{
// 读取边的起始顶点,结束顶点,权值
printf("edge(%d):", i);
c1 = getchar();
c2 = getchar();
scanf("%d", &weight);
p1 = get_position(*pG, c1);
p2 = get_position(*pG, c2);
if (p1 == -1 || p2 == -1)
{
printf("input error: invalid edge!\n");
free(pG);
return NULL;
}
pG->matrix[p1][p2] = weight;
pG->matrix[p2][p1] = weight;
}
return pG;
}
/*
* 创建图(用已提供的矩阵)
*/
Graph* create_example_graph()
{
char vexs[] = { 'A', 'B', 'C', 'D', 'E', 'F', 'G' };
int matrix[][9] = {
/*A*//*B*//*C*//*D*//*E*//*F*//*G*/
/*A*/{ 0, 20, INF, INF, INF, 23, 1 },
/*B*/{ 20, 0, 15, INF, INF, INF, 4 },
/*C*/{ INF, 15, 0, 3, INF, INF, 9 },
/*D*/{ INF, INF, 3, 0, 17, INF, 16 },
/*E*/{ INF, INF, INF, 17, 0, 28, 25 },
/*F*/{ 23, INF, INF, INF, 28, 0, 36 },
/*G*/{ 1, 4, 9, 16, 25, 36, 0 } };
int vlen = LENGTH(vexs);
int i, j;
Graph* pG;
// 输入"顶点数"和"边数"
if ((pG = (Graph*)malloc(sizeof(Graph))) == NULL)
return NULL;
memset(pG, 0, sizeof(Graph));
// 初始化"顶点数"
pG->vexnum = vlen;
// 初始化"顶点"
for (i = 0; i < pG->vexnum; i++)
pG->vexs[i] = vexs[i];
// 初始化"边"
for (i = 0; i < pG->vexnum; i++)
for (j = 0; j < pG->vexnum; j++)
pG->matrix[i][j] = matrix[i][j];
// 统计边的数目
for (i = 0; i < pG->vexnum; i++)
for (j = 0; j < pG->vexnum; j++)
if (i != j && pG->matrix[i][j] != INF)
pG->edgnum++;
pG->edgnum /= 2;
return pG;
}
/*
* 打印矩阵队列图
*/
void print_graph(Graph G)
{
int i, j;
printf("Martix Graph:\n");
for (i = 0; i < G.vexnum; i++)
{
for (j = 0; j < G.vexnum; j++)
printf("%10d ", G.matrix[i][j]);
printf("\n");
}
}
/*
* prim最小生成树
*
* 参数说明:
* G -- 邻接矩阵图
* start -- 从图中的第start个元素开始,生成最小树
*/
void prim(Graph G, int start)
{
int min, i, j, k, m, n, sum;
int index = 0; // prim最小树的索引,即prims数组的索引
char prims[MAX]; // prim最小树的结果数组
int weights[MAX]; // 顶点间边的权值
// prim最小生成树中第一个数是"图中第start个顶点",因为是从start开始的。
prims[index++] = G.vexs[start];
// 初始化"顶点的权值数组",
// 将每个顶点的权值初始化为"第start个顶点"到"该顶点"的权值。
for (i = 0; i < G.vexnum; i++)
weights[i] = G.matrix[start][i];
// 将第start个顶点的权值初始化为0。
// 可以理解为"第start个顶点到它自身的距离为0"。
weights[start] = 0;
for (i = 0; i < G.vexnum; i++)
{
// 由于从start开始的,因此不需要再对第start个顶点进行处理。
if (start == i)
continue;
j = 0;
k = 0;
min = INF;
// 在未被加入到最小生成树的顶点中,找出权值最小的顶点。
while (j < G.vexnum)
{
// 若weights[j]=0,意味着"第j个节点已经被排序过"(或者说已经加入了最小生成树中)。
if (weights[j] != 0 && weights[j] < min)
{
min = weights[j];
k = j;
}
j++;
}
// 经过上面的处理后,在未被加入到最小生成树的顶点中,权值最小的顶点是第k个顶点。
// 将第k个顶点加入到最小生成树的结果数组中
prims[index++] = G.vexs[k];
// 将"第k个顶点的权值"标记为0,意味着第k个顶点已经排序过了(或者说已经加入了最小树结果中)。
weights[k] = 0;
// 当第k个顶点被加入到最小生成树的结果数组中之后,更新其它顶点的权值。
for (j = 0; j < G.vexnum; j++)
{
// 当第j个节点没有被处理,并且需要更新时才被更新。
if (weights[j] != 0 && G.matrix[k][j] < weights[j])
weights[j] = G.matrix[k][j];
}
}
// 计算最小生成树的权值
sum = 0;
for (i = 1; i < index; i++)
{
min = INF;
// 获取prims[i]在G中的位置
n = get_position(G, prims[i]);
// 在vexs[0...i]中,找出到j的权值最小的顶点。
for (j = 0; j < i; j++)
{
m = get_position(G, prims[j]);
if (G.matrix[m][n]