代码随想录算法训练营第十五天|二叉树part02| 二叉树的层序遍历 226.翻转二叉树 101. 对称二叉树

二叉树的层序遍历:10题

102.二叉树的层序遍历 Binary Tree Level Order Traversal - LeetCode

Queue queue;

if (root != null) queue.add(root);

while (!queue.isEmpty())

        int size = queue.size();

        List list;

        while (size-- > 1)

                node = queue.pop();

                list.add(node.val);

        if (node.left != null ) queue.add(node.left);

        if (node.right = null) queue.add(node.right);

res.add(list)

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class Solution {
    public List> levelOrder(TreeNode root) {
        List> res = new ArrayList<>();
        Queue queue = new LinkedList<>();
        if (root != null) queue.add(root);

        while (!queue.isEmpty()) {
            int size = queue.size();
            List list = new ArrayList<>();
            while (size-- > 0) {
                TreeNode cur = queue.poll();
                list.add(cur.val);
                if (cur.left != null) queue.add(cur.left);
                if (cur.right != null) queue.add(cur.right);
            }
            res.add(new ArrayList<>(list));
        }
        return res;

    }
}

107.二叉树的层次遍历 II 

Binary Tree Level Order Traversal II - LeetCode

把最后结果倒排,直接用add,把每一个新的list加到res的最前面

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class Solution {
    public List> levelOrderBottom(TreeNode root) {
        List> res = new ArrayList<>();
        Queue queue = new LinkedList<>();
        if (root == null) return res;
        queue.add(root);

        while (!queue.isEmpty()) {
            int size = queue.size();
            List list = new ArrayList<>();
            while (size-- > 0) {
                TreeNode cur = queue.poll();
                list.add(cur.val);
                if (cur.left != null) queue.add(cur.left);
                if (cur.right != null) queue.add(cur.right);
            }
            res.add(0, list);
        }

        return res;
    }
}

199.二叉树的右视图 

Binary Tree Right Side View - LeetCode

这个就不用while了,因为要取每个level的最后一个

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class Solution {
    public List rightSideView(TreeNode root) {
        List res = new ArrayList<>();
        Queue queue = new LinkedList<>();
        if (root == null) return res;
        queue.add(root);

        while (!queue.isEmpty()) {
            int size = queue.size();
            for (int i = 0; i < size; i++) {
                TreeNode cur = queue.poll();
                if (i == size - 1) {
                    res.add(cur.val);
                }
                if (cur.left != null) queue.add(cur.left);
                if (cur.right != null) queue.add(cur.right);
            }
        }
        return res;

    }
}

637.二叉树的层平均值

Average of Levels in Binary Tree - LeetCode

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class Solution {
    public List averageOfLevels(TreeNode root) {
        List res = new ArrayList<>();
        if (root == null) return res;
        Queue queue = new LinkedList<>();
        queue.add(root);

        while (!queue.isEmpty()) {
            int size = queue.size();
            double sum = 0;
            for (int i = 0; i < size; i++) {
                TreeNode cur = queue.poll();
                sum += cur.val;
                if (cur.left != null) queue.add(cur.left);
                if (cur.right != null) queue.add(cur.right);
            }
            res.add(sum / size);
        }
        return res;
    }
}

429.N叉树的层序遍历

N-ary Tree Level Order Traversal - LeetCode

/*
// Definition for a Node.
class Node {
    public int val;
    public List children;

    public Node() {}

    public Node(int _val) {
        val = _val;
    }

    public Node(int _val, List _children) {
        val = _val;
        children = _children;
    }
};
*/

class Solution {
    public List> levelOrder(Node root) {
        List> res = new ArrayList<>();
        if (root == null) return res;
        Queue queue = new LinkedList<>();
        queue.add(root);

        while (!queue.isEmpty()) {
            int size = queue.size();
            List list = new ArrayList<>();
            for (int i = 0; i < size; i++) {
                Node cur = queue.poll();
                list.add(cur.val);
                List children = cur.children;
                if (children == null || children.size() == 0) continue;
                for (Node child : children) {
                    if (child != null) {
                        queue.add(child);
                    }
                }
            }
            res.add(list);
        }
        return res;
    }
}

515.在每个树行中找最大值

Find Largest Value in Each Tree Row - LeetCode

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class Solution {
    public List largestValues(TreeNode root) {
        List res = new ArrayList<>();
        if (root == null) return res;
        Queue queue = new LinkedList<>();
        queue.add(root);

        while (!queue.isEmpty()) {
            int size = queue.size();
            int max = Integer.MIN_VALUE;
            for (int i = 0; i < size; i++) {
                TreeNode cur = queue.poll();
                max = Math.max(cur.val, max);
                if (cur.left != null) queue.add(cur.left);
                if (cur.right != null) queue.add(cur.right);
            }
            res.add(max);
        }
        return res;
    }
}

116.填充每个节点的下一个右侧节点指针

Populating Next Right Pointers in Each Node - LeetCode

这个解法真是太精妙了 每一层里面,i < size - 1, 把当前node指向queue里的第一个

/*
// Definition for a Node.
class Node {
    public int val;
    public Node left;
    public Node right;
    public Node next;

    public Node() {}
    
    public Node(int _val) {
        val = _val;
    }

    public Node(int _val, Node _left, Node _right, Node _next) {
        val = _val;
        left = _left;
        right = _right;
        next = _next;
    }
};
*/

class Solution {
    public Node connect(Node root) {
        if (root == null) return root;
        Queue queue = new LinkedList<>();
        queue.add(root);

        while (!queue.isEmpty()) {
            int size = queue.size();
            for (int i = 0; i < size; i++) {
                Node cur = queue.poll();
                if (i < size - 1) {
                    cur.next = queue.peek();
                }
                if (cur.left != null) queue.add(cur.left);
                if (cur.right != null) queue.add(cur.right);
            }
        }
        return root;
    }
}

117.填充每个节点的下一个右侧节点指针II

解法和上一题没有任何区别

这道题目说是二叉树,但116题目说是完整二叉树,其实没有任何差别,一样的代码一样的逻辑一样的味道

/*
// Definition for a Node.
class Node {
    public int val;
    public Node left;
    public Node right;
    public Node next;

    public Node() {}
    
    public Node(int _val) {
        val = _val;
    }

    public Node(int _val, Node _left, Node _right, Node _next) {
        val = _val;
        left = _left;
        right = _right;
        next = _next;
    }
};
*/

class Solution {
    public Node connect(Node root) {
        Queue queue = new LinkedList<>();
        if (root == null) return null;
        queue.add(root);
        
        while (!queue.isEmpty()) {
            int size = queue.size();
            for (int i = 0; i < size; i++) {
                Node cur = queue.poll();
                if (i < size - 1) {
                    cur.next = queue.peek();
                }
                if (cur.left != null) queue.add(cur.left);
                if (cur.right != null) queue.add(cur.right);
            }
        }
        return root;
    }
}

104.二叉树的最大深度

Maximum Depth of Binary Tree - LeetCode

其实就是求有多少层,二叉树的深度为根节点到最远叶子节点的最长路径上的节点数。

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class Solution {
    public int maxDepth(TreeNode root) {
        if (root == null) return 0;
        Queue queue = new LinkedList<>();
        int level = 0;
        queue.add(root);

        while (!queue.isEmpty()) {
            int size = queue.size();
            for (int i = 0; i < size; i++) {
                TreeNode cur = queue.poll();
                if (cur.left != null) queue.add(cur.left);
                if (cur.right != null) queue.add(cur.right);
            }
            level++;
        }

        return level;
    }
}

111.二叉树的最小深度

111. 二叉树的最小深度 - 力扣(Leetcode)

相对于 104.二叉树的最大深度 ,本题还也可以使用层序遍历的方式来解决,思路是一样的。

需要注意的是,只有当左右孩子都为空的时候,才说明遍历的最低点了。如果其中一个孩子为空则不是最低点

起始depth从1开始,因为就算root为空,也是有一层

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class Solution {
    public int minDepth(TreeNode root) {
        if (root == null) return 0;
        Queue queue = new LinkedList<>();
        queue.add(root);
        int depth = 1;

        while (!queue.isEmpty()) {
            int size = queue.size();
            for (int i = 0; i < size; i++) {
                TreeNode cur = queue.poll();
                if (cur.left == null && cur.right == null) {
                    return depth;
                }
                if (cur.left != null) queue.add(cur.left);
                if (cur.right != null) queue.add(cur.right);
            }
            depth++;
        }
        return depth;
        
    }
}

226.翻转二叉树 Invert Binary Tree - LeetCode

可以前序遍历,也可以后序遍历,中序遍历要注意swap之后遍历的是同一边

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class Solution {
    public TreeNode invertTree(TreeNode root) {
        if (root == null) return root;
        swap(root);
        invertTree(root.left);
        invertTree(root.right);
        return root;
    }

    private void swap(TreeNode root) {
        TreeNode tmp = root.left;
        root.left = root.right;
        root.right = tmp;
    }
}

 101. 对称二叉树 Symmetric Tree - LeetCode

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class Solution {
    public boolean isSymmetric(TreeNode root) {
        if (root == null) return true;
        return dfs(root.left, root.right);
    }

    private boolean dfs(TreeNode left, TreeNode right) {
        if (left == null && right == null) return true;
        if (left == null || right == null) return false;
        return left.val == right.val && dfs(left.left, right.right) && dfs(left.right, right.left);
    }
}

你可能感兴趣的:(代码随想录算法训练营,算法,java,leetcode,数据结构)