目录
matchAllQuery()方法用来匹配全部文档
public static void matchAllQuery(Client client ) {
SearchResponse res = null;
QueryBuilder qb = QueryBuilders.matchAllQuery();
res = client.prepareSearch("search_test")
.setTypes("article")
.setSearchType(SearchType.DFS_QUERY_THEN_FETCH)
.setQuery(qb)
.setFrom(0)
.setSize(10)
.execute().actionGet();
for (SearchHit hit: res.getHits().getHits()){
System.out.println(hit.getSourceAsString());
}
for有选择的打印
1. for (SearchHit searchHit : searchHits) {
2. String name = (String) searchHit.getSource().get("name");
3. String birth = (String) searchHit.getSource().get("birth");
4. String interest = (String) searchHit.getSource().get("interest");
5. System.out.println("-------------" + (++i) + "------------");
6. System.out.println(name);
7. System.out.println(birth);
8. System.out.println(interest);
9. }
不能写为matchQuery("name", "to*")
matchQuery("filedname","value")匹配单个字段,匹配字段名为filedname,值为value的文档
QueryBuilder qb = QueryBuilders.matchQuery("title", "article");
多个字段匹配某一个值
1. QueryBuilder queryBuilder = QueryBuilders.multiMatchQuery("music",
2. "name", "interest");//搜索name中或interest中包含有music的文档(必须与music一致)
模糊查询,?匹配单个字符,*匹配多个字符
1. WildcardQueryBuilder queryBuilder = QueryBuilders.wildcardQuery("name",
2. "*jack*");//搜索名字中含有jack文档(name中只要包含jack即可)
一种略高级的查询,充分考虑了stop-word的低优先级,提高了查询精确性。
将terms分为了两种:more-importent(low-frequency) and less important(high-frequency)。less-important比如stop-words,eg:the and。
QueryBuilder qb = QueryBuilders
.commonTermsQuery("title","article");
* termQuery("key", obj) 完全匹配
* termsQuery("key", obj1, obj2..) 一次匹配多个值
QueryBuilder qb =QueryBuilders
.termQuery("title","article");
// QueryBuilder qb = QueryBuilders
// .termsQuery("title","article","relevence");
参考网址:https://www.cnblogs.com/wenbronk/p/6432990.html
/**
* 前缀查询
*/
@Test
public void testPrefixQuery() {
QueryBuilder queryBuilder = QueryBuilders.matchQuery("user", "kimchy");
searchFunction(queryBuilder);
}
// 闭区间 QueryBuilderquery = QueryBuilders.rangeQuery("age").from(10).to(20); // 开区间 QueryBuilder query = QueryBuilders.rangeQuery("age").gt(10).lt(20);
QueryBuilder qb = QueryBuilders
.rangeQuery("like")
.gte(5)
.lt(7);
// QueryBuilderqb = QueryBuilders
// .rangeQuery("like")
// .from(5)
// .to(7)
// .includeLower(true)// 包含上届
// .includeUpper(false);// 包含下届
在关系查询中,存在一对多和多对一的关系。因为就会出现两种查询情况。
在解释查询关系之前,需要理解一下Relationship Name,如文档中contact和account的关系 ,一个Account会有多个contact,一个Contact也会有多个Account,但是最终归结的关系为Account对contact的关系为一对多。也就是说 在contact上保存有对account'的引用,这个引用的名称就是RelationshipName(区别于field name),类似于外键的名称。
下面介绍两种查询
1、多对一的查询。
salesforce 中特有的__r模式,直接关联到parent上,如contact上存有对account的引用,那么我可以直接关联出account上的相关字段。
1. select id,name ,account.name,account.id from contact
2、一对多的查询
嵌入式查询(nestedquery),这种方式适合在父的一端查询相关子的记录。如:我想查找到负责这个account的全部contact。
1. select id,name,(select id,name from contacts)
2. from account
查询结果如图:
这样就会关联出所以的contact数据,contact部分的展示形式json串。注意contacts不是对象名称,是Relationshipname
QueryBuilder qb =QueryBuilders.existsQuery("str");
//QueryBuilder qb =QueryBuilders.prefixQuery("name", "prefix");
//QueryBuilder qb =QueryBuilders.regexpQuery("user", "k.*y");
正则表达式
/**
* 模糊查询
* 不能用通配符, 不知道干啥用
*/
//QueryBuilder qb = QueryBuilders.fuzzyQuery("name", "kimzhy");
//QueryBuilder qb =QueryBuilders.typeQuery("my_type");
/**
* 只查询一个id的
* QueryBuilders.idsQuery(String...type).ids(Collection ids)
*/
//QueryBuilder qb = QueryBuilders.idsQuery("my_type","type2").addIds("1","2","5");
publicstatic void avgQuery(Client client ) {
SearchResponseres = null;
AvgBuilderagg = AggregationBuilders
.avg("avg_num")
.field("like");
res= client.prepareSearch("search_test")
.setTypes("article")
.setSearchType(SearchType.DFS_QUERY_THEN_FETCH)
.addAggregation(agg)
.setFrom(0)
.setSize(10)
.execute().actionGet();
System.out.println(res);
//on shutdown
client.close();
}
MinBuilderagg = AggregationBuilders
.min("min_num")
.field("like");
MaxBuilderagg = AggregationBuilders
.max("max_num")
.field("like");
SearchResponseres = null;
ExtendedStatsBuilderagg = AggregationBuilders
.extendedStats("extended_stats_num")
.field("like");
返回聚合分析后所有指标,比Stats多三个统计结果:平方和、方差、标准差
1
2
3
4
5
{
"aggs" : {
"grades_stats" : { "extended_stats" : { "field" : "grade" } }
}
}
ExtendedStatsBuilder agg =AggregationBuilders.extendedStats("extended_stats_num").field("like");
PercentilesBuilderagg = AggregationBuilders
.percentiles("percentile_num")
.field("like")
.percentiles(95,99,99.9);
PercentileRanksBuilderagg = AggregationBuilders
.percentileRanks("percentile_rank_num")
.field("like")
.percentiles(3,5);
AggregationBuilder agg =
AggregationBuilders
.range("agg")
.field("like")
.addUnboundedTo(3)
.addRange(3, 5)
.addUnboundedFrom(5);
TopHitsBuilder thb= AggregationBuilders.topHits("top_result");
NestedBuilder nb= AggregationBuilders.nested("negsted_path").path("quests");
AggregationBuilders.reverseNested("res_negsted").path("kps ");
上面这些基本就是常用的聚合查询了,在嵌套(nested)下面的子聚合查询就是嵌套查询了,除了嵌套查询,其他的聚合查询也可以无限级添加子查询
举个例子
SearchRequestBuildersearch= client.prepareSearch("index").setTypes("type");
TermsBuilderone= AggregationBuilders.terms("group_name").field("name");
TermsBuildertwo= AggregationBuilders.terms("group_age").field("age");
one.subAggregation(two)
search.addAggregation(one);
Terms terms=search.get().getAggregations().get("group_name");
for(Terms.Bucket name_buk:terms.getBuckets()){
//一级分组的内容
Terms terms_age= name_buk.getAggregations().get("group_age");
for(Terms.Bucket age_buk:terms_age.getBuckets()){
//二级分组的内容
System.out.println(name_buk.getKey()+" "+age_buk.getKey()+" "+age_buk.getDocCount());
}
}
/**
* 包裹查询, 高于设定分数, 不计算相关性
*/
@Test
public void testConstantScoreQuery() {
QueryBuilder queryBuilder = QueryBuilders.constantScoreQuery(QueryBuilders.termQuery("name", "kimchy")).boost(2.0f);
searchFunction(queryBuilder);
/**
* 组合查询
* must(QueryBuilders) : AND
* mustNot(QueryBuilders): NOT
* should: : OR
*/
publicstaticvoid booQuery(Client client) {//最有用的嵌套查询
SearchResponse res = null;
QueryBuilder qb =QueryBuilders.boolQuery()
.should(QueryBuilders.termQuery("title", "02"))
// .mustNot(QueryBuilders.termQuery("title","article"))
.should(QueryBuilders.termQuery("title", "relevance"));
// .filter(QueryBuilders.termQuery("title","article"));
res = client.prepareSearch("search_test").setTypes("article").setSearchType(SearchType.DFS_QUERY_THEN_FETCH)
.setQuery(qb).setFrom(0).setSize(10).execute().actionGet();
for (SearchHit hit : res.getHits().getHits()) {
System.out.println(hit.getSourceAsString());
}
如果需要查询(addr = Beijing) && (sex = false) && (10 < age< 20)的doc:
public static QueryBuilder createQuery() {
BoolQueryBuilder query =QueryBuilders.boolQuery();
// addr = Beijing
query.must(new QueryStringQueryBuilder("Beijing").field("addr"));
// sex = falese
query.must(new QueryStringQueryBuilder("false").field("sex"));
// age ∈ (10,20)
query.must(new RangeQueryBuilder("age").gt(10).lt(20));
return query;
}
返回结果:
{"pid":168,"age":16,"sex":false,"name":"Tom","addr":"Beijing"}
{"pid":276,"age":19,"sex":false,"name":"Bill","addr":"Beijing"}
{"pid":565,"age":16,"sex":false,"name":"Brown","addr":"Beijing"}
{"pid":73,"age":13,"sex":false,"name":"David","addr":"Beijing"}
作者:唐影若凡
链接:https://www.jianshu.com/p/a3694b13bf89
來源:简书
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
/**
* disMax查询
* 对子查询的结果做union, score沿用子查询score的最大值,
* 广泛用于muti-field查询
*/
@Test
public void testDisMaxQuery() {
QueryBuilder queryBuilder = QueryBuilders.disMaxQuery()
.add(QueryBuilders.termQuery("user", "kimch")) // 查询条件
.add(QueryBuilders.termQuery("message", "hello"))
.boost(1.3f)
.tieBreaker(0.7f);
searchFunction(queryBuilder);
}
curl -XPUT'http://169.254.135.217:9200/search_test/' -d '{
"settings" : {
"index" : {
"number_of_shards" : 3,
"number_of_replicas" : 1
}
},
"mappings" : {
"article" : {
"properties" : {
"title" : { "type" : "string"},
"body" : { "type" : "string"},
"like" : { "type" : "long"},
"publish_date" : { "type" : "date"}
}
}
}
}'
curl -XGET'http://169.254.135.217:9200/search_test/_mapping?pretty'
curl -XGET'http://169.254.135.217:9200/search_test/_mapping/article?pretty'
curl -XHEAD -i'http://169.254.135.217:9200/search_test/article'
/search_test/article/1
{
"title": "What's relevance?",
"body": "atticle body of relevence:Term frequency/inversedocument frequency",
"like": "1",
"publish_date": "2016-03-24"
}
/search_test/article/2
{
"title": "article 02",
"body": "article 02 atticlebody of relevence:Term frequency/inverse document frequency",
"like": "2",
"publish_date":"2016-05-24"
}
/search_test/article/3
{
"title": "article 03",
"body": "article 03 atticlebody of relevence:Term frequency/inverse document frequency",
"like": "3",
"publish_date":"2016-07-24"
}
/search_test/article/4
{
"title": "article 04",
"body": "article 04 atticlebody of relevence:Term frequency/inverse document frequency",
"like": "4",
"publish_date":"2016-09-24"
}
/search_test/article/5
{
"title": "article 05",
"body": "article 04 atticlebody of relevence:Term frequency/inverse document frequency",
"like": "5",
"publish_date":"2016-11-24"
}
/search_test/article/6
{
"title": "Quick brownrabbits",
"body": "Brown rabbits arecommonly seen.",
"like": "6",
"publish_date":"2016-12-24"
}
/search_test/article/7
{
"title": "Keeping petshealthy",
"body": "My quick brown foxeats rabbits on a regular basis.",
"like": "7",
"publish_date":"2017-11-24"
}