在实际的 C++ 开发中,我们经常会遇到诸如程序运行中突然崩溃、程序运行所用内存越来越多最终不得不重启等问题,这些问题往往都是内存资源管理不当造成的。比如:
针对以上这些情况,很多程序员认为 C++ 语言应该提供更友好的内存管理机制,这样就可以将精力集中于开发项目的各个功能上。
事实上,显示内存管理的替代方案很早就有了,早在 1959 年前后,就有人提出了“垃圾自动回收”机制。所谓垃圾,指的是那些不再使用或者没有任何指针指向的内存空间,而“回收”则指的是将这些“垃圾”收集起来以便再次利用。
如今,垃圾回收机制已经大行其道,得到了诸多编程语言的支持,例如 Java、Python、C#、PHP 等。而 C++ 虽然从来没有公开得支持过垃圾回收机制,但 C++98/03 标准中,支持使用 auto_ptr 智能指针来实现堆内存的自动回收;C++11 新标准在废弃 auto_ptr 的同时,增添了 unique_ptr、shared_ptr 以及 weak_ptr 这 3 个智能指针来实现堆内存的自动回收。
所谓智能指针,可以从字面上理解为“智能”的指针。具体来讲,智能指针和普通指针的用法是相似的,不同之处在于,智能指针可以在适当时机自动释放分配的内存。也就是说,使用智能指针可以很好地避免“忘记释放内存而导致内存泄漏”问题出现。由此可见,C++ 也逐渐开始支持垃圾回收机制了,尽管目前支持程度还有限。
C++ 智能指针底层是采用引用计数的方式实现的。简单的理解,智能指针在申请堆内存空间的同时,会为其配备一个整形值(初始值为 1),每当有新对象使用此堆内存时,该整形值 +1;反之,每当使用此堆内存的对象被释放时,该整形值减 1。当堆空间对应的整形值为 0 时,即表明不再有对象使用它,该堆空间就会被释放掉。
实际上,每种智能指针都是以类模板的方式实现的,shared_ptr 也不例外。shared_ptr
头文件,并位于 std 命名空间中,因此在使用该类型指针时,程序中应包含如下 2 行代码:
#include
using namespace std;
值得一提的是,和 unique_ptr、weak_ptr 不同之处在于,多个 shared_ptr 智能指针可以共同使用同一块堆内存。并且,由于该类型智能指针在实现上采用的是引用计数机制,即便有一个 shared_ptr 指针放弃了堆内存的“使用权”(引用计数减 1),也不会影响其他指向同一堆内存的 shared_ptr 指针(只有引用计数为 0 时,堆内存才会被自动释放)。
shared_ptr
1) 通过如下 2 种方式,可以构造出 shared_ptr
std::shared_ptr p1; //不传入任何实参
std::shared_ptr p2(nullptr); //传入空指针 nullptr
注意,空的 shared_ptr 指针,其初始引用计数为 0,而不是 1。
2) 在构建 shared_ptr 智能指针,也可以明确其指向。例如:
std::shared_ptr p3(new int(10));
由此,我们就成功构建了一个 shared_ptr 智能指针,其指向一块存有 10 这个 int 类型数据的堆内存空间。
同时,C++11 标准中还提供了 std::make_shared
std::shared_ptr p3 = std::make_shared(10);
以上 2 种方式创建的 p3 是完全相同。
3) 除此之外,shared_ptr
//调用拷贝构造函数
std::shared_ptr p4(p3);//或者 std::shared_ptr p4 = p3;
//调用移动构造函数
std::shared_ptr p5(std::move(p4)); //或者 std::shared_ptr p5 = std::move(p4);
如上所示,p3 和 p4 都是 shared_ptr 类型的智能指针,因此可以用 p3 来初始化 p4,由于 p3 是左值,因此会调用拷贝构造函数。需要注意的是,如果 p3 为空智能指针,则 p4 也为空智能指针,其引用计数初始值为 0;反之,则表明 p4 和 p3 指向同一块堆内存,同时该堆空间的引用计数会加 1。
而对于 std::move(p4) 来说,该函数会强制将 p4 转换成对应的右值,因此初始化 p5 调用的是移动构造函数。另外和调用拷贝构造函数不同,用 std::move(p4) 初始化 p5,会使得 p5 拥有了 p4 的堆内存,而 p4 则变成了空智能指针。
注意,同一普通指针不能同时为多个 shared_ptr 对象赋值,否则会导致程序发生异常。例如:
int* ptr = new int;
std::shared_ptr p1(ptr);
std::shared_ptr p2(ptr);//错误
4) 在初始化 shared_ptr 智能指针时,还可以自定义所指堆内存的释放规则,这样当堆内存的引用计数为 0 时,会优先调用我们自定义的释放规则。
在某些场景中,自定义释放规则是很有必要的。比如,对于申请的动态数组来说,shared_ptr 指针默认的释放规则是不支持释放数组的,只能自定义对应的释放规则,才能正确地释放申请的堆内存。
对于申请的动态数组,释放规则可以使用 C++11 标准中提供的 default_delete
//指定 default_delete 作为释放规则
std::shared_ptr p6(new int[10], std::default_delete());
//自定义释放规则
void deleteInt(int*p) {
delete []p;
}
//初始化智能指针,并自定义释放规则
std::shared_ptr p7(new int[10], deleteInt);
实际上借助 lambda 表达式,我们还可以像如下这样初始化 p7,它们是完全相同的:
std::shared_ptr p7(new int[10], [](int* p) {delete[]p; });
为了方便用户使用 shared_ptr 智能指针,shared_ptr
除此之外,C++11 标准还支持同一类型的 shared_ptr 对象,或者 shared_ptr 和 nullptr 之间,进行 ==,!=,<,<=,>,>= 运算。
#include
#include
using namespace std;
int main()
{
//构建 2 个智能指针
std::shared_ptr p1(new int(10));
std::shared_ptr p2(p1);
//输出 p2 指向的数据
cout << *p2 << endl;
p1.reset();//引用计数减 1,p1为空指针
if (p1) {
cout << "p1 不为空" << endl;
}
else {
cout << "p1 为空" << endl;
}
//以上操作,并不会影响 p2
cout << *p2 << endl;
//判断当前和 p2 同指向的智能指针有多少个
cout << p2.use_count() << endl;
return 0;
}
输出:
10
p1 为空
10
1