1 曲线拟合的线性最小二乘法及其MATLAB 程序
例7.2.1 给出一组数据点),(i i y x 列入表7–2中,试用线性最小二乘法求拟合曲线,并用(7.2),(7.3)和(7.4)式估计其误差,作出拟合曲线.
表7–2 例7.2.1的一组数据),(y x
解 (1)在MATLAB 工作窗口输入程序
>> x=[-2.5 -1.7 -1.1 -0.8 0 0.1 1.5 2.7 3.6];
y=[-192.9 -85.50 -36.15 -26.52 -9.10 -8.43 -13.12 6.50 68.04];
plot(x,y,'r*'),
legend('实验数据(xi,yi)')
xlabel('x'), ylabel('y'),
title('例7.2.1的数据点(xi,yi)的散点图')
运行后屏幕显示数据的散点图(略).
(3)编写下列MATLAB 程序计算)(x f 在),(i i y x 处的函数值,即输入程序
>> syms a1 a2 a3 a4
x=[-2.5 -1.7 -1.1 -0.8 0 0.1 1.5 2.7 3.6];
fi=a1.*x.^3+ a2.*x.^2+ a3.*x+ a4
运行后屏幕显示关于a 1,a 2, a 3和a 4的线性方程组
fi =[ -125/8*a1+25/4*a2-5/2*a3+a4,
-4913/1000*a1+289/100*a2-17/10*a3+a4,
-1331/1000*a1+121/100*a2-11/10*a3+a4,
-64/125*a1+16/25*a2-4/5*a3+a4,
a4, 1/1000*a1+1/100*a2+1/10*a3+a4,
27/8*a1+9/4*a2+3/2*a3+a4, 19683/1000*a1+729/100*a2+27/10*a3+a4, 5832/125*a1+324/25*a2+18/5*a3+a4]
编写构造误差平方和的MATLAB 程序
>> y=[-192.9 -85.50 -36.15 -26.52 -9.10 -8.43 -13.12 6.50 68.04];
fi=[-125/8*a1+25/4*a2-5/2*a3+a4,
-4913/1000*a1+289/100*a2-17/10*a3+a4,
-1331/1000*a1+121/100*a2-11/10*a3+a4,
-64/125*a1+16/25*a2-4/5*a3+a4, a4, 1/1000*a1+1/100*a2+1/10*a3+a4,
27/8*a1+9/4*a2+3/2*a3+a4,
19683/1000*a1+729/100*a2+27/10*a3+a4,
5832/125*a1+324/25*a2+18/5*a3+a4];
fy=fi-y; fy2=fy.^2; J=sum(fy.^2)
运行后屏幕显示误差平方和如下
J=
(-125/8*a1+25/4*a2-5/2*a3+a4+1929/10)^2+(-4913/1000*a1+2
89/100*a2-17/10*a3+a4+171/2)^2+(-1331/1000*a1+121/100*a2-11/10*a3+a4+723/20)^2+(-64/125*a1+16/25*a2-4/5*a3+a4+663/25)^2+(a4+91/10)^2+(1/1000*a1+1/100*a2+1/10*a3+a4+843/100)^2+(27/8*a1+9/4*a 2+3/2*a3+a4+328/25)^2+(19683/1000*a1+729/100*a2+27/10*a3+a4-13/
2)^2+(5832/125*a1+324/25*a2+18/5*a3+a4-1701/25)^2
为求4321,,,a a a a 使J 达到最小,只需利用极值的必要条件0=??k
a J )4,3,2,1(=k ,