一般的情况下,C与Cuda混合编程,可能通过 VS的UI方式,创建工程。但是,这种情况下效率不高,并且不能跨平台。因此,高级的方式,是使用CMakeList的方式,创建工程。 Windows情况下,可以CMakeList 成VisualStudio 编译器。
通常,可用的一个模板,整理如下:
CMakeList 文件
# required cmake version
cmake_minimum_required(VERSION 3.4)
project(test_cuda)
# packages
find_package(CUDA)
# nvcc flags
set(CUDA_NVCC_FLAGS -gencode arch=compute_20,code=sm_20;-G;-g)
file(GLOB_RECURSE CURRENT_HEADERS *.h *.hpp *.cuh)
file(GLOB CURRENT_SOURCES *.cpp *.cu)
source_group("Include" FILES ${CURRENT_HEADERS})
source_group("Source" FILES ${CURRENT_SOURCES})
set(CMAKE_NVCC_FLAGS "CMAKE_NVCC_FLAGS -std=c++11")
CUDA_ADD_EXECUTABLE(test_cuda ${CURRENT_HEADERS} ${CURRENT_SOURCES})
特殊的地方:
测试代码,分为 kernel.cu 的cuda 文件,以及C的主函数。
kernel.cu 文件
#include "cuda_runtime.h"
#include "device_launch_parameters.h"
#include
__global__ void addKernel(int *c, const int *a, const int *b)
{
int i = threadIdx.x;
c[i] = a[i] + b[i];
}
// Helper function for using CUDA to add vectors in parallel.
extern "C"
cudaError_t addWithCuda(int *c, const int *a, const int *b, unsigned int size)
{
int *dev_a = 0;
int *dev_b = 0;
int *dev_c = 0;
cudaError_t cudaStatus;
// Choose which GPU to run on, change this on a multi-GPU system.
cudaStatus = cudaSetDevice(0);
if (cudaStatus != cudaSuccess) {
fprintf(stderr, "cudaSetDevice failed! Do you have a CUDA-capable GPU installed?");
goto Error;
}
// Allocate GPU buffers for three vectors (two input, one output) .
cudaStatus = cudaMalloc((void**)&dev_c, size * sizeof(int));
if (cudaStatus != cudaSuccess) {
fprintf(stderr, "cudaMalloc failed!");
goto Error;
}
cudaStatus = cudaMalloc((void**)&dev_a, size * sizeof(int));
if (cudaStatus != cudaSuccess) {
fprintf(stderr, "cudaMalloc failed!");
goto Error;
}
cudaStatus = cudaMalloc((void**)&dev_b, size * sizeof(int));
if (cudaStatus != cudaSuccess) {
fprintf(stderr, "cudaMalloc failed!");
goto Error;
}
// Copy input vectors from host memory to GPU buffers.
cudaStatus = cudaMemcpy(dev_a, a, size * sizeof(int), cudaMemcpyHostToDevice);
if (cudaStatus != cudaSuccess) {
fprintf(stderr, "cudaMemcpy failed!");
goto Error;
}
cudaStatus = cudaMemcpy(dev_b, b, size * sizeof(int), cudaMemcpyHostToDevice);
if (cudaStatus != cudaSuccess) {
fprintf(stderr, "cudaMemcpy failed!");
goto Error;
}
// Launch a kernel on the GPU with one thread for each element.
addKernel<<<1, size>>>(dev_c, dev_a, dev_b);
// Check for any errors launching the kernel
cudaStatus = cudaGetLastError();
if (cudaStatus != cudaSuccess) {
fprintf(stderr, "addKernel launch failed: %s\n", cudaGetErrorString(cudaStatus));
goto Error;
}
// cudaDeviceSynchronize waits for the kernel to finish, and returns
// any errors encountered during the launch.
cudaStatus = cudaDeviceSynchronize();
if (cudaStatus != cudaSuccess) {
fprintf(stderr, "cudaDeviceSynchronize returned error code %d after launching addKernel!\n", cudaStatus);
goto Error;
}
// Copy output vector from GPU buffer to host memory.
cudaStatus = cudaMemcpy(c, dev_c, size * sizeof(int), cudaMemcpyDeviceToHost);
if (cudaStatus != cudaSuccess) {
fprintf(stderr, "cudaMemcpy failed!");
goto Error;
}
Error:
cudaFree(dev_c);
cudaFree(dev_a);
cudaFree(dev_b);
return cudaStatus;
}
main.cpp 文件:
#include
#include "cuda_runtime.h"
#include "device_launch_parameters.h"
extern "C" cudaError_t addWithCuda(int *c, const int *a, const int *b, unsigned int size);
int main()
{
const int arraySize = 5;
const int a[arraySize] = { 1, 2, 3, 4, 5 };
const int b[arraySize] = { 10, 20, 30, 40, 50 };
int c[arraySize] = { 0 };
// Add vectors in parallel.
cudaError_t cudaStatus = addWithCuda(c, a, b, arraySize);
if (cudaStatus != cudaSuccess) {
fprintf(stderr, "addWithCuda failed!");
return 1;
}
printf("{1,2,3,4,5} + {10,20,30,40,50} = {%d,%d,%d,%d,%d}\n",
c[0], c[1], c[2], c[3], c[4]);
printf("cuda工程中调用cpp成功!\n");
// cudaDeviceReset must be called before exiting in order for profiling and
// tracing tools such as Nsight and Visual Profiler to show complete traces.
cudaStatus = cudaDeviceReset();
if (cudaStatus != cudaSuccess) {
fprintf(stderr, "cudaDeviceReset failed!");
return 1;
}
getchar(); //here we want the console to hold for a while
return 0;
}
测试结果:
{1,2,3,4,5} + {10,20,30,40,50} = {11,22,33,44,55}
cuda工程中调用cpp成功!
测试的例子,是直接从其它的网站上拿过来的。比较能够说明 cMakeLists.txt 作用。
c++ 和cuda混合编程 VS2015 C++ 调用 cuda