- 【华为OD技术面试真题 - 技术面】- python八股文真题题库(1)
算法大师
华为od面试python
华为OD面试真题精选专栏:华为OD面试真题精选目录:2024华为OD面试手撕代码真题目录以及八股文真题目录文章目录华为OD面试真题精选1.数据预处理流程数据预处理的主要步骤工具和库2.介绍线性回归、逻辑回归模型线性回归(LinearRegression)模型形式:关键点:逻辑回归(LogisticRegression)模型形式:关键点:参数估计与评估:3.python浅拷贝及深拷贝浅拷贝(Shal
- BART&BERT
Ambition_LAO
深度学习
BART和BERT都是基于Transformer架构的预训练语言模型。模型架构:BERT(BidirectionalEncoderRepresentationsfromTransformers)主要是一个编码器(Encoder)模型,它使用了Transformer的编码器部分来处理输入的文本,并生成文本的表示。BERT特别擅长理解语言的上下文,因为它在预训练阶段使用了掩码语言模型(MLM)任务,即
- 阅读笔记:阅读方法中的逻辑和转念
施吉涛
聊聊一些阅读的方法论吧,别人家的读书方法刚开始想写,然后就不知道写什么了,因为作者写的非常的“精致”我有一种乡巴佬进城的感觉,看到精美的摆盘,精致的食材不知道该如何下口也就是《阅读的方法》,我们姑且来试一下强劲的大脑篇,第一节:逻辑通俗的来讲,也就是表达的排列和顺序,再进一步就是因果关系和关联实际上书已经看了大概一遍,但直到打算写一下笔记的时候,才发现作者讲的推理更多的是阅读的对象中呈现出的逻辑也
- AI大模型的架构演进与最新发展
季风泯灭的季节
AI大模型应用技术二人工智能架构
随着深度学习的发展,AI大模型(LargeLanguageModels,LLMs)在自然语言处理、计算机视觉等领域取得了革命性的进展。本文将详细探讨AI大模型的架构演进,包括从Transformer的提出到GPT、BERT、T5等模型的历史演变,并探讨这些模型的技术细节及其在现代人工智能中的核心作用。一、基础模型介绍:Transformer的核心原理Transformer架构的背景在Transfo
- 轻量级模型解读——轻量transformer系列
lishanlu136
#图像分类轻量级模型transformer图像分类
先占坑,持续更新。。。文章目录1、DeiT2、ConViT3、Mobile-Former4、MobileViTTransformer是2017谷歌提出的一篇论文,最早应用于NLP领域的机器翻译工作,Transformer解读,但随着2020年DETR和ViT的出现(DETR解读,ViT解读),其在视觉领域的应用也如雨后春笋般渐渐出现,其特有的全局注意力机制给图像识别领域带来了重要参考。但是tran
- 20220226号今日份(6)
张雅苑Momo
考虑以下必备行程安排:1作息规律2三餐规律3早茶下午茶4晨练运动5阅读笔记6挚爱亲朋联络20220226号今日份快乐是有哪一些呢?1:视频号直播的持续今天已经是第221/190天啦今天主讲人在分享事上练的能力,事上见2:持续吉他练习今天已经第25天啦3:今天持续带动某人整理屋子,要加油哦,要持续哦今天的过程持续比较轻松愉快4:今天老佛爷入院的第四天,上阵父子兵,期待他们仨早起凯旋归来如何成为自己喜
- 探索创新科技: Lite-Mono - 简约高效的小型化Mono框架
杭律沛Meris
探索创新科技:Lite-Mono-简约高效的小型化Mono框架Lite-Mono[CVPR2023]Lite-Mono:ALightweightCNNandTransformerArchitectureforSelf-SupervisedMonocularDepthEstimation项目地址:https://gitcode.com/gh_mirrors/li/Lite-Mono如果你在寻找一个轻
- 24营2组锋妈11月13日作业及阅读笔记
锋妈
第一部分,听课心得在《时间管理目标模型课程》中,主要学到了如下四点:一、为什么要制定目标二、怎么样制定目标三、制定目标后要做些什么四、立刻行动起来听完后,对照讲课提纲,是自身的存在的弱点,觉着最大的绊脚石是第四点立刻行动起来。因为再宏伟的目标,再强大的驱动力下,如果没有行动去执行,一切都是空谈。为了避免执行力弱化,结合自己目前实际情况,觉着尽量把目标制定的简单明了、可执行、可衡量、可反馈回顾的。只
- Pyorch中 nn.Conv1d 与 nn.Linear 的区别
迪三
#NN_Layer神经网络
即一维卷积层和全联接层的区别nn.Conv1d和nn.Linear都是PyTorch中的层,它们用于不同的目的,主要区别在于它们处理输入数据的方式和执行的操作类型。nn.Conv1d通过应用滑动过滤器来捕捉序列数据中的局部模式,适用于处理具有时间或序列结构的数据。nn.Linear通过将每个输入与每个输出相连接,捕捉全局关系,适用于将输入数据作为整体处理的任务。1.维度与输入nn.Conv1d(一
- 解决BERT模型bert-base-chinese报错(无法自动联网下载)
搬砖修狗
bert人工智能深度学习python
一、下载问题hugging-face是访问BERT模型的最初网站,但是目前hugging-face在中国多地不可达,在代码中涉及到该网站的模型都会报错,本文我们就以bert-base-chinese报错为例,提供一个下载到本地的方法来解决问题。二、网站google-bert(BERTcommunity)Thisorganizationismaintainedbythetransformerstea
- 车载以太网之SOME/IP
IT_码农
车载以太网车载以太网SOME/IP
整体介绍SOME/IP(全称为:Scalableservice-OrientedMiddlewarEoverIP),是运行在车载以太网协议栈基础之上的中间件,或者也可以称为应用层软件。发展历程AUTOSAR4.0-完成宝马SOME/IP消息的初步集成;AUTOSAR4.1-支持SOME/IP-SD及其发布/订阅功能;AUTOSAR4.2-添加transformer用于序列化以及其他相关优化;AUT
- 基于深度学习的农作物病害检测
SEU-WYL
深度学习dnn深度学习人工智能
基于深度学习的农作物病害检测利用卷积神经网络(CNN)、生成对抗网络(GAN)、Transformer等深度学习技术,自动识别和分类农作物的病害,帮助农业工作者提高作物管理效率、减少损失。1.农作物病害检测的挑战病害种类繁多:农作物病害的类型多样,不同病害在同一作物上的表现差异很大,同时同一种病害在不同生长阶段的症状也可能不同。环境影响:天气、光照、湿度等外部环境因素会影响农作物的表现,使得病害检
- 关于Echarts的一些设置总结
夏之小星星
echarts前端javascript
最近领导让我一个偏后端程序员画各种数据展示echarts页面,遇到好多问题在此记录一下,未完待续。。。ps:不喜欢画页面啊啊啊啊啊,以前公司这些都是ui的活啊啊啊啊,折磨死我啦啊啊啊啊一、柱形图1、echarts如何设置柱形颜色渐变在option加color属性option={color:{type:'linear',//x=0,y=1,柱子的颜色在垂直方向渐变x:0,y:1,colorStops
- 多模态Transformer之文本与图像联合建模 - Transformer教程
shandianfk_com
ChatGPTTransformertransformer深度学习人工智能
大家好,今天我们来聊聊一个既前沿又有趣的话题——多模态Transformer,特别是文本与图像的联合建模。对于很多小伙伴来说,Transformer这个词已经不陌生了,但它不仅仅应用于自然语言处理,还能在图像处理、甚至是多模态数据的处理上大显身手。接下来,我会带大家深入了解什么是多模态Transformer,以及它是如何实现文本与图像的联合建模的。Transformer简介首先,我们简单回顾一下T
- transformer架构(Transformer Architecture)原理与代码实战案例讲解
AI架构设计之禅
大数据AI人工智能Python入门实战计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
transformer架构(TransformerArchitecture)原理与代码实战案例讲解关键词:Transformer,自注意力机制,编码器-解码器,预训练,微调,NLP,机器翻译作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming1.背景介绍1.1问题的由来自然语言处理(NLP)领域的发展经历了从规则驱动到统计驱动再到深度学习驱动的三个阶段。
- 多模态大模型微调Qwen-VL微调及日志
Messi^
人工智能-大模型应用python人工智能深度学习
%pipinstallmodelscope-U%pipinstalltransformersacceleratetiktoken-U%pipinstalleinopstransformers_stream_generator-U%pipinstallpillow-U%pipinstalltorchvision%pipinstallmatplotlib-Ufrommodelscopeimport(s
- 他为了她努力发家致富,五年后她却要了他的命 ——《了不起的盖茨比》读后感
一切来得及
《大亨小传》?又一译名春节期间,我参加了网易蜗牛读书举行的“7天CP读”活动。活动规则是在小程序里配对,两人共读一本书。我选的书是《了不起的盖茨比》,早就闻名,早就想读,却一直没开始的一本书。老话说得没错,男女搭配,干活不累。想不到读书也是如此。不到六天,我就读完了全书,写了近30条阅读笔记。与此同时,与我搭档的美女好像忙着发财,一直没动头。不过,我还是感谢她,感谢她赐予我阅读的力量!读完全书,我
- 英伟达(NVIDIA)B200架构解读
weixin_41205263
芯际争霸GPGPU架构gpu算力人工智能硬件架构
H100芯片是一款高性能AI芯片,其中的TransformerEngine是专门用于加速Transformer模型计算的核心部件。Transformer模型是一种自然语言处理(NLP)模型,广泛应用于机器翻译、文本生成等任务。TransformerEngine的电路设计原理主要包括以下几个方面:
- A1/A2: S.O.S. Urgences, Chapitre 1
自观问渠
阅读笔记,Chapitre11.Allô!喂;公司接线员的用语:Allôbonjour,公司名。2.S.O.S.派遣医生上门服务3.请说!Jevousécoute./Jet'écoute.使用场景:我听你讲,你说吧。私人聊天,正式场合4.C'estpourqqn表示目的用pour5.Ilfaut用法Jepeuxvenir,maisilfautuneadresse.ilfaut+名词必须有某物Ilf
- python数学建模--非线性规划
diudiu_aaa
数学建模python算法
1.从线性规划到非线性规划本系列的开篇我们介绍了线性规划(LinearProgramming)并延伸到整数规划、0-1规划,以及相对复杂的固定费用问题、选址问题。这些问题的共同特点是,目标函数与约束条件都是线性函数。如果目标函数或约束条件中包含非线性函数,则是非线性规划。通常,非线性问题都比线性问题复杂得多,困难得多,非线性规划也是这样。非线性规划没有统一的通用方法、算法来解决,各种方法都有特定的
- 线性判别分析 (Linear Discriminant Analysis, LDA)
ALGORITHM LOL
人工智能机器学习算法
线性判别分析(LinearDiscriminantAnalysis,LDA)通俗易懂算法线性判别分析(LinearDiscriminantAnalysis,LDA)是一种用于分类和降维的技术。其主要目的是找到一个线性变换,将数据投影到一个低维空间,使得在这个新空间中,不同类别的数据能够更好地分离。线性判别分析的核心思想LDA的基本思路是最大化类间方差(between-classvariance)与
- 当背景为两种颜色交替出现时?用重复性渐变实现
痛心凉
重复性渐变cssdiv{background-image:linear-gradient(0deg,rgba(255,255,255,.2)50%,transparent50%,transparent);background-size:37px37px;background-color:#EBEBEB;//按需要改动背景色}
- 大规模语言模型的书籍分享,从零基础入门到精通非常详细收藏我这一篇就够了
黑客-雨
语言模型人工智能自然语言处理学习大模型学习大模型入门大模型教程
在当今人工智能领域,大规模语言模型成为了研究和应用的热点之一。它们以其大规模的参数和强大的性能表现,推动着机器学习和深度学习技术的发展。对于GPT系列大规模语言模型的发展历程,有两点令人印象深刻。第一点是可拓展的训练架构与学习范式:Transformer架构能够拓展到百亿、千亿甚至万亿参数规模,并且将预训练任务统一为预测下一个词这一通用学习范式;第二点是对于数据质量与数据规模的重视:不同于BERT
- QLoRa使用教程
云帆@
训练peft人工智能
一、定义定义案例1二、实现定义QLoRa:量化+LoRa.网址:https://huggingface.co/docs/peft/main/en/developer_guides/quantization案例11.4bit量化+LoRaimporttorchfromtransformersimportBitsAndBytesConfigconfig=BitsAndBytesConfig(load_
- 【机器学习】广义线性模型(GLM)的基本概念以及广义线性模型在python中的实例(包含statsmodels和scikit-learn实现逻辑回归)
Lossya
机器学习pythonscikit-learn线性回归人工智能逻辑回归
引言GLM扩展了传统的线性回归模型,使其能够处理更复杂的数据类型和分布文章目录引言一、广义线性模型1.1定义1.2广义线性模型的组成1.2.1响应变量(ResponseVariable)1.2.2链接函数(LinkFunction)1.2.3线性预测器(LinearPredictor)1.3常见的广义线性模型1.3.1线性回归1.3.2逻辑回归1.3.3泊松回归1.4GLM的特性1.5广义线性模型
- 【Tools】大模型中的BERT概念
音乐学家方大刚
工具bert人工智能深度学习
摇来摇去摇碎点点的金黄伸手牵来一片梦的霞光南方的小巷推开多情的门窗年轻和我们歌唱摇来摇去摇着温柔的阳光轻轻托起一件梦的衣裳古老的都市每天都改变模样方芳《摇太阳》BERT(BidirectionalEncoderRepresentationsfromTransformers)是一种基于Transformer的预训练语言模型,由Google于2018年发布。BERT的目标是通过大规模无监督预训练学习来
- Transformer模型:WordEmbedding实现
Galaxy.404
Transformertransformer深度学习人工智能embedding
前言最近在学Transformer,学了理论的部分之后就开始学代码的实现,这里是跟着b站的up主的视频记的笔记,视频链接:19、Transformer模型Encoder原理精讲及其PyTorch逐行实现_哔哩哔哩_bilibili正文首先导入所需要的包:importtorchimportnumpyasnpimporttorch.nnasnnimporttorch.nn.functionalasF关
- 每天五分钟玩转深度学习框架PyTorch:获取神经网络模型的参数
幻风_huanfeng
深度学习框架pytorch深度学习pytorch神经网络人工智能模型参数python
本文重点当我们定义好神经网络之后,这个网络是由多个网络层构成的,每层都有参数,我们如何才能获取到这些参数呢?我们将再下面介绍几个方法来获取神经网络的模型参数,此文我们是为了学习第6步(优化器)。获取所有参数Parametersfromtorchimportnnnet=nn.Sequential(nn.Linear(4,2),nn.Linear(2,2))print(list(net.paramet
- 每天五分钟玩转深度学习框架PyTorch:将nn的神经网络层连接起来
幻风_huanfeng
深度学习框架pytorch深度学习pytorch神经网络人工智能机器学习python
本文重点前面我们学习pytorch中已经封装好的神经网络层,有全连接层,激活层,卷积层等等,我们可以直接使用。如代码所示我们直接使用了两个nn.Linear(),这两个linear之间并没有组合在一起,所以forward的之后,分别调用了,在实际使用中我们常常将几个神经层组合在一起,这样不仅操作方便,而且代码清晰。这里介绍一下Sequential()和ModuleList(),它们可以将多个神经网
- ColumnParallelLinear 和 RowParallelLinear
道真人
算法人工智能
ColumnParallelLinear和RowParallelLinear是两种并行线性层,它们的主要区别在于权重矩阵的分割方式和计算过程。具体来说:ColumnParallelLinear权重矩阵分割方式:权重矩阵W被按列(column)分割成多个子矩阵,每个子矩阵在并行设备上进行计算。如果权重矩阵W的形状是(output_dim,input_dim),它会被分割成P个子矩阵,每个子矩阵的形状
- springmvc 下 freemarker页面枚举的遍历输出
杨白白
enumfreemarker
spring mvc freemarker 中遍历枚举
1枚举类型有一个本地方法叫values(),这个方法可以直接返回枚举数组。所以可以利用这个遍历。
enum
public enum BooleanEnum {
TRUE(Boolean.TRUE, "是"), FALSE(Boolean.FALSE, "否");
- 实习简要总结
byalias
工作
来白虹不知不觉中已经一个多月了,因为项目还在需求分析及项目架构阶段,自己在这段
时间都是在学习相关技术知识,现在对这段时间的工作及学习情况做一个总结:
(1)工作技能方面
大体分为两个阶段,Java Web 基础阶段和Java EE阶段
1)Java Web阶段
在这个阶段,自己主要着重学习了 JSP, Servlet, JDBC, MySQL,这些知识的核心点都过
了一遍,也
- Quartz——DateIntervalTrigger触发器
eksliang
quartz
转载请出自出处:http://eksliang.iteye.com/blog/2208559 一.概述
simpleTrigger 内部实现机制是通过计算间隔时间来计算下次的执行时间,这就导致他有不适合调度的定时任务。例如我们想每天的 1:00AM 执行任务,如果使用 SimpleTrigger,间隔时间就是一天。注意这里就会有一个问题,即当有 misfired 的任务并且恢复执行时,该执行时间
- Unix快捷键
18289753290
unixUnix;快捷键;
复制,删除,粘贴:
dd:删除光标所在的行 &nbs
- 获取Android设备屏幕的相关参数
酷的飞上天空
android
包含屏幕的分辨率 以及 屏幕宽度的最大dp 高度最大dp
TextView text = (TextView)findViewById(R.id.text);
DisplayMetrics dm = new DisplayMetrics();
text.append("getResources().ge
- 要做物联网?先保护好你的数据
蓝儿唯美
数据
根据Beecham Research的说法,那些在行业中希望利用物联网的关键领域需要提供更好的安全性。
在Beecham的物联网安全威胁图谱上,展示了那些可能产生内外部攻击并且需要通过快速发展的物联网行业加以解决的关键领域。
Beecham Research的技术主管Jon Howes说:“之所以我们目前还没有看到与物联网相关的严重安全事件,是因为目前还没有在大型客户和企业应用中进行部署,也就
- Java取模(求余)运算
随便小屋
java
整数之间的取模求余运算很好求,但几乎没有遇到过对负数进行取模求余,直接看下面代码:
/**
*
* @author Logic
*
*/
public class Test {
public static void main(String[] args) {
// TODO A
- SQL注入介绍
aijuans
sql注入
二、SQL注入范例
这里我们根据用户登录页面
<form action="" > 用户名:<input type="text" name="username"><br/> 密 码:<input type="password" name="passwor
- 优雅代码风格
aoyouzi
代码
总结了几点关于优雅代码风格的描述:
代码简单:不隐藏设计者的意图,抽象干净利落,控制语句直截了当。
接口清晰:类型接口表现力直白,字面表达含义,API 相互呼应以增强可测试性。
依赖项少:依赖关系越少越好,依赖少证明内聚程度高,低耦合利于自动测试,便于重构。
没有重复:重复代码意味着某些概念或想法没有在代码中良好的体现,及时重构消除重复。
战术分层:代码分层清晰,隔离明确,
- 布尔数组
百合不是茶
java布尔数组
androi中提到了布尔数组;
布尔数组默认的是false, 并且只会打印false或者是true
布尔数组的例子; 根据字符数组创建布尔数组
char[] c = {'p','u','b','l','i','c'};
//根据字符数组的长度创建布尔数组的个数
boolean[] b = new bool
- web.xml之welcome-file-list、error-page
bijian1013
javaweb.xmlservleterror-page
welcome-file-list
1.定义:
<welcome-file-list>
<welcome-file>login.jsp</welcome>
</welcome-file-list>
2.作用:用来指定WEB应用首页名称。
error-page1.定义:
<error-page&g
- richfaces 4 fileUpload组件删除上传的文件
sunjing
clearRichfaces 4fileupload
页面代码
<h:form id="fileForm"> <rich:
- 技术文章备忘
bit1129
技术文章
Zookeeper
http://wenku.baidu.com/view/bab171ffaef8941ea76e05b8.html
http://wenku.baidu.com/link?url=8thAIwFTnPh2KL2b0p1V7XSgmF9ZEFgw4V_MkIpA9j8BX2rDQMPgK5l3wcs9oBTxeekOnm5P3BK8c6K2DWynq9nfUCkRlTt9uV
- org.hibernate.hql.ast.QuerySyntaxException: unexpected token: on near line 1解决方案
白糖_
Hibernate
文章摘自:http://blog.csdn.net/yangwawa19870921/article/details/7553181
在编写HQL时,可能会出现这种代码:
select a.name,b.age from TableA a left join TableB b on a.id=b.id
如果这是HQL,那么这段代码就是错误的,因为HQL不支持
- sqlserver按照字段内容进行排序
bozch
按照内容排序
在做项目的时候,遇到了这样的一个需求:
从数据库中取出的数据集,首先要将某个数据或者多个数据按照地段内容放到前面显示,例如:从学生表中取出姓李的放到数据集的前面;
select * fro
- 编程珠玑-第一章-位图排序
bylijinnan
java编程珠玑
import java.io.BufferedWriter;
import java.io.File;
import java.io.FileWriter;
import java.io.IOException;
import java.io.Writer;
import java.util.Random;
public class BitMapSearch {
- Java关于==和equals
chenbowen00
java
关于==和equals概念其实很简单,一个是比较内存地址是否相同,一个比较的是值内容是否相同。虽然理解上不难,但是有时存在一些理解误区,如下情况:
1、
String a = "aaa";
a=="aaa";
==> true
2、
new String("aaa")==new String("aaa
- [IT与资本]软件行业需对外界投资热情保持警惕
comsci
it
我还是那个看法,软件行业需要增强内生动力,尽量依靠自有资金和营业收入来进行经营,避免在资本市场上经受各种不同类型的风险,为企业自主研发核心技术和产品提供稳定,温和的外部环境...
如果我们在自己尚未掌握核心技术之前,企图依靠上市来筹集资金,然后使劲往某个领域砸钱,然
- oracle 数据块结构
daizj
oracle块数据块块结构行目录
oracle 数据块是数据库存储的最小单位,一般为操作系统块的N倍。其结构为:
块头--〉空行--〉数据,其实际为纵行结构。
块的标准大小由初始化参数DB_BLOCK_SIZE指定。具有标准大小的块称为标准块(Standard Block)。块的大小和标准块的大小不同的块叫非标准块(Nonstandard Block)。同一数据库中,Oracle9i及以上版本支持同一数据库中同时使用标
- github上一些觉得对自己工作有用的项目收集
dengkane
github
github上一些觉得对自己工作有用的项目收集
技能类
markdown语法中文说明
回到顶部
全文检索
elasticsearch
bigdesk elasticsearch管理插件
回到顶部
nosql
mapdb 支持亿级别map, list, 支持事务. 可考虑做为缓存使用
C
- 初二上学期难记单词二
dcj3sjt126com
englishword
dangerous 危险的
panda 熊猫
lion 狮子
elephant 象
monkey 猴子
tiger 老虎
deer 鹿
snake 蛇
rabbit 兔子
duck 鸭
horse 马
forest 森林
fall 跌倒;落下
climb 爬;攀登
finish 完成;结束
cinema 电影院;电影
seafood 海鲜;海产食品
bank 银行
- 8、mysql外键(FOREIGN KEY)的简单使用
dcj3sjt126com
mysql
一、基本概念
1、MySQL中“键”和“索引”的定义相同,所以外键和主键一样也是索引的一种。不同的是MySQL会自动为所有表的主键进行索引,但是外键字段必须由用户进行明确的索引。用于外键关系的字段必须在所有的参照表中进行明确地索引,InnoDB不能自动地创建索引。
2、外键可以是一对一的,一个表的记录只能与另一个表的一条记录连接,或者是一对多的,一个表的记录与另一个表的多条记录连接。
3、如
- java循环标签 Foreach
shuizhaosi888
标签java循环foreach
1. 简单的for循环
public static void main(String[] args) {
for (int i = 1, y = i + 10; i < 5 && y < 12; i++, y = i * 2) {
System.err.println("i=" + i + " y="
- Spring Security(05)——异常信息本地化
234390216
exceptionSpring Security异常信息本地化
异常信息本地化
Spring Security支持将展现给终端用户看的异常信息本地化,这些信息包括认证失败、访问被拒绝等。而对于展现给开发者看的异常信息和日志信息(如配置错误)则是不能够进行本地化的,它们是以英文硬编码在Spring Security的代码中的。在Spring-Security-core-x
- DUBBO架构服务端告警Failed to send message Response
javamingtingzhao
架构DUBBO
废话不多说,警告日志如下,不知道有哪位遇到过,此异常在服务端抛出(服务器启动第一次运行会有这个警告),后续运行没问题,找了好久真心不知道哪里错了。
WARN 2015-07-18 22:31:15,272 com.alibaba.dubbo.remoting.transport.dispatcher.ChannelEventRunnable.run(84)
- JS中Date对象中几个用法
leeqq
JavaScriptDate最后一天
近来工作中遇到这样的两个需求
1. 给个Date对象,找出该时间所在月的第一天和最后一天
2. 给个Date对象,找出该时间所在周的第一天和最后一天
需求1中的找月第一天很简单,我记得api中有setDate方法可以使用
使用setDate方法前,先看看getDate
var date = new Date();
console.log(date);
// Sat J
- MFC中使用ado技术操作数据库
你不认识的休道人
sqlmfc
1.在stdafx.h中导入ado动态链接库
#import"C:\Program Files\Common Files\System\ado\msado15.dll" no_namespace rename("EOF","end")2.在CTestApp文件的InitInstance()函数中domodal之前写::CoIniti
- Android Studio加速
rensanning
android studio
Android Studio慢、吃内存!启动时后会立即通过Gradle来sync & build工程。
(1)设置Android Studio
a) 禁用插件
File -> Settings... Plugins 去掉一些没有用的插件。
比如:Git Integration、GitHub、Google Cloud Testing、Google Cloud
- 各数据库的批量Update操作
tomcat_oracle
javaoraclesqlmysqlsqlite
MyBatis的update元素的用法与insert元素基本相同,因此本篇不打算重复了。本篇仅记录批量update操作的
sql语句,懂得SQL语句,那么MyBatis部分的操作就简单了。 注意:下列批量更新语句都是作为一个事务整体执行,要不全部成功,要不全部回滚。
MSSQL的SQL语句
WITH R AS(
SELECT 'John' as name, 18 as
- html禁止清除input文本输入缓存
xp9802
input
多数浏览器默认会缓存input的值,只有使用ctl+F5强制刷新的才可以清除缓存记录。如果不想让浏览器缓存input的值,有2种方法:
方法一: 在不想使用缓存的input中添加 autocomplete="off"; eg: <input type="text" autocomplete="off" name