Kafka深入浅出——初识Kafka

1、消息引擎背景
根据维基百科的定义,消息引擎系统是一组规范。企业利用这组规范在不同系统之间传递语义准确的消息,实现松耦合的异步式数据传递.

即:系统 A 发送消息给消息引擎系统,系统 B 从消息引擎系统中读取 A 发送的消息。

2、消息引擎的分类
  • 点对点模型:也叫消息队列模型。如果拿上面那个“民间版”的定义来说,那么系统 A 发送的消息只能被系统 B 接收,其他任何系统都不能读取 A 发送的消息。日常生活的例子比如电话客服就属于这种模型:同一个客户呼入电话只能被一位客服人员处理,第二个客服人员不能为该客户服务。
  • 发布 / 订阅模型:与上面不同的是,它有一个主题(Topic)的概念,你可以理解成逻辑语义相近的消息容器。该模型也有发送方和接收方,只不过提法不同。发送方也称为发布者(Publisher),接收方称为订阅者(Subscriber)。和点对点模型不同的是,这个模型可能存在多个发布者向相同的主题发送消息,而订阅者也可能存在多个,它们都能接收到相同主题的消息。生活中的报纸订阅就是一种典型的发布 / 订阅模型。
3、消息引擎和JMS的关系

JMS 是 Java Message Service,它也是支持上面这两种消息引擎模型的。严格来说它并非传输协议而仅仅是一组 API 罢了。不过可能是 JMS 太有名气以至于很多主流消息引擎系统都支持 JMS 规范,比如 ActiveMQ、RabbitMQ、IBM 的 WebSphere MQ 和 Apache Kafka。当然 Kafka 并未完全遵照 JMS 规范,相反,它另辟蹊径,探索出了一条特有的道路。

kafka的定义:

kafka是一个分布式的、基于发布订阅模式的消息队列,主要应用于大数据实时处理领域。

PUBLISH & SUBSCRIBE
Read and write streams of data like a messaging system.

PROCESS Write scalable stream processing applications that react to
events in real-time.

STORE Store streams of data safely in a distributed, replicated,
fault-tolerant cluster.

2 为什么有消息系统

2.1.1 异步处理

异步处理:
场景说明:用户注册后,需要发注册邮件和注册短信。传统的做法有两种:串行的方式和并行方式。

串行方式:将注册信息写入数据库成功后,发送注册邮件,再发送注册短信。以上三个任务全部完成后,返回给客户。
Kafka深入浅出——初识Kafka_第1张图片
并行方式:将注册信息写入数据库成功后,发送注册邮件的同时,发送注册短信。以上三个任务完成后,返回给客户端。与串行的差别是,并行的方式可以提高处理的时间。
Kafka深入浅出——初识Kafka_第2张图片
假设三个业务节点每个使用50毫秒钟,不考虑网络等其他开销,则串行方式的时间是150毫秒,并行的时间可能是100毫秒。
如以上案例描述,传统的方式系统的性能(并发量,吞吐量,响应时间)会有瓶颈。如何解决这个问题呢?

引入消息队列:
用户的响应时间相当于是注册信息写入数据库的时间,也就是50毫秒。注册邮件,发送短信写入消息队列后,直接返回,因为写入消息队列的速度很快,基本可以忽略,因此用户的响应时间可能是50毫秒。因此架构改变后,系统的吞吐量提高到每秒20QPS。比串行提高了3倍,比并行提高了
Kafka深入浅出——初识Kafka_第3张图片

2.1.2 解耦

场景说明:用户下单后,订单系统需要通知库存系统。传统的做法是,订单系统调用库存系统的接口。如下图:
Kafka深入浅出——初识Kafka_第4张图片
传统模式的缺点:

假如库存系统无法访问,则订单减库存将失败,从而导致订单失败,订单系统与库存系统耦合。

如何解决以上问题呢?引入应用消息队列后的方案,如下图:
Kafka深入浅出——初识Kafka_第5张图片
订单系统:用户下单后,订单系统完成持久化处理,将消息写入消息队列,返回用户订单下单成功

库存系统:订阅下单的消息,采用拉/推的方式,获取下单信息,库存系统根据下单信息,进行库存操作

假如:在下单时库存系统不能正常使用。也不影响正常下单,因为下单后,订单系统写入消息队列就不再关心其他的后续操作了。实现订单系统与库存系统的应用解耦。

2.1.3 流量削峰

流量削锋也是消息队列中的常用场景,一般在秒杀或团抢活动中使用广泛!

应用场景:秒杀活动,一般会因为流量过大,导致流量暴增,应用挂掉。为解决这个问题,一般需要在应用前端加入消息队列。

可以控制活动的人数,可以缓解短时间内高流量压垮应用。

用户的请求,服务器接收后,首先写入消息队列。假如消息队列长度超过最大数量,则直接抛弃用户请求或跳转到错误页面。

秒杀业务根据消息队列中的请求信息,再做后续处理。
Kafka深入浅出——初识Kafka_第6张图片

2.1.4 消息队列其它用处

解耦
允许你独立的扩展或修改两边的处理过程,只要确保它们遵守同样的接口约束。

冗余
消息队列把数据进行持久化直到它们已经被完全处理,通过这一方式规避了数据丢失风险。许多消息队列所采用的"插入-获取-删除"范式中,在把一个消息从队列中删除之前,需要你的处理系统明确的指出该消息已经被处理完毕,从而确保你的数据被安全的保存直到你使用完毕。

扩展性
因为消息队列解耦了你的处理过程,所以增大消息入队和处理的频率是很容易的,只要另外增加处理过程即可。

灵活性 & 峰值处理能力
在访问量剧增的情况下,应用仍然需要继续发挥作用,但是这样的突发流量并不常见。如果为以能处理这类峰值访问为标准来投入资源随时待命无疑是巨大的浪费。使用消息队列能够使关键组件顶住突发的访问压力,而不会因为突发的超负荷的请求而完全崩溃。

可恢复性
系统的一部分组件失效时,不会影响到整个系统。消息队列降低了进程间的耦合度,所以即使一个处理消息的进程挂掉,加入队列中的消息仍然可以在系统恢复后被处理。

顺序保证
在大多使用场景下,数据处理的顺序都很重要。大部分消息队列本来就是排序的,并且能保证数据会按照特定的顺序来处理。(Kafka 保证一个 Partition 内的消息的有序性)

缓冲
有助于控制和优化数据流经过系统的速度,解决生产消息和消费消息的处理速度不一致的情况。

异步通信
很多时候,用户不想也不需要立即处理消息。消息队列提供了异步处理机制,允许用户把一个消息放入队列,但并不立即处理它。想向队列中放入多少消息就放多少,然后在需要的时候再去处理它们。

2.3、 Kafka核心概念

Kafka是最初由Linkedin公司开发,是一个分布式、分区的、多副本的、多订阅者,基于zookeeper协调的分布式日志系统(也可以当做MQ系统),常见可以用于web/nginx日志、访问日志,消息服务等等,Linkedin于2010年贡献给了Apache基金会并成为顶级开源项目。

kafka是一个分布式消息队列。具有高性能、持久化、多副本备份、横向扩展能力。生产者往队列里写消息,消费者从队列里取消息进行业务逻辑。Kafka就是一种发布-订阅模式。将消息保存在磁盘中,以顺序读写方式访问磁盘,避免随机读写导致性能瓶颈。
2.4、 kafka特性
  • 高吞吐、低延迟
    kakfa 最大的特点就是收发消息非常快,kafka 每秒可以处理几十万条消息,它的最低延迟只有几毫秒。
  • 高伸缩性
    每个主题(topic) 包含多个分区(partition),主题中的分区可以分布在不同的主机(broker)中。
  • 持久性、可靠性
    Kafka 能够允许数据的持久化存储,消息被持久化到磁盘,并支持数据备份防止数据丢失。
  • 容错性
    允许集群中的节点失败,某个节点宕机,Kafka 集群能够正常工作。
  • 高并发
    支持数千个客户端同时读写。
2.5、kafka核心模块解析

Kafka深入浅出——初识Kafka_第7张图片

  • producer

消息生产者,发布消息到Kafka集群的终端或服务

  • broker

Kafka集群中包含的服务器,一个borker就表示kafka集群中的一个节点

  • topic

每条发布到Kafka集群的消息属于的类别,即Kafka是面向 topic 的。
更通俗的说Topic就像一个消息队列,生产者可以向其写入消息,消费者可以从中读取消息,一个Topic支持多个生产者或消费者同时订阅它,所以其扩展性很好。

  • partition

每个 topic 包含一个或多个partition。Kafka分配的单位是partition

  • replication

partition的副本,保障 partition 的高可用。

  • consumer

从Kafka集群中消费消息的终端或服务

  • consumer group

每个 consumer 都属于一个 consumer group,每条消息只能被 consumer group 中的一个
Consumer 消费,但可以被多个 consumer group 消费。

  • leader

每个partition有多个副本,其中有且仅有一个作为Leader,Leader是当前负责数据的读写的partition。
producer 和 consumer 只跟 leader 交互

  • follower

Follower跟随Leader,所有写请求都通过Leader路由,数据变更会广播给所有Follower,Follower与Leader保持数据同步。如果Leader失效,则从Follower中选举出一个新的Leader。

  • controller
  知道大家有没有思考过一个问题,就是Kafka集群中某个broker宕机之后,是谁负责感知到他的宕机,以及负责进行Leader

Partition的选举?如果你在Kafka集群里新加入了一些机器,此时谁来负责把集群里的数据进行负载均衡的迁移?包括你的Kafka集群的各种元数据,比如说每台机器上有哪些partition,谁是leader,谁是follower,是谁来管理的?如果你要删除一个topic,那么背后的各种partition如何删除,是谁来控制?还有就是比如Kafka集群扩容加入一个新的broker,是谁负责监听这个broker的加入?如果某个broker崩溃了,是谁负责监听这个broker崩溃?这里就需要一个Kafka集群的总控组件,Controller。他负责管理整个Kafka集群范围内的各种东西。

  • zookeeper

(1) Kafka 通过 zookeeper 来存储集群的meta元数据信息
(2)一旦controller所在broker宕机了,此时临时节点消失,集群里其他broker会一直监听这个临时节点,发现临时节点消失了,就争抢再次创建临时节点,保证有一台新的broker会成为controller角色。

  • offset

    • 偏移量

消费者在对应分区上已经消费的消息数(位置),offset保存的地方跟kafka版本有一定的关系。 kafka0.8
版本之前offset保存在zookeeper上。 kafka0.8 版本之后offset保存在kafka集群上。
它是把消费者消费topic的位置通过kafka集群内部有一个默认的topic, 名称叫
__consumer_offsets,它默认有50个分区。

  • ISR机制

光是依靠多副本机制能保证Kafka的高可用性,但是能保证数据不丢失吗?不行,因为如果leader宕机,但是leader的数据还没同步到follower上去,此时即使选举了follower作为新的leader,当时刚才的数据已经丢失了。
ISR是:in-sync replica,就是跟leader partition保持同步的follower
partition的数量,只有处于ISR列表中的follower才可以在leader宕机之后被选举为新的leader,因为在这个ISR列表里代表他的数据跟leader是同步的。

你可能感兴趣的:(大数据,Java,技术杂谈,spring)